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On a theorem of Bauer and some of its épplications
by

A. ScmnNzeL (Warszawa)

1. For a given algebraic number field K let us denote by P(K) the
set of those rational primes which have a prime ideal factor of the first
degree in K. M. Bauer [1] proved in 1916 the following theorem. -

If K is normal, then P(Q) < P(K) implies Q > K (the converse
implication is immediate). -

In this theorem inclusion P(2) = P(K) can be replaced by a weaker
assumption that the set of primes P (£ )—P(K) is finite, which following
Hasse [5] I shall denote by P(Q) < P(K).~ -An obvious question to ask
is whether on omitting the assumption that K is normal it is true that
P(Q) < P(K) implies 2 contains a conjugate. of K. This question was
answered negatively by F. Gassmann [3] in 1926 when he gave an example
of two non-conjugate fields 2 and K of degree 180 such that P(Q2) = P(K).
The two fields found by Gassmann have the even more remarkable
property P4(2) = K) for every A, where P (K) denotes the set
of those rational pnmes which deeompose inito prime ideals in K in a pre-
scribed way A. .

The first aim of this paper is to characterize all fields K for which
the extension of Bauer's theorem mentioned above is nevertheless true.
Such fields will be called Bauerian. It follows easily from the definition
that if K,, K, are two Bauerian fields and |K,K, = ]KlHK s ‘rhen
KK, is also Bauerian (] | denotes the degree). We have

- - TaroreM 1. Let K, Q be two algebraic mumber fields, K the normal
closure of K, ® — its Qalois group, D and 3 subgroups of & belonging
to K and 9~ K, respectively and 9., 9y, ey, all the subgroups

. - . * n
of ® conjugate to H. P(Q) < P(K) is equivalent to 3= U 9.

: i=1

Tke Field K is Bauerian if and only if every subgroup of ® contained
n U $; is contained m one of the Sj

The second part: of thls theorem’ enables us to decide for any given
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field in a finite number of steps whether it is Bauerian or not. A field K
is said to be solvable if the Galois group of its normal closure is solvable.
We obtain in particular

TuEoREM 2. Bvery cubic and guartic field and every solvable field K,
such that (|E|[\K|, |E|) = 1 is Bauerian. Fields K of degree n = 5 such that
the Galois group of K is the alternating group A, or the symmetric group
&, are not Bauerian. PR -

Theorem 2 gives complete information about fields of degree < 5.
For such fields, Bauerian fields coincide with solvable ones. The follow-
ing example which I owe to Professor H. Zassenhaus shows that this is
no longer true for fields of degree six. TLet K be any field with group
9(, (such fields exist, of. § 5) and let K belong to a subgroup © of order
two. Here | $; is itself a subgroup (the four-group) and clearly is not
contained in any of the $;. Taking Q to be the field corresponding to
U $; we see that 2 is normal and 2-c K, thus in this ease

P(Q)=P(E) but 8 #K snd |9 #IK

This shows that the condition P(£2) = P(K) is much weaker than
the condition P (2) = P,(K) for every 4. The latter according to
Gassmann [3] implies that @ = K and Q| = |K|. o

The theorem of Bawer has been applied in [2] to characterize poly-
nomials f(«) with the property that_for a given normal field K in every
arithmetical progression there is an integer # such that f(«) is a norm of
an element of K. The same method combined with Theorem 2 gives

TaEOREM 3. (i) Let K be a cubic or quartic field or a solvable field
such that (\E|)\E], [Ely =1 and let Ngq denote the norm’ from K to the
rational field Q. Let f(x) be a polynomial with rational coefficients, and sup:
pose that every . arithmetical progression comtains an tnteger . such that

@) = Ngl@) for some  weE.

If either n = |K| is square-free or the multiplicity of every. zero” of fla) is
relatively prime to n, then f(z) = Ngjolw(w)) identically for some o (x) e K[2].

(ii) Let K be a field of degree n->> B, n # 6 such that the Galois group
of K is aliernating 2, or symmetric S,. Then there ewists an drreducible
polynomial f(x) such that for every integer @ and some w e K, f(x) = Ngiq(w)
but f(w) camnot be represented as Ngo(w(@)) for any ‘(@) <Kzl

Rinee every group of square-free order is solvable, we get immediately
from Theorem 3 (i). ‘

COROLLARY. Let K be a field such that |E| is square-free and let f(x)
be .a polynomial. with rational coefficients. If every arithmetical -progression

hm@
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contains an integer = such that f(z) = Ngjq(w) for some weE, then f(x)
= Ngjo{w(@)) identically for some o(z)eK[z].

If f(z) is to be represented only as a norm of a rational function,
not of a polynomial the conditions on the field K ean be Weakened‘ We
have

THEOREM 4. Let K be a field of degree n = p or p* (p prime) and let

g(x) be a rational function over Q. If in every arithmetical progression there
is an integer & such that i

g(®) = Ngyp(w) for some wek,
then

gl@) = Ngjo(o(x)) for some w(w)eK(z).

There exist fields of degree 6 for which an analogue of Theorem 4
does not hold. We have in fact ' .

' TeEOREM 5. Let K = Q(V2eosin), f(#) = 2°+a*—2c—1. For every
integer @, f(x) s a norm of an integer in K, but f(x) cannot be represented
as Ngjq(o () for any o(@)eK(z). '

The proofs of Theorems 1 and 2 are given in § 2, those-of Theorems 3
4 and 5 in §3, 4 and 5, respectively. ‘ o

I shall like o express my thanks to Professors D. J. Lewis, H. Zassen-
haus and Dr. R.T. Bumby for their valuable suggestions and to Dr.
Sedarshan Sehgal whom I owe the proof of Lemma 3.

) 2. Proof of Theorem 1. This proof follows easily from a generali-
zation of Bauer’s theorem given by Hasse [5], p. 144, For a given prime

¥re -
, let (;)_be the Artin-symbol (the class of conjugate elements of ®,

tf’ w}fjch P belongf;); The theorem in question can be stated in our nota-
tion in the following way. € being any clags_of conjugate elements in
7 .
®, the set {psP(Q):(;) = @} is infinite if and only if € < G 3,
. =1
where §; (j = 1,2, ..., m) are all the subgroups of. ® lconjugate to 3.
Suppose now that P(Q) < P(K) and let € be any class of conjugate

elements of ® such that € < (J 3;. By the theorem of Hasse, the set

F=1

{1} EP(Q):(—ZT) = @} ig infinite and since P(2) < P(XK) the same applies

K
to {p «P(K): (;) = @} Applying the theorem in the opposite direction

. . » i m -
and with X instead of 2 we infer that € = (J $;. The set |_J J; consists of
. i=1 00 fel:
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. _ - me - . n . e . :
the union of full Conju”ga,te‘.alﬁisses.' Hence U 3= U 9; and  a- fortiori
. : i=1

§=1
k13 .

RERURVE
. 4=l

In order to prove the converse implication, let us notice that accord-
ing to [5], p. 144, the symmetrie difference

a P(E)= {p:(—};—) = Q s;i} is 'fin.it'e‘ .
and similarly ) o

{2) P(Q ~ K) - [;p: (-I-Z—) = G 3,-} is finite.
- 1 p j=1

Henee if I U D we get U 3 <= U1 $; and by (1) and (2) P(2 ~ K)
. i=1 =1 i=
< P(K) and a fortiori P(£2) < P(K). - . .
This completes the proof of the first part of Theorem 1. The second
part follows immediately from the first after taking into account that
every subgroup of G belongs to some field and this field can be set as 2.
Proof of Theorem 2. Suppose first that the Galois group of K is
solvable and ((K|/|E|, |E|) = 1. Let $ be the subgroup of & belonging
to K and let IT be the set of all primes dividing |9, i.e. the order of 9.

If for a subgreup 3, 3« U $;, then clearly 3 is a II-group. Since H
- i=1

is a maximal IT-group by a theorem of P. Hall (cf. [4], Th. 9.3.1) ¥ must

he contained in one of $;. This shows according to Theorem 1 that field

K is Bauerian. In particular every cubic field and any quartic field K

having 2, as Galois group of K is Banerian. Is remains to consider quartic

fields K such that Galois group of K is either dihedral group of order 8
4

or &,. In the first case U $; consists of 3 elements and does not contain

i=1 .

any subgroup except the $; and the identity group. In the second case
4

$; (i=1,2,3,4) is the ¢th stability group and | $; contains besides
i=1

the ; and the identity group only eyelic subgroups of order two or three.
These are clearly contained in one of the $;. Thus every quartic field
is Bauerian.

Tn order to prove that fields K of degree n > 5 such thab A, or S,
is Galois group of K are not Bauerian we consider the following: sub-»
groups of U,: :

{(123), (12)(45)} XY, 5 for m =35 or n=> 8,
{3) i {(12)(34), (12)(56)} for n =86,
' §(12345), (1243)(67)} for =T
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They are contained in the union of stability subgroups of &, but not
in any one of them, and the desired result follows immediately from
the second part of Theorem 1.

3. Lemma 1. Suppose that the hypotheses of Theorem 3 (i) hold. Let
(4) fl@) = chi(@)Yal@)2. .. fin (@)™

where ¢ = 0 is a rational number and fi(x), f(®), ..., fm(®) are relatively
prime polynomials with integral coefficients each irreducible over @ and
where e,, €y, ..., €n are positive integers. For any j, let q be a sufficiently
large prime for which the congruence

(5) filz) = 0(modgq)
s solvable.

If (¢, n) = 1 then geP(K). If n is square-free then qeP(K;) where K;
is any subfield of K of degree nl(e;, n). (Such subfields exist).

Proof. Put F(z) = fi()fo(®)...fn(x). Since the discriminant of

F(z) is not zero, there exist polynomials ¢ (), p(«) with integral coefficients
guch that

(6) Fg)p(@)+F (x)plz) = D
identically, where D is a non-zero infeger.

Let ¢ be a large prime for which the congruence (5) is soluble and
let 2z, be a solution. By (6) we have F'(z,)  0(modg), whence

F(z,+q) # Flzy) (modg?).
By choice of », as either z, or z,+¢, we can ensure thab

film) = 0(modq), F(=z)== 0(modg’),
whence

fil@) #= 0(modg®) and fi(w) = O(modg) for 4 #j.

By the hypothesis of Theorem 3, there exists x, = #,{(mod¢*) such
that

M J(@) = Ngjo(w)

From the preceding congruences we have
Ji(#,) = 0(modg),

Ji(m,) # 0(modg)

for some weK.

fila,) = 0(modg’),
for @ #j.
Hence

(8) fla,) = 0(modg*),

Acta Arithmetica XI.3

F(@,) # 0(mod g7*).

22
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It n = 4 and g does not belong to P(K) then ¢ remains prime in K or
factorizes into two prime ideals of degree two. In either case g divides
N (o) for any weK in an even power. In view of (4) and (8) this eontra-
dicts the assumption that (e, n) = 1.

1f K is solvable and (|K|/|K|, |K]) =1, let
&) g= 0% .. G

be the prime ideal factorization of ¢ in K ; the factors are distinct since ¢
is supposed to be sufficiently large. We note that I divides n because K
is a normal field and that

(10) Nzt = 4.

Whrite the prime ideal factorization of w in K in the form
(0) = Q31432 ... qab™,
where a, b are ideals in K which are relatively prime to g. Then

(11) Ngjolo) = fgrertot ot IN g 0 (Ngjob) ™!

and Ngjot, Nxjob are relatively prime to g. It follows from (7), (8) and
(11) that
n(ag+ag+...+a)fg = €,
whence
o
(e, m)

divides g. ~

If {;,m) = 1 we get that n divides g. Let ®, be the splitting group of

(C) )
the ideal q,. We have [®: B,] = g, thus |B,] divides l—n—l, that is the

order of the group 9 belonging to field K. Since

( \@l) ( |X I)
n,—|)=|n,—]=1
n n

it follows from the theorem of Hall, that &, is contained in one of the
conjugates of H. Therefore the splitting field F, of q, contains a conjugate
of K and since qeP(F;), geP(K).

Suppose now that n is square-free and let ®, and F, ;ha,ve the same
meaning as before. Since

18} n
(—n‘(eh n), e, n_)) =1

hn..@
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G
there exist in ®, by the theorem of Hall, subgroups of order I—,'Ti (€5, 1)

(6]
and they are all conjugate. Moreover since 1658[{%’,—[ (&5, ), |6 must

be contained in onme of them, thus F, must contain a subfield K’ of K

n
f degree .
° (n, &)
Since all such fields are conjugate, and since geP(F,) it follows
n .

(77'3 67)
G
exist again by the theorem of Hall since (Lﬁl, (&5, n)) = 1.

. Such fields

that geP(K;), where K; is any subfield of K of degree

Proof of Theorem 3 (i). Lemma 1 being established the proof
does not differ from the proof of Theorem 2 of [2]. Instead of Lemma 3
of that paper which was the original Bauer theorem one uses Theorem 2.

Proof of Theorem 3 (ii). Let the Galois group of K be represented
as the permutation group on the = fields conjugates to K: K, Ksy..., Kp.
Consider a subfield @ of K belonging to a subgroup 5, of 2, defined
by formula (3). It is clear that if $,.: denotes the subgroup of ® belong-
ing to K;, then

3 for i=1,2,3,
13l ,
—_ =12 £ =4 5 =5
.~ ol or 1 or 5, (m =5 or n > 8),
n—5 for ¢=6,...,7m
(12)
% 5 for 1<5
S <5, _—
1B~ Duil 9 for t=26or 7
‘We have
Sa K2
1B ~ Dl 19|

- and the equalities (12) mean that F'(x) — the polynomial generating K

factorizes in @ into irreducible factors of degrees 3, 2 and n—5 (n =5
or n>8) or 5 and 2 (» = 7). It follows by the theorem of Kronecker
and Kneser (cf. [7], p. 239) that f(z) — the polynomial generating 2 fac-

19, 12| 12|

torizes in K into irreducible factors of degrees 3 —, 2 — and (n—35) —
n n n

. 5 2
(n =25 orn_>8)or ;|.Q] and P 12| (n = 7). The norms of these factors

with respect to K are fi(z), f*(z), ["*(2) (n =5 or n > 8) and f*(x),
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F(x) (m = 7). None of them is f(#), thus f(x) cannot be represented as
a norm of a polynomial over K. On the other hand f(z) = f*(x)/f(z)
= f*(z)/(f*(x)), whence it follows by the multiplicative property of the
norm that f(z) is a norm of a rational function over K and so for every
integer x, f(z) = Ngjo(w) for some weK.

4. Levma 2. Suppose that the hypotheses of Theorem 4 hold. Let
9(@) = ¢fy (&) Y2(2)%. .. fm ()™,

where ¢ = 0 18 @ rational number and fi(@), fo(®), ..., fm(®) are relatively
prime polynomials with integral coefficients each dirreducible over Q and
where ey, €, ..., ey are integers relatively prime to n. For any j let q be
a sufficiently large prime for which the congruence

fi(#) = 0(modg)

is soluble. Then q factorizes in K into a product of ideals, whose degrees
are relatively prime.

Proof. We infer as in the proof of Lemma 1 that there exists an
integer x, with the following properties
(14)

{15)

(13)

9(23) = Ngjo(w)
g(2) = gab™",

for some wekK,
where a, b are integers and (ab, ¢) = 1.

Let ¢ = p;P,...1; be the factorization of ¢ in K, the factors are distinct
since ¢ is sufficienfly large and let Ngjop; = ¢". Clearly

1
Zfi =n.
i=1
Write the prime ideal factorization of w in K in the form
(w) = pipge ... pitab~?,
where {ab, g) = 1. Then
(17) NK/Q — iqnllﬁugig-l—.,.-!—alizNKIQ a (-NK[Q B)—l

and Nygja, Nxjeb are relatively prime to ¢. It follows from (14), (15)
and (17) that

(16)

(11f1+l12f2+.“+ asz = 6;.

Thus (fi,fs ..., fi)lg and by (16) (fi,fss ..., fi)ln. Since (eym) =1,
(Fisfor--0n ) = 1, g.e.d.

Levma 3. Let J be a group of permutations of n letters, where n = p
or p* (p — prime). If the lengths of orbits of S are not coprime there exists
in S a permuiation whose disjoint cycles are of lengths My Ayy..ny A, where
(s Any -oey B) # 1.

iom®
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Proof (due to Sedarshan Sehgal). Let the lengths of orbits of 3
be L, lyyenny b Sinee L4+lbt... b =mn, i (1, 0,..., L) #1, we must
have pll; (i =1,2,...,r). Thus the order of group ¥ is divisible by »
and it contains a Sylow subgroup S,. Moreover, the lengths of orbits
of 8, are again divisible by p (cf. [8], Theorem 3.4). The number of
these orbits # is < njp < p. Permutations of 8, leave on the average #’
letters fixed (ibid. Theorem 3.9). Since the identity fixes n letters there
must be a permutation in §, which fixes less than p letters. Since |8,
has no prime factor less than p, the permutation in question leaves no
letter fixed and all its disjoint eycles must have lengths divisible by p,
q.e. d.

Remark. If n = p, p?, there exist groups of degree n for which the
lemma does not hold, as shown by the following construction. Let » = pg,
where p — prime and ¢ > p. We put

JI= {Pa,ﬁ,y}u=1,§!,...m ’
B=1n

y23sees

D
r=12,...,p(@—v-1)

where
2
Popy= (1,2, 0 [[(kp+1, ..., b+ D)pJ*(p*+p+1, ..., pa)".
k=1

The orbits here are (1,2,...,9);...,(»*+1,...,0%°+p), (P’ +p+
+1, ..., pq), their lengths are therefore all divisible by p. On the other
hand, for every triple a, B, y either « = p or there exists a k such that
1<k <p and ka+ S = 0(modp). In either case P,;, leaves at least p
letters fixed.

Proof of Theorem 4. Let the Galois group & of K be represented
a8 a permutation group on the » fields conjugate to K. Let f;(x) be any
one of irreducible factors of g(z) as in (13), £; be a field generated by a root
of f;(z) and 3; be a subgroup of ® belonging to field Q; ~ K. By the
theorem of Hasse quoted in the proof of Theorem 1 for every class € = (UJ
(summation over all conjugates of 3;), there exist infinitely many primes

K
qeP(£;) such that (;) = €. If such a prime is sufficiently large, we

infer by the principle of Dedekind and Lemma 2 that g factorizes in K
into prime ideals of relatively prime degrees. The degrees in question
are equal to the lengths of the cyecles in the decomposition of class €.
Thus in every permutation of §;, the lengths of the cycles are relatively
prime. By Lemma 3 this implies that the lengths of the orbits of J; are
relatively prime.

Let %(x) be an irreducible polynomial over @, whose root generates
K. 3; is the Galois group of the equation %(z) = 0 over ;. The lengths
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of the orbits of §; are equal to the degrees or irreducible factors of k(w)
over ;. Thus )
(@) = ki (@) Fyy (). T ()

where % is & polynomial irreducible over £; of degree |k;| and

(18) (lk_’illi lky'zl: sy [kjr[) =1.
By the theorem of Kronecker and Kneser it follows that
fi(@) = efn(@)fnl@).. fir (@), where ¢e@,
X Pyl
(19) fueK[x] and Ngofiulz) = (‘@) .
i

In view of {18), there exist integers a; (1 =1,2,...,7) such that

(20) “a;iku] = 1.

3

We get from (19) and (20)

Ma

I
p

(21) fi(2) = ;N [ [ 1 ().
i=1

It follows from (13), (21) and the multiplicative property of the norm that

g(2) = aNgjoh(x), where h(z)c<K(2).

By the hypothesis of the theorem taking % to be a suitable integer,
we infer that a = N gg(a), where aeK. Putting o(®) = ah(x) we obtain
g(x) = Ngjo(e(z)), identically, q. e. d.

LemuA 4. The class number of the K = Q(V2cosix) is one and the
rational primes p factorize in K in the same way, as the polynomial f(2*)
factorizes modp.

Proof. The field 2 = Q(2cosix) is a cyclic field of discriminant
7%. 2 remains a prime in this field, hence 2cosin = (200s;7-c)3—2 is in 2
a quadratic non-residue mod4. Since 2003%7: is a wunit, it follows
by the conventional methods that 1, Vo cosén is an integral basis for K
over Q, thus dg, equals (8 eos':;w:) and for the discriminant of K we obtain
a value

dK,Q = d})IQ.NQIQ(dKIQ) == 26‘74.

Thiz number coincides with the discriminant of f(#*), which has VZcosén
as one of its zeros. Therefore, by the principle of Dedekind the factori-
zation of primes in K is the same as factorization of f(z?)modp. In par-

hn..@
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ticular we have

@) =P, ¥P, =8,

(3) = C*pchsg Ncpz = NC‘Ds = 337
(5) =LD4(D57 an:;:NCDs 253:
(7)=C‘D§ 35 N‘D5=N‘3Dq=7-

Now, by the theorem of Minkowski, in every clags of ideals of K
there is an ideal with norm not exceeding

4\*6! —
(—) Egl/dK,Q < 11.

T

If therefore the field K had class number greater than 1, then there
would be a non-prineipal ideal with a norm << 11. This is however impos-
sible since

(2) = (2eos§7c+}/2(ms§n)2,
(7) = (1—}—2003237:-}—1’2008.3,7:)3(1 +2cos§n— 1/2(3053;1:)3.
Proof of Theorem 5. Since the degree of f(z) is not divisible by 6,
f(x) cannob be represented as Ngy(w(#)), where w(z)eK (o). It remains

to show that for every integer =, f(#) = Ngp(w) for some integer o cK.

Leb
(22) flo) = £pips...pe¢

where a; are positive integers. Since the discriminant of 2 = @(2 cosén)
coincides with the discriminant of f(z), by the principle of Dedekind
each prime p; has a prime ideal factor P, of first degree in Q. Since

(2c0827) (20085 7) (2c0s5 ) =1,

at least one of the factors on the left hand side is a quadratic residue
modP;. Tt follows that for some m;e

flad) = (@2 — 2 cos2x) (i — 20083 ) (75— 2eoszm) = O(mod Py).

Since P; is of first degree, there exists a rational integer x; such that
z, = z,(modP;) and we get f(a}) = 0(modp;). By Lemma 4, p;eP(K)
and since every ideal of K is prinecipal,

(23) p; = =Ngowi,

where o; is an integer of K. Since

—1 = Ngjo(V2cosin),
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the conclusion follows from (22), (23) and the multiplicative property
of the norm.

Remark. In connection with Theorem 5 let us remark that the
theorem of Bauer gives an answer to a question of D. H. Lehmer ([6],
p. 436) concerning possible types of homogeneous polynomials F(x, )
of degree {g(n) such that when (=, y) =1, the prime factors of F(z,y)
either divide n or are of the form nk41. (If f(x) = 2+ 2’ — 2z —1, then
¥*f(xly) is an example of such polynomial for n = 7.) The answer is that

Tp(n)
all such polynomials must be of the form A4 [] (#— o;y), where ¢; runs
i=1

through all conjugates of a primitive element of the field Q(Z cosin)
7
and A is a rational integer.

Note added in proof. In connection with Theorem 2 a question arises
whether solvable fields of degree p* (p prime) are Bauerian. J. L. Alperin has
proved that the answer is positive if the field is primitive and p > 3. P. Roquette
has found a proof for the case where the Galois group of the normal closure is a
p-group (oral communication).
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An extension of the theorem of Bauer and
polynomials of certain special types
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D.J. LEwis* (Ann Arbor, Mich.), A. ScHINZEL (Warszawa)
and H. ZASSENHAUS (Columbus, Ohio)

1. For a given algebraic number field K let us denote by P(K) the
set of those rational primes which have a prime ideal factor of the first
degree in K.M. Bauer [1] proved in 1916 the following theorem:

If K is normal, then P(Q2) c P(K) implies Q> K. (The converse
implication is immediate).

In this theorem, inclusion P(Q) c P(K) can be replaced by a weaker
assumption that the set of primes P(Q)—P(K) is finite, which following
Hasse we shall denote by P(Q) < P(K).

In the preceding paper [8], one of us has characterized all the fields
K for which P(R) < P(X) implies that 2 contains one of the conjugates
of K and has called such fields Bauerian. The characterization is in terms
of the Galois group of the normal closure K of K and is not quite explicit.
Examples of non-normal Bauerian fields given in that paper are the
following: fields K such that K is solvable and (:—IK{-II—, |K |) = 1(%), fields
of degree 4. The aim of the present paper is to exhibit a class of Bauerian
fields that contains all normal and some non-normal fields. We say that
a field K has property (XN) if there exists a normal field L of degree rela-
tively prime to the degree of K such that the composition KL is the nor-
mal closare of K. We have

TasoreM 1. If K and Q are algebraic number fields and K has pro-
perty (N) then P(Q) < P(K) implies that Q contains one of the conjugates
of K.

* This paper was written while the first author received support from the
National Seience Foundation.

(}) We let | | denote both the degree of the field over @ and the order of the
group.
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