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1. Introduction. The sum > a(n)f(n), where a(n) is a sequence
BINLKY

of complex numbers and f is a complex-valued function defined on (0, o),
can sometimes be expressed by a formula involving the series 3 a(n)f(n).
=1

The Poisson and Voronoi summation formulae are of this type, and many
other such formulae have been obtained since Voronoi raised the problem
in 1904 ([47). Tn 1956 A. Sklar ([2]) derived a general formula from which
many important examples can be obtained, including the two mentioned
above, the Hardy-Landau formula for > ry(m)f(n), and the formula,

<Ny
due to Sklar, for Y v(n)f(n) (where z(n) is Ramanujan’s v-function).
TNLY

In this paper we generalize the work of Sklar ([2], [3]) and present a simple
and straightforward proof of a sammation formula applicable to a large
class of generalized Dirichlet series. We then show that this leads directly
to an identity for the functions which are associated with the series.

2. Preliminaries. The letter s will denote a complex variable with
real part o and imaginary part ¢. A summation sign with the index of
summation omitted will always precede an expression containing =.
Accordingly, a bare summation sign will indicate summation over all
positive integral values of m, while the symbol }, for y> 0, will denote
summation over all » such that A,e(0,y)>, 3, will denote summation
over all n such that A,e(y, co), and Y% will mean summation over all
for which A,e(z,y>. We will use [, for real a, to denote the integral

. (e
a0

a~km.

The series S'a(n)A;® which we will consider are those with the follow-
ing properties:

(i) the coefficients a(n) are complex numbers;

(i) the sequence A, is positive, strictly increasing, and unbounded;
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(iii) the series Ya(n)1;® has a non-negative abscissa ¢ of absolute
convergence;

(iv) the analytic function ¢(s) defined by the series for o> a can
be continued outside this half-plane and is meromorphic in the entire
s-plane. Further, ¢(s) is of finite order in every vertical strip of finite
width;

(v) there exists a Dirichlet series b (n)u,° which is absolutely con-
vergent for ¢ > b > 0 and thus defines an analytic function ¢* (s) in the
half-plane o > b;

(vi) there exists a real number % such that the function

H(s) = p(k—s)/2b(n) uy®

can be continued outside the half-plane ¢ > b and is meromorphic in the
entire s-plane;

(vil) there exists a number « >0 such that H(s) = O(||*®~")
for |t| sufficiently large, in any vertical strip of finite width.

Note that ¢(s) has no representation in the vertical strip £ — b < 0 < q,
called the eritical sirip of ¢(s). However, the range of validity of the
identity which we will derive in section 3 can be extended to cover this
Tegion.

For ¢ complex and » >> 0, let Ry(v) be the sum of the residues of

T (s)
I'(s+¢q)

in the critical strip of ¢(s). Then, for fixed v, R,(v) is an entire function
of ¢ (and, for fixed ¢, an analytic function of »).
For ¢ complex, Req sufficiently large, and v > 0, let

p(s)

Tyo) = = [ ppor-sva _Lk—8)

2mi ) Tk—s+q)

H(s)ds.

The number 6 is chosen so that no singularities of the integrand lie in
the strip b << ¢ < b4 6. For v in a finite interval and Req > a(2b— k)11,
the integral is absolutely and uniformly convergent with respect to o.
L,(v) can be extended over the whole ¢-plane by analytic continuation;
therefore it is an entire function of ¢ for fixed v (and an analytic function
of v for fixed g).
An identity relating these functions is given in the following lemma:
Leyma. For v >0, Req sufficiently large,

(1) F(Q-}-l) Z 'D—}Ln)q - Rq+1(’t?)+ Zb(ﬂ,),u;m-k q+1(ﬂn,0)-
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In particular, if Req > a(2b—k) the series on the right is absolutely and
uniformly convergent with respect to v, for v in a finite interval.
Proof. By the theorem of residues,

_Y . org_ 108)
Fya(0) = 5 ((a lj) N bf_ 0))«) s gy "

where ¢ > 0, and § > 0 is chosen so that no singularities of the integrand
Lie in the strip k—b—d8 <o <L k—D>. For v in a finite interval and
Reg > (20 —k), the integrals are absolutely and uniformly convergent
with respect to ». Thus

w T
- St T N7
w1 (0) - N L}fv Tiog 73 "%
1 N I'(s) _
_ stg L) S N g—§
= omi (.[S)” I(s+g+1) (u w{n)h )ds‘

We can interchange the order of integration and summation on the right
and, using a well-known formula (see Erdélyi et al., Tables of Integral
Transforms, vol. 1, formula 7.3.20) we obtain

l i , . (
Ty & A=k

on the right hand side. The integral on the left can be written as

’é%{ f v“*lﬂsi(z):z)w(zb(n)yf;k)H(k-s)ds.

(f—~3)

Absolute convergence again permits an interchange of integration and
summation; and replacing s by k—¢ in the integral above we get

Stz [ ot SO )
which is
D b(0) T ) - :
This establishes (1) for Req > «(2b—%), and it can be continued into

any domain which overlaps this half plane and within Wh ich the serieg
on the right is uniformly convergent.
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3, The summation formula. We now proceed to derive our principal
results.

TuorEM. Let (1) hold for ¢ = m > a(2b—F), where m is o positive
integer. Then for f such that ™ is absolutely continuous on {(w,y>,

@ D almfn)
=§ [f"’ ) Y amly—n) =@ D atn@—uf]+

Yy

(=1 [ Ry (0™ (0) o+

—1y f [ X b0 i L] £ ) .

Proof. Let # < <. Expanding f(%) in a Taylor series about y
with integral remainder for the (m41)% term, we obtain two expressions
for the remainder f,(u)

(___1)m+1 ¥

(ﬂ,) fmy(u) = T ff(m"*'l)(”) (,0 )mdl)
m 1y
(b fnw('u) = f(u)_ (_','T'!')"f(r) () (?/ - u)r'
Then, for » < 2, <y,
’ 1 K ™ un s
(ar) Z (l(ﬂ f’mj/ An — ( m,') Z a’('”’)f(@_ln)mf( I )(7)>d‘0+

®

v

(- | {W a(n)(0—1 )’"}f“"*‘)(v)dv = I +1y;

x

W) DT () = 3 a()() —
- H,,. W ot) 3 atmy—ny +2

r

1w D almly =l
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To find I,, we integrate by parts and get

m
L D Y

7=0

From (a'), (b') and the above expression for I, we get

Z"a(n)fun)
_HZ L10) 3 atwg— 1 =190 S atny(o—15].

By Lemma 1,
IL=(— 1)’"”[[»,,,.1 0) b 3 0™ Ly ()] £ () i,

and this completes the proof of the theorem.

4. The identity. In order to obtain an identity for ¢(s), we firgt let
flu) = w™* in equation (2). Then

10 () =(—1)" # (s +r ) N

I'(s) ’

and sinee (1) holds for q¢ = m > a(20—¥%), whence summation and in-
tegration may be interchanged, we have

@ Yami®

Lix
—_ m,' F(‘i:l".?) —8] v ) ; ag 2 )
T & TG+ [y D amy—af—a= )] a(n)(m—any] +
1)
+‘ ‘(‘S —JEZL)+ f R’nwl —q—m 1(]'1)'|—

I 1)
- iﬁn]'@"—i 2 b(n) ﬂ_m kf Loy, +1 (a0 " e,

Next, we add J%a(n) /1,7" to both gides in (3) and then let y increase to
+ co.Foro > a+e, ¢ >0,

,,_,NZ TG H;:_l) [ > atn -]

”_" I'(S"|‘.7) . —: V¥ —84e —s—epq __ ;
T TG Y D) A nle) 0~ R,
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which equals 0 since the last two factors are bounded, the series con-
verges, and ¥~ — 0 as y — co. Since R, +1(v) i8 a finite sum of residues
with the greatest power of v occuring ab o =a, Ry (v) = O(p™™),
Thus

0

f By (0)0™* "y

x

converges for o > a, since it is bounded by

00
f P Myt g
“ a

Finally,

Linya (pn0)= O (g O+ Omefi=CrorEm,

80 that [ Ly (#e0)v™> " 'dv is bounded by [ v+~ C+)-1g, gng

hence converges for ¢ > k—(b+ 8). Thus we hzwé proved the following

identity.
THEOREM. For ¢ >a, m > a(2b—k), v >0, 0 < <y,

p(s) = D ani—

B Z’"’w I(s-+4)
& TG+

(4)

27 M am)(o—1) +

ZJ
T(s-Fm+1) e
J“l‘_“‘P(T)—‘ By (0)o™ "o+

I'(s+ m ~

L_‘_l) —m—K —~8—M—
I 2 b [t ),

@

.];J’y taking m > a(2b—k)+a-+-b—%k-+s, where &> 0, the range of
validity of (4) is extended to include the critical strip k—b <o <a
of p(s).

) Wf’ remark that, by estimating the terms in an identity which
is equivalent to (4), Chandrasekharan and Narasimhan ([1]) obtai-

Ded an approximate funetional equation for a similar class of
functions.
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Summation formula

449
References

[1] K. Chandrasekharan and R. Narasimhan, The approximate functional
equation for @ class of zeta-functions, Math. Annalen 159 (1963), pp. 30-64.

(2] A. Sklar, Summation formulae associated with a class of Dirichlet series,
unpublished Ph. D. thesis, California Institute of Technology, 1956.

[31 — On some ewact formulae in analylic number theory, Report of the Insti-
tute in the Theory of Numbers, Boulder, Colo., (1959), pp. 104-110.

[4] G. Voronoi, Sur une Jonction transcendente et ses applications a la summation
de quelques séries, Ann. Sci, Ecole Norm. Sup. (8), 21 (1904), pp. 207-267, 450-533.

ILLINOIS INSTITUTE O TROHNOLOGY
UNIVERSITY OF CEARA

Regu par lo Rédaction le 18. 10. 1965


Pem




