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ACTA ARITHMETICA
XI (1966)

A uniform result on almost primes

by

R. J. MiecH (Los Angeles)

In an earlier paper [8] I have shown that if F(z) is a polynomial
with integral coefficients then there are an infinite number of integers
m such that F(m) has a bounded number of prime factors. My goal here
is to prove that there is a positive integer m, which is bounded above
by a specific function of the coefficients of F(z), for which F(m) is an
almost prime. To be exaet, I shall prove

TraeoreM 1. Let F(x) = fi(x) ... fr(z) where, for 1 <i <k, fi(2)
an irreducible polynomial with integral coefficients whzch 8 of degree ;.
Suppose that no irreducible factor of F(x) is a constant multiple of any
other and thai F(x) has no fized prime divisors. Let A(f;) denote the maxi-
mum of the set of the absolute values of the coefficients of fi(x) and B(F)
= A(fy) ... A(fr). Let n be the maximum of Ny, Ny, ..., Wy and

‘
Liky =k D (1/j).
=1

Then for any positive & there is a constant ¢(k, 6, n) which depends on k, d,
and n and a positive infeger m < exp (a(k, &, n)(B (F))a) for which F(m)
has at most ny—-ny-t...+np-+L{k)+klog(2n+1)+1 prime factors, mul-
tiple prime factors being counted mulliply. )

The proof of this theorem will be based on Selberg’s sieve method
and one of Fogels’ results on Hecke's zeta function.

Under certain circumstances the bound on m given above can be
reduced. Using another result of this paper, Theorem 4 of section 2, one
ca prove

THEOREM 2. Let F(z) be defined as in Theorem 1. Let, for1 <i <k,
0; be a zero of fi(x), K; be the field obtained by adjoining 6; to the ration-
als, and D; be the absolute wvalue of the diseriminant of K;. Suppose
that D; < (logz)®, where E is any positive number. Then there is a con-
stant ¢(k, B, n) which depends on k, E, and n and o positive integer m <
e(ky B, n){B(F))*" for which F(m) has at most ny+ng+...-+np-+L(%)+
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klog(2n+1)-+1 prime factors. Furthermore, let i be any number such
that A= 2 +1)/n’ and let g(A) =2[2R— Ln'Al™' where R —=
(2n+41) (622 [(2n+3)6n*+1)1" and n' is the minimum of nl,'n,z,...
and n;. Then there is a constant ¢(k, B, n, ) and a positive integer m <
ek, By n, D(BEFPD for which F(m) has at most [ A]+.. +[MA]——
—k+L{k)-+Elog(2n+1)+1 prime factors, multiple prime factors being
counted multiply. ([#] denotes the integral part of z here.)

Forther reductions on the bound for m can be made if F(z) has
a simple form. If, for example, the irreducible factors of F(x) are linear

it is possible to prove that there is an integer m < e(k)( )6 3 for
which # (m) has at most (1.98)k+ L (k) prime factors. Thus J:EF m) = ax+b

7

where (@, b) =1 then there is an m < 3 for which
F(m) has at most 2 prime factors.

Fluch ([3]) has shown that if F(z) = ax+b, (a,0) =1,anda >b >1

clmax(jal, [b))]

9
then there is an integer m < aH T for which F(m) has at most 2 prime
factors, provided that a > ¢(g). Pan ([10]) proved the existence of an
integer m < a°, where ¢ < 5448, for which F(m) has one prime factor.
One of Schinzel’s conjectures ([12], [1]) can be interpreted to say that
if g(z) is a given polynomial of degree n which has integral coefficients
and whose leading coefficient a, is positive then, if ¥ is any sufficiently
large positive integer such that ¥ —g(x) iz an irreducible polynomial,
there is a positive integer m < (N [a,)" for which ¥ —g(m) is an almost-
prime. If the discriminant of the field associated with N -—g{z) satisfies
the assumptions of Theorem 2 its proof can be modified to yield this
assertion. If not we can, using Brun’s method, prove

TaHEOREM 3. Leét F(x) be a polynomial which is of degree n, has inte-
gral coefficients, and has no fized prime divisors. Let A(F) denote the maxi-
mum of the set of the absolute values of the coefficients of F(x). Let A be any
number such that A > and h(3) = [n(e2i—1)]"%

Then there is a constant ¢(n) and a positive integer m < ¢(n) (A )"“)
for which F(m) has at most [Tn?1] prime factors, multiple pmme factors
being counted multiply.

1. Preliminaries. We begin with a uniform estimate on the number
of ideals in a field.

Lemwua 1. Let K be an algebraic number field of degree n, D be the
abs.ol‘ute value of its diseriminant, Lz (s) be the zeta function of K, r be the
residue of this function at the point s = 1, and G(m) be the number of ideals
in K whose norm is equal to m. Then

D G(m) = ra-+-O[A(D)2'®]

igmge
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where

A(D) = (log(2D)***, (D) = 1—(10nlog(2D))™,

and the consiant implied by the O-term depends only on n.

The next lemma, which is a slightly different form of Theorem 3
of the appendix of [11] will serve as a frame of reference for the proof
of Lemma 1.

LeEyMa 2. Let s = o+t and let
f(.g = v At -f
m=1
Suppose that the series is absolutely convergent for o>1,
m faml < e{HB(m);
and
(2) 2 lam| M~ < 63(f) (6—1)"

as ¢ —1--0, where ¢,(f) and cs(f) are constants that depend on the function
f(8), Blx) is a positive erentually inereasing function of x, and a is a positive
number. Let 1 <b <2, T>0, and x> 1. Then

®) Dan = 102 s B, T)
Mz o b—iT
where
2x)xl
B, 1) =0{T"‘(§fﬁf) + GDPCDNBCD) 4, (1g5a)|,

and the constant implied by the O-term is independent of the function f(s)
and the numbers x, T, b, and a.

If we let f(3) = {x{s) it is not difficult to determine a function f(z)
and numbers ¢,{x), ¢2({x), and o which satisfy (1) and (2). We have
4 = G{m), the number of ideals in K whose norm is equal to m. Since
there are at most »n prime ideals which contain the rational prime p in
a field of degree n, since the norm of any one of these prime ideals is divi-
sible by p, and since integers and ideals factor uniquely it follows that
G{m) < (d( m)) , where d(m) is the number of divisors of m. Since (I-5.2,
11}

d(m) < eg(e)exp (1 1og2(10gm) (loglogm)~']
for any fixed ¢ > 0 and any m >
let

(4) B(x) = exp[nlog4 (logz)(loglogdz)™"]

9 it follows that if we. set e =1 we can
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for @ >1; moreover, ¢ ({x) will be a constant that depends only on n.
Since, for ¢ > 1,

|tz (a+it)] < Lxlo) < (E(a))"

where ((s) is the zeta function of the rational number field, ¢,({x) will
be a constant that depends only on n and we can let a = n. Thus we
have

1 e (s)af
(5) ZG(m) -5 f SE2D s+ By (a, )
m<x = b—iT
where
_ 2 B(z)log(2z) ]
B0, 1) = 0 o + FOEED i),

the constant implied by the O-term depends only on %, and §() is defined
as in (4).

From this point on the symbols ¢y, ¢,,
that depend only on n.

The integral that appears in (5) will be evaluated with the aid of the
following result of Fogels: If # > 2 and 0 < & < ((log2)/3) (log D)~* then
there is a constant ¢, such that the inequality

8—1
§—2

... will represent constants

(6)

CK(S) < ¢ 5~nD<}(1-u)(1+ ]tl)}(l-fﬁ—u)n

holds uniformly for —dé <o <1-4.

This inequality appears in the proof of Lemma 4 of [4]. Fogels’
assumption that 0 < 8 < (logD)™* < 4 can be replaced by the one
above since his proof only requires that 0 < 6 < 2~! and that D’ be
bounded.

If we let 6 = (n*logD)™" and apply (6) to (x(s) on the rectangle
with the vertices 1—a3iT and b+i7, where a = (n’logD)},
b =1-+(n*logD)™Y, and T >1 we have

) £ ()] < ey(log DY (1+ [¢))™®,

where m(D) = (n*+n"3)(2log D)™}, on the line s = 1—a+4it. On the
lines 8 = o4iT, 1—a < o < b, we have

(®) ICx(8)| < es(log D) (14 T)"P).
The residue theorem, (7) and (8) imply that

b4iT
1 {x(s)a’
(9 mb‘lfT J‘—g—ﬂis = 1o+ B,(z, T)

iom®
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where
Ez(-’”; T) =0 [(IOgD)""('Z ml_‘sz(DJ + (IOgD)nmb me(D)—l] .

T we set T = exp(n~logs) equations (5) and (9) give us
> a(m) = ro+ 0[(log DY***(a" + o’ + a7 B (2)log 241} ,

m<E
where @ = 1—a+m (D)% f = b+ (m(D)—1)n % and y = b—n~%. Since
a, f and y are each less than 1—(10n*log D)~' = t,(D) and since B(x),
as well as log2s, is bounded above by a constant multiple of #* where
1 = (8%~ it follows that

D G(m) = re-+0[(log DY* 221D,

m<z

{10)

(11)

Equality can be allowed in the index of summation in (11), for

2 @ (m)— Z G{m) < G([z]) = O(ﬂ(m)) — 0((10gD)n+zwt1(D)) .

m<e Mm<T

(12)

The conclusion of Lemma 1 follows from (11) and (12).
LemMA 3. Let K, n, D, r and G(m) be defined as in Lemma 1 and

suppose that

> @(m) =ro4+0[4(D) |

m<T
where (D) and t are functions of D and n but are independent of 2, 0 < 1 < 1,
and the constant implied by the O-term depends only on m. Let P denote
a prime ideal in K and N(P) be its norm. Then for © > 2

1 o ioglogztl (K) o[ 1 (1+“D)) 1]
ZW_OgOgm+OgT+U + (1—1)

r loga
N{P)<z g

where

1 1
o(K) = vo—g;W;’—M—(N(P))m

and v, is Euler’s constant.

COROLLARY. Let Q(p) denote the number of prime ideals of the first
degree in K which divide the rational prime p. Then for = 2

o) 1 ADNy 1
2__?_._loglogw+log7“4-7)1(K)‘|'0[(l_t) (1+ 7 )10g09]

<z

where v, (K) is a constant that depends on K but whose absolute value is
bounded above by a number that depends only on n.
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Temma 3 can be proved by an argument that is similar to the one
given on pages 114-115 and 149-151 of [5].

We now turn to the problem of finding the summatory function
of a Dirichlet series that is essentiaﬂy the product of & zeta funections.

LeMMA 4. Let the polynomial F(x) = fi(w fK be defmed as in
Theorem 1; K; be the field generated bg/ a zero of fil@), Li(s), Dy, ryy and
G;(m) be defmed m a manner analogous to that of Lemma 1; Q4(p) be the
number of prime ideals of the first degree in K; which (lim’de the rational
prime p and Q(p) = Q,(p)+...+ i (p). Let w(d) be the number of solu-
tions of the congruence F(x) = 0 mod d; 1/f(d) = w(d)/d, and

f_'= d)”( )

J1(8)Jo(s) where

J1(8) = (1 Tf"w“(g)—)(l—}—)mm
Y H +p‘(p—w(p)) p°]

Set H(s) =

D
% .
Jy(8) = gllll(l—r——lv(]i)l)s),

and P’ denotes a prime ideal of the second or higher degree. Let a,,m~° be
the_m~th term of the Dirichlet series that represents H(s) and H,(s) be the
series whose m-th term 48 |an|m~°. Suppose that

D) @im)
mLx

1 for ¢ >

= 1@+ 0;(2) f(D;) 5D

where [0;(x)] < 1 and % <

7+ B(D

t(i) < 1. Let
Tk‘l‘ﬂ(ch)A
l—t(l) 1—t(k) ’

By =ry .. rp(E)TH(L),

Hz(l: w, t(l)) = Hl(t(l));

n(k, D) =

and, for k > 2,

Hy(k, w, 1(1)) = H, (w)(1—w)™"
whm'e. w 8 any number such that 3 << w < 1. Let u(m) denote the Mobius
Sfunction. Then, for k =1, we have

#2(m)
13 = ¥ ;

08 2, iy — Bellogal+0[dhn(k, D)H, (k, w, 1(1)) loga)*~]
where the constant ¢,, as well as the one zmphed bis the O-term, depends only
on n, the maximum of the degrees of fi(x),fa( ), ..., and fr(x).

hn..@

A uniform result on almost primes 377

Proof. We begin by noting thatb

2 m)
f(m

m=1
and that H(s) can be represented as a Dirichlet series that is absolutely

convergent for Re(s) > % )
The next step consists of showing, by induction, that if

Lr(s)

= H(8)Ly(8) ---

C ( Ck(s ycm'm -
then
(1'-4‘) 2 tp = (10g$)7‘ l+6 5\9)7] (70, ) (7{7, w)w
where 16(@) <1 for z>1,%(1, D)= (t—1@)n(1, D), n'(k, D)
=2 3k—277(7c,1)) for k=2, (1,2 —r“”‘“’ and (%, @) ——(10gw)
for k > = A

We can also show, as in Lemma 3.1 of [8], that if
U(s) = H(s)4(s)
where H(s) is a series that is absolutely convergent for the Re(s) > %

and Z(s) is a produet of k zeta functions whose summatory function is
given by (14) then the summatory function of U(s), i.e. the sum

is equal to
H(1)z+0[n' (1, D) H, (t(1)) 2"
it k=1, or
FloeaTh
(k—1)!
if % > 2. The conclusion of the lemma follows from these results.
LEmMA 5. Let B(F) be defined as in Theorem 1. Then we have
3 ur(m) [f'(m) = Bu(logm)*+0 [y ey, , D) (loga)*~"]

m<T

H,(w)

H(1)z(logs)+0 [9’~ "%, D) m(logo:)’“““]

where

(s, k, D) = [exp (cflog,e’ B(F))|[(10g2D,). .. (log2Dx)1*

and logsx = logloglogw.

The proof of Lemma 5
that

has two parts. The first consists of showing

Hy(k, w, t(1) < (expdl)exp [e klog, (A(F)+3)]
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where H,(k,w,$(1)) is the quantity defined in Lemma 4 and d(F) is
3, number that depends on the polynomial F(z). The second consists
of proving that

aA(F) < dFlogeB(F).
Several definitions are in order. Let

-+ o(fi, p)— o (p),
(fisp)+ ...+ olgr, p)—

a(p) = o(fi, p)+.:

b(p) = w(g, p)—o o (fry P)

and
© (g1, p)+ ..+ (p) — @ (gx, D),

where g(y) = " 'f(x), ¥y = ax, a is the leading coefficient of f(z), n is
the degree of f(z), and w(f, p) is the number of solutions of the congruence
f(#) = 0 mod p. Note that

2(p) = (P)+...+2(p) = o(p)+a(p)+b(p)+e(p)

and that we always have a(p) >0, b(p) = —M, and ¢(p) = —M where
M = ny+nmy+...-+n; and n; is the degree of fi(a). Let

Q ={p: a*(p)+b%(p

and let d(F) denote the number of primes contained in the set (.
The quantity H,(k,w, (1)) is equal to H,(w)(l—w)™" if k >2;
H,(w) is the series we get if we replace a,, by lay] in the equation

o0
= E Gpm ™.
Mm=1

In order to find a bound for H,(w) we begin by recalling that (see
Lemma 4)

Hw) = IJ (1 + p,,ff%W) (1 - %)Qw) Ta(w).

Sinee 2(p) = w(p)+a(p)+b(p)+o(

)+ ¢ex(p) > 0}

H(w)

(p) we can say that

a()+b(P)+c(p)
2o =[] (raw) [T [1- 5 Tato),

P DeQ
where
_ —eip)

A= ’”(p o(p))

. w(p P) (w
2 ()= )

iom®
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it follows that

Hence, since a(P) b (p

1 —2M k
Hw <] [@+4 (1*~)
) H( ®) g P gP'EKI
1\2M N (2uw) A
<[[erse H(pr) el (i)

Ped

“Q 1

e 3 [[) - 322 ()
p o(p) =11 p™

and Z(s) is the zeta function of the rational number field. Since

-1 -1
(w(p)) < 20, (1 _ _.17) <4, w(p) (1 _ M) <
j P vy

)+e(p) = 201,

where

A(p) = —w(p)

M(M+1),

and p~-! < p™™ for w <1 it follows that

go(p)+2 ,)MJ-z

[M(M+1)+1] <

MM +1)
A(p) < - +—w
(») s e

(M—|—1)
Thus

[Ta+4@) <(z@w)"
r

where R = 2M+2(M+1)5.
To continue, let ¢ be the (d(F)) th prime, suppose that ¢ > €°, and
let w = 1—(logg)~'. Then

1 M 1
— p)
H (1—i— p“‘) < exp( Me 2 p) exp [0, M loglog(d

DeQ p<ye

F)+3)].-

This bound ean also be used if ¢ < €3; we need only set w = % and adjust
the constant in the exponential term.
At this point we have

(15) Hy(w) < (¢6))°(¢)~ exp[e, Mloglog (d(F) + 3)]
Where S ~2M+°’(1I+1) +2M+M and w is the maximum of 5 and
—(logg)™". If we use the inequalities I < ¢,k and (1—w)™! = logq

< ¢slog(d(F)+3) we can conclude that

(16) H,(w)(1—w)~* < (exp cﬁf)(expcskloglog(d(ﬁ’)~|—3)).
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If & =1 the number Hifl,%, (1)) = H;(¢(1)) can be dealt with
in the following way: If ¢(1) < w, where w is defined as in the previous
paragraph, the exponent of # in the error term of the correspondmg ideal
theorem can be increased to w; we then get H,(w )(1—w)™" in the error
term of (13) and this can be treated as before. If w < £(1) then, since
H, (o) increases as o decreases H; (t(l)) can be replaced by H;(w) and the
previous estimate of H,(w) can be employed.

We now turn to the problem of finding a bound for d(F), which
was defined to be the number of primes p such that a(p) # 0 or b(p) # 0
or ¢(p) # 0. Suppose that f(x) and g(x) are polynomials with integral
coefficients which are of degree m and n respectively. Let E(f, g) denote
their resultant and S(f, g) denote the maximum of A(f) and A (g); 4(g)
is the maximum of the set of absolute values of the coeificients of g(x).
Then it is known that:

B({f, o)l < (n+m) (S(f; g))n+m;
there are polynomials ¢(x) and d(x) with integral coefficients such that

e(@)f(z)+d(x)g(2) = E(f, 9),

and if f(x) and g(x) are relatively prime polynomials then E(f, g) # 0.
Furthermore if g(z) is an irreducible polynomial whose leading coeffi-
cient is 1 and D is the absolute value of the discriminant of the field,
generated by a zero of g(z) then |[R(g,¢’)| = I(g)D where I(g) is an in-
teger.

Let us apply them. The number

a(p) = o(fy,p)+-..+o(fi, p) —o(p)

will be positive when there is a prime p, a pair of indices ¢ and j with
1<i<j<F%, and an integer u, where 0 <<u < p, such that

an fi(u) = f;(u) = 0 mod p.

But if (17) holds then p divides R(f;, f;). Thus if we let v{d) denote the

number of distinet prime divisors of d and a(1) be the number of primes
p such that a(p) =0 it follows that

a(1) < D' o[B(fi, £))]

1<i<i<k

< d¥logeB(F).

~ As for the numbers b(p), we have

b(p) = o(gs, )—o(fi, P+ +o(ge, 2)— o(fr, )

iom®
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where g;(¥) = af:(#), ¥ = &%, and & is the leading coefficient of f; ().
Since o(fi,p) = o(gs, p) I (@, p) =1, We have
b(1) < v(ay)+...+o(a) < (log2)~ logeB(T),
where b(1) is the number of primes such that b(p) # 0.
Finally, since

e(p) = 2(p)— @(gr, P+ + Qu(p) — gy, )
and since Q;(p) = w;(p) provided that (p, I(g:)) =1 ([7], p. 63) we have
k

o(1) < D oLR(fi, )]

1=1

< ¢, k*logeB(F),
where ¢(1) is the number of primes p such that ¢(p) = 0.
If we combine these results with (16) we have for z > 1
Hy(k, w, 1(1)) < exp [c¥log, e B (F)].

Now, returning to the error term of (13), we have

7,4+ p(D 75+ B(Dy) )
T—#(1) T—1(k)

n(k, D) =

According to Lemma 1,
B(Dx) < ¢y (log2Dy)"e+;

Landau ([61, Lemma 1) has shown that ;< ¢, (log 2D;)"~*. Thus it is possible
to conclude that the quantity ciy(k,D)H,(k,w,#(1)) of formula (13)
is bounded above by

yler, b, D)

{1—t(i))~ = 10nlog2D; and

= [exp(cilogse’ B(F))| [(1og2D;).. . (log2Dx) ]

This completes the proof of Lemma 5.
LeMMA 6. Let e(p) = a(p)+b(p)+c(p). Then for = 2%.

Z—w;p) = kloglogz+log#;...7x— Z—e-(;;)- +o(k)+4(w)

e PET
where v(k) < ¢,k and

A(a}):O(W(C“k’D)- 1 )

Ty T logz |’
This follows directly from the corollary to Lemma 3 since «(p)

= Qi(p)+...+Qu(p)—e(p). We assume, when computing the bound on
A(z), that 7' > 2, and use Landau’s bound on #; for ; <o <2
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LeyvmA 7. Let H(1) be defined as in Lemma 4. Then we have
exp[ — ¢, k*logse® B(F)] < H(1) < exp[e,k2logye B(F)].
We know, by definition, that H (1) is equal to

[1f=2 b= 2103 1L T )

7] i=1 P'eK;

+c(p). The first product of this expression is

» Y]

m=2

where r(p) = a(p)+b(p)

equal to
o S

m=2

But this quantity is bounded from below by 1 and from above by

§ w?(p) 2 1 ) .
v +M < \ ,
o (PSUI 2p (p—w(p)) + :D;I p? < exp (6, M)
since
) o(p)
— oy = 0(0) o —— e < M
20w~ P ph—ow) <"

An argument similar to the one used in the paragraph preceeding for-
mula, (15) can be employed to show that, since
—2M <r(p) = a(p)+b(p)+o(p) <3M,
we have
1\"®
exp[ —csktlogye* B(F)] < ” (1— ;) < exp[e;klogge® B(F)].

»

Finally, since P’ is an ideal of the second or higher degree and since K,
contains at most ni prime ideals whose norm is divisible by the prime p

(et <[ ] (=) <53

These bounds yield the conclusion of the lemma.

2. -We are now in a position to apply Selberg’s method. As in [8],
we begin by defining a set of numbers {gg} in terms of two other sets of
numbers, {y,} and {4z}, by means of the equation

2 LY

[a,b.cl=d

iom®
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where [a, b, ¢] is the least common multiple of the integers a, b, and c.
Now, for any integer m,

S e =(Sn) (4

am am bim

Thus if we set y, =T, yp = —T i p < 2, yp = —1if2° <p L2y y =10
if 4 >z or if @ is composite integer, and A; = 0 if d > 2 ¢, where T, 2, a,
and s are positive parameters that will be chosen later, we shall have:

] oa=0 i d>#",
(m 0< Yo <max () (3 2] = 20,
dim mo gm bim

if m has no prime factors less than or equal to 2° and no more than T
prime factors greater than 2° and less than or equal to 2, and

(TII) Dlea<0

dim

in all other cases.

Let ®(F,x) be the number of positive integers m <« for which
the polynomial value F(m) has no prime factors less than or equal to #°
and at most T prime factors greater than #* and less than or equal to 2

Arguing as in [8] we have
Qd
(18) M, OF, 2) > 2 o o[;’ ledl 0(@)]

where 1/f(d)

a9) RPN Zf (.Z 70 9]

(ra) 1
where
11 o
e _f(ﬂl,]—,] - f(p) ’ Z f Fiy =

and the prime on the summation symbol indicates that the summation
is restricted to those integers b (b ='r or b = ¢) for which w(d) > 0.
Set yg =0 if d > 2" and

= w(d)/d, and

Ya = p(d) [ Bef (d) (logz*)*]™
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if 1 < d <2°. Then applying Lemmas 5, 6, and 7 we have
(20)

! 24

1
/d;J 3‘( Z T E,,(logz \E

D) I
[ k,T,a)+E(z, u)_‘_O(IV’(GUk: ) Oglogz)]

Preo T logz*
where ¢ = pa, a is subject to the condition log(1/a) < T,
p(k, T, a) = T—L(k, 1)— (T—1) L(k, §) — klog(1/a),
k
Lk, p) =% Y [1—(1—p1fj for 0<p<I,
J=1
yoe(p) (loga®)— (logz"/p)* e(p)
2 (logz®)* 2 !

p<a® 2%<p<e

it is assumed that 2 is large enough so that the quantity under the O-term
does not exceed 1. Setb

k
T =% > 1/j+klog(lja)+o
7=1
where 0 < ¢ <1. Then if we set f = @[100%k'log(kefa)]™" we have
(T—1)L(k, B) < ¢107% Thus given ¢ and a it is possible to choose §
so that g(k, T, a) > 99¢107%
The error term of (18) can be estimated by a slight refinement of
the argument given in section 5 of [8]. Doing so we get

(21) Z leal(d) < e, B(k, )7 [149p(e, k, D) (r1...75logz") "]
a

where
T = (1+2a)(1+n),
B(k, ) = log(ek[a)exp [expe,n ' log(es k)],

and 7 is any positive number that is less than 3.

Now, let G(z) be the set of integers which are counted by &(F,x).
Ag in [8], we wish to diseard those values of m for which F(m)is divis-
ible by the square of a prime. To this end, let G () be the set of integers
m in G(z) for which there is a prime p such that 2 < p < 2 and such that
p*| F(m). Let Gy() = G(z)—Gy(z) and let &,(F,z) and D, (F,x) be,
respectively, the number of elements in @, (z) and Gy(z). We have &, (F, x)
= @(F,2)— Py(F, x) and

@(F,0) <o Z @@y 2 o (p?) < eyk(L+d (F)) (a4 a2~)

<< 2 <p<e

where d'(F) is the number of primes p such that o(p?) # w(p).
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T¢ this last result is combined with (18), (20), and (21) we have

(22)
@ 99 (Ty;(cl, kE, D) .10g10gz)]
&.(F, @) = M, B (log") [100" +B(z a)+0 Pieo Tk logz” +
B, Lf,, vk, D) )] ol & -
+0[ oL z(l—,— rloge +O[R(L+d (F)) (2 +2277)].

We can now prove
THEOREM 4. If 6 is any given positive number and

4 \
2 > max (exp(Dl.. . D)}, exp [( }0—%@’) exp[e(s, n)logseaB(F)]])
then
(23)  Dy(F, x)

agp @

v E{) (logeF —I—G[(expexp (?7 logclk))(z +2 a7 |,

where @ is an absolute constant, ¢(8, n) i a constant that depends only on S
and n, and 0 is o number such that |0] < 1. The numbers a, ¢, y, 1, and ©
are parameters that satisfy the conditions: 0 < « < 1,0 <@ <1,y = (fa)/2,
B = ¢[100 k*log(ke/a)]™, 0 <y < %, and 7 = (1+2a)(1+n).

We shall first prove that

99

08 B(F,0) > all) |1 o+ LT, D) o + 00 [%2, e+

+ 03[, % (log e B (F)) (2 +22~°)|

where
a(F)y =k [2T ) ry.. . H (1),

T = L(k)+klog(l/e)+ o,

bl

T log,z
I(F, T) = — (Dy... Dy [exp (¢°(5, w)logs* B(T))] '1%
B(k, n) = (log(ek/a))expexp(c,n " logeyk),
and 6; is a number such that [6;] <1 for ¢ = 1,2, 3. Inequality (23)
will then follow from (24).

The definitions following (20) and relation (22) furnish us a starting
point. We have

_ e(p)  [(logs")"— (logz*/p)*] e(p)
Bz, a) = Z’Vp p (logz")"’ + 2 "

p<e® 2P <p<e

Acta Arithmetica XT1.4 25
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where e(p) = a(p)+b(p)+e(p), d(F) is the number of primes p for which
at least one of the numbers a(p), b(p) or ¢(p) is not zero and d(F)
< cFlogeB(F). Thus the second sum on the right hand side of the above
equation does mot exceed 3Md(F)z~° The first sum can be estimated
by expanding (log2® —logp)¥, reversing the order of summation of the
resulting double sum, and then comparing the jth inner sum with a similar
sum whose index of summation is the first ¢ +d(¥F) primes. If we do
this we find that we are dealing with a quantity that is bounded above by

T (e k)* (log,¢* B(F))*(loge™) ™.
Thus we have
« (log.&* B ()"
log?®

(loge* B(F))

[B(z, a)] < T(c.k) + oy ket

Since 2° > loge? B(F) it follows that

log,¢* B(F)*
Bz, @)l < T(qk)“L%g-zTﬁ)‘

Let us go on fo the term

1/’(0177‘771)_)_._]%25

T Ty Ty 10g»zT

of (22). According to a well-known result of Brauer’s, [2], for any posi-
tive & there is a constant ¢{8,n) which depends only on é and n such
that '

rit < e(6, n) DEE.

Consequently, by Lemma 5,

y(es, k, D)

by
FieenTh

<expcf (8, n)(D,...Dy) " exp[dflog, e’ B(F)]

where b, is the constant implied by the first O-term in (22). If this result
is combined with the one in the previous paragraph we obtain the quan-
tity L(F,T) of (24).

As for M,, we have

M, = max (Z’ ya) (Z zd)z < maxT (Z |zd|)2,
m g am m’ e

where m’ runs through the integers having at most T prime factors greater
than 2° and less than or equal to z and none less than #°. Since

_ p(r)pulrd) 1
fa =1(@) 2 7 Belloge T
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we have

@) v(x, &, D) )]
Wl <7 @ [“"0( Belog )]

If #° > 101 then, for any 4 that divides m’,
Fa b=l <6
= 1— <=
7@ ];[ fo] ~\a

gince we are only interested in those d < 2° which have prime factors
greater than 2. Sinee any m’ has at most 27 divisors it follows that

= 5\T "P(cuk;D))]z
(25) M, <T@ [1—|— O(———-——-—Eklogza .

Now, By =1y...1(k)""H(1). Thus, by Lemma 7 and the results of
the last paragraph,

y(cy, k, D)b,
Erlogz®

p(essk, D)
= 7
7y...7;10g2

<L{F,T),

where b, is the constant implied by the O-term in (25). If 2 is taken large
enough so that L(F,T) <} we then have

M, <2T ()

This bound gives us the number a(F) of (24).

A lower bound on M, is needed in order to estimate the second error
term of (22). To geb one set m = 1 in the equation that defines M,. Then
M, > T4 and, arguing as before, we have the second error term of (24).

The number & (F), the number of primes p such that w(p?) # w(p),
does not exceed the number of primes p for which the system

F(x) =0mod p,
F'(x) = 0mod p

is solvable. Since the irreducible factors of F(x) are not constant mul-
tiples of each other F(x) and F'(x) are relatively prime; consequently
if this system is solvable for p then p divides R(F, F’'), the resultant of
these two polynomials. Since the coefficient of #(x) which has the lar-
gest absolute value does not exceed

(B—1)! 0" A(f) ... A(fy)
we have

R(F, F'y <(2M 1)\ [ME—1) 2" A (f;) ... A(fo) M2,
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which implies that
d'(F) < ¢, k®logeB(T).
This completes the proof of (24).

The lower bound for z given in Theorem 4 is a consequence of demand-
ing that L(F,T) < ¢/100. This will be the case if

T & 5 4 1 [
. [expe’(d, n)logse”B(F)] ( ¢ (oga)™ 100

and
(D, ... D) [(log2)"* < 1.

The assumption of Theorem 4 then follows, for I' < 2klog(ke/a); the
functions of % and the absolute constants that occur can be absorbed in
the term, expc®(d, n).

As for the constant a, we have

o(F) k!

o 2Ty ... H(Q)

Since
k
T =% D (1]j)+¥log(lfa)+ ¢
i=1
it is not difficult to show that the function
fla, *) = F![2<°T (717

has a minimum for 0 < « <1 and % > 1. Set ¢ equal to this minimum.
‘We also have

(29 B Cq Cy A
— B(k, ) = —log(ek[a)exp| exp—loges k| < expexp | —logesk|,
T T 7 7

since log(ek/a) T < 2.
The only other condition that must be met if (23) is to hold iy the
inequality
¢iKlogeB (M2 < 1,
where y = /2, and this is the case if ¢(d, n) is sufficiently large. This
completes the proof of Theorem 4.

To obtain Theorem 1 from Theorem 4 set a = (2n+1)"%, 5 = (1207,
p =1, and 2z = 2® where

ERREETRE
2n+3 6n*+1

hn..@
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and n is the maximum of ny, ns, ..., and n. Since

D, < [R(fu fi)] < @m—1)tneA (F)I™
we have
Dy ... Dy < (A(f) -+ AF)™

Thus, if we replace 6 by §/2n, the first part of the assumption of Theorem
4 will take the form

(26) @ > exp[ei (8, n) B(FY].
The second will hold if
(27) x > expexplci(8, n)log,e® B (F)].

As for inequality (23), we have 2% = o, 2t < oY, and @z <a”
where 8 =1— (12n2-+2)"Y U = (2n -+ 2)(6n%) [(2n +3)(6n2 +1)1"Y, V

=1—¢, k% and ¢, is a positive number that is less than ome-half. Since
7 < 02(108'21)1')%—1 < 03(10364‘l (fi))"
and
H(1) < explok*log,e® B(F)],

@, (F, z) will be positive if (26) and (27) hold and if

(28) @ > [(loged (fy) .- (loged (fk))]“[exp(c7k”log,,esB(F))](exp expcsk)

where @ = ¢k*. Inequalities (26), (27), and (28) can be replaced by the
single inequality
(29) @ > expey(k, 6, n)(B(F))].

Tf we assume, as in Theorem 2, that D; < (logz)” and set § = (2Ek)!
the analogues to (26), (27), and (28) can be replaced by the single ine-
quality

(30) @ > expexplec,(k, B, n)logse* B(F)]

where ¢, (%, B, n) is a constant that depends on k, B, and n.

Suppose that (29) holds. Let f;(x) be any one of the irreducible fac-
tors of F (), let m be one of the integers counted by @, (¥, ), and suppose
that f;(m) has n;+1 or more prime factors greater than or equal to z = "
We then have

o* < [fulm)| < mA (fi)a®

where & = R(n;+1) and b = n,;. Since a—b = E(n;+1)—n; = (85m)~*
we have a contradiction as soon as @ > (n; 4 (f;))**". This completes the
proof of Theorem 1, for if ¢,(8, k, n) is a sufficiently large constant then

exple, (8, &, n)(B(F))'] > (nB(F)*" > (n 4 (f))*".
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If we assume that (30) holds, a similar argument will yield Theorem 2.

The results for the linear case can be obtained by sefting o = 1/2.71,

1 49
=% 65831
then have z = #'*/* and logl/a < -97. A weak form of the Goldbach
conjecture can also be obtained from Theorem 4. For if F(y) = y(2N —vy)
then, by (30), @, (¥, N) is positive if ¥ is sufficiently large. If m is one
of the integers counted by &,(F, N) and either m or 2N —m have two
or more prime factors greater than or equal to N2 we have N¥2/20

<m <N or N¥ < oN _m < 2N both of which are impossible for
2

642
N >2 ° Thus there is an integer a such that 2N = a-+m and such
that em has at most six prime factors.

Theorem 3 is a consequence of

THEOREM 5. Let F(x) be a polynomial with integral coefficients and
suppose that w(p) < p for every prime p, where w(p) is the number of solu-
tions of the congruence F(x) = 0 mod p. Let D,(F,») denote the number
of positive iniegers m < = such that all the prime factors of F(m) are greater
than or equal to z, where z > 2. Then for © > 2

2,0 > o [ [ (1= 22 4 ope(m),
e P
where b; is an absolute constant, |6] <1, a = (26n)/4, and n is the degree
of F(w).

This can be proved with the aid of several of the results in [9], the
pertinent parts of that paper being Lemmas 1.2, 1.4, 1.5, and 1.6. Lemma,
1.4 has to be modified slightly, the % that appears there must be changed
to n. If this is done then the conclusion of the lemma will follow if one
employs the estimate w(p) < » and assumes that y > eb", where b is an
absolute constant. As for the parameters 1 and &, of [9], set b = exp(2.5n)*
and h, = exp(2.49n)~L "

To obtain Theorem 3 make use of the fact that

( w(p)) o

, @ =10"%2 = 2% and R = (14 20)7'(1+29)7Y, since we

>
p<a P (logz)™

where b is an absolute constant, set z = 2° where ¢ = 4(27n1)~%, and then
proceed as before.
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