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On natural numbers having unique factorization
in a quadratic number field

by

W. NARKIEWICZ (Wroctaw)

1. Let K be a quadratic extension of the rationals with the class-
number A and class-group H. Let On X ... x 0y, be a factorization of H -
into cyelic groups. (It is obviously not unique, but we shall choose and
fix one of them.) Let F be the set of all natural numbers which have
a unique factorization into integers irreducible in K (apart of unit factors,
of course). Similarly, let & be the set of all natural numbers whose all
factorizations into integers irreducible in K have the same length, This
means that in every factorization of a given number from @ there occurs
the same number of irreducible factors. (Note that if h = 2 then all
natural numbers are in G as proved by L. Carlitz in [1].) Let us now
define:

n
Fru(e) = N(n <o |neF, n=1(mod k),
= 1 (mod ¥)),

where by N(n <o | W) we understand the number of natural numbers
not larger than », having the property W.
B. Fogels proved in [3] that in the case K = R(i5"%) one has

et (@) = O(w(loglogx)** (logz)~*")

and it was proved in [6] that for any normal (not necessarily quadratic)
extension of the rationals with & 5 1 one has

= 0(w(loglogz)*(logz)~)

with some constants a,d (b positive) depending on the field. A similar
result for the funection @ () (with the obvious assumption % = 1, 2) was
obtained in [77.
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In this paper we give an asymptotic evaluation of F(w) and G (»)
in the quadratic case and prove

F(x) ~ 0,0 (logloga)™ (loga)d-mm",
G () ~ Oyz(loglogm)™ (logm)+o-Mizh,

Here g denotes the number of even invariants of H, i.e. the number
of even integers among the h;—s and the meaning of 0y, 0,, M and ¥
will be described in the sequel. The notation A(w) ~ B(w) means
lim (4 (z) /B («)) = 1.

200

‘We shall get similar evaluations for Fy,(w) and Gy (w) when & is
relatively prime to the discriminant of K, restricting ourselves in the
first case to (%, 1) = 1. The results obtained here were announced with-
out proof in [8], where unfortunately the condition on % was omitited.

The author iy grateful to Professor X. Fogels for pointing out some
obscurities in the earlier draft of this paper and for suggesting some
improvements in the presentation of the results.

2, We ghall start with a characterization of the matural numbers
belonging to F and G.

Note that if we treat the Galois group O2 ag o transformation group
acting on H then the orbit of X <H is evidently (X, X~%). Let hy, ..., k
be the orders of cyclic factors in a decomposition of H into product of
cyclic groups (which decomposition will be regarded as fixed in sequel).
For a given integer ¢ and ¢ =1,2,...,r let [a];, = ly—a if a 5 0, and
let [a); = 0 if @ = 0. Now we have a one-to-one correspondence between
the orbits ¢ = (X, X~") and r-tuples of nonnegative rational integers
(@, ..., ) satisfying the following conditions:

() 0<a<h—1(i=1,2,..,7),

(i) @y <[ay]y, and if a; = [a;]; for é=1,2,...,t—1 with some t,
then ay < [ag]t‘

Indeed, lot X; be the generator of ¢, treated as a subgroup of H.
Then every X «H can be represented uniquely in the form X = X .., X
with 0 <a; <hy (1 =1,2,...,7). If now 0 = (X, X~") then exactly one
of the r-tuples (@, ..., &), ([&1]1, ..., [a],) satisties (i) and (ii). We shall
say this r-tuple corresponds to the orbit @. Conversely, every r-tuple

(@1y -.., 0y) satisfying (i) and (ii) determines a unique orbit, namely the
orbit containing X{r... X2,

Given an orbit ¢ == (X, X~') we shall say that a rational prime p

belongs to 0, and write p~ 0 if p =P, (P1eX, pye XY,

By a compler we shall understand any syftem (Z,,...,Z,) of (nob
necessarily distinet) elements of H such that Z,...Z, = H, the unit
element of H. The number ¢ will be called the length of the complew, By
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a minimal complex we shall understand auy complex which does not

" contain a proper subcomplex. By a factorization of a complex Z we shall

understand any partition of Z into minimal subcomplexes. Thege sub-
complexes we shall call the factors of Z. ‘

Let us say, a set of r-tuples (af’,...,a®) (j=1,2,...,n) is F-
admissible if every r-tuple from this set sa.tisfies (i) and (ii) and moreover
the following condition is satisfied:

(iii) For every two different sequences (e, ..., &), (91 ..+y 7s) With
&y 7 =0,1,

(’;ﬂ;ehaﬁm . Zska )i(ana

(where by (a1, ..., &) = (by, ...y by) (MmOd <Py, ...y hed) We mean a; =b;
(mod &;) for ¢ =1,2,...,7).

(Note that the r-tuple (0,0,...,0) is not contained in any F-ad-
migsible set.)

The reason for introducing this definition becomes clear from the
following )

LeEMMA 1. Suppose that 01,...,0, are distinet orbits (0; # (E, E))
and a® = (af,...,al®) (6 =1,2,...,8) are the corresponding r-tuples
satisfying (i) and ( i). Let m = p;...Ps with p;~ 0y for ¢ =1,2,...,8

Then m has a unique factomzano% in K (i.e. meF) if and only if the
set {a®, ..., a®} ds F-admissible.

Proof. With every integer g in K we-can associate a complex in
the following way: factorize the principal ideal (8) generated by g into
pnme ideals, (ﬂ ) = pRL...pft with p;eZ;, say, and take the complex
(ZyyeevyZyy.n .., Z,), where every Z; appears o; times. Every fac-
torlzatlon of ﬁ mto integers irreduncible in K induces in an evident way
a factorization of the associated complex and conversely.

From our agsumptions follows that the following complex is asso-
ciated with m:

n
e D) ) (mod Chay -y Byd)
k=1

0 O ) 1)
1) (xel L xey el ey,

The number m will have a unique factorization if and only if all
factors of the complex: (1) will be of the form
0] i i )
(2) e L x, e ey,
Indeed, m = p, ... p, is a factorization into integers irreducible in

K (because no p; belongs to the orbit (E, F)) and the factorization of
the complex (1) induced by it has all factors of the form (2).
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Consequently, if m hag two different factorizations, then among the
factors of (1) it must occur a factor having the form

4 W. Narkiewicz

o ay) 84 . (87
(xd? x| ey
with
D, ..y alfdy o (affD, L alfy
for all 1 <4<8;,1<j <8y, thus for j =1,2,...,7 we have
afV ... affe) = afV ... 4 alfed) (mod hy)

and so the set {a™, ..., a®} is not F-admissible.
Suppose now that {a®, ..., a®} is not F-admissible. Then there
exigt indices 4,,..., %, Jy, ..., Jo Such that

<a’¥a), teey afldy 5 <“W)7 sy afey

for L€a<t 1 <p<u and

a4 ..+ af) = afV ..+ affw) (mod hy)

for v =1,2,...,n
Thus the system

Gl el i
(et xey | eneed® | pe-diPy )

forms a complex, which is clearly a subcomplex of the complex (1) and
cannot have a factor of the form (2), consequently m must have a non-
" unique factorization.

LnMMA 2. If m = p;...ps, all primes p; belong to the same orbit
0= (X,X"Y)# (B, B) and m has a unique factorization in I, then
D1 = Pg = ... = p, and cither p, is ramified, or s is at most equal to r(0)—1,
where by r(0) we denote the least natural number r such that X" = H.

Proof. If p; # p; for a pair 4, j, then p; = pq, p; = p'q’ with p, p’ X,
q,q <X, thus the number p;p; has two factorizations into m’edumbl@
integers, given by pip; = (PA)(P'q’) = (pq')(¥'q). As p;p; divides m it
follows that m does not have a unique factorization.

Thus p; = p; = ... = ps = Pq with peX,qeX~% It s = r(0), then
PO = (pg)"® = pr@ q'(‘”’ If p, is not ramified then p 5% q, hence pi®
has at least two factorizations, and the same follows for m. The lemma
is thus proved.

To get similar results for natural numbers with all factorizations
of the same length we must introduce a modified notion of admissibility.
Suppose al = (af’, ..., al)) (i =1,2,...,n) are given #-tuples of non-
negative rational m‘oegers satlsfymg the conditions (i) and (ii) and guch
that af?4...+a > 0. Suppose moreover that the #- tuples a®, ..., a,
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(0 < s < m) correspond to orbits @ with 7(0) = 2, i.e. 2af) = 0 (mod hy)
fori =1,2,...,sandj =1, 2, ..., and the other r-tuples a®*?, ..., a®™
correspond to orbits ¢ with 7(0) # 2. Finally let 4,,,,..., 4, be given
positive rational integers. We shall say the system &8 = (at,...,a™;
Agiqyony Ay) 18 G-admissible if and only if it satisfies the condition

(iv) For every two different sequences (e, ..., &), (71, ---y 1) With
0<eg,m<l1 for s =1,2,...,8 and 0 < &, n; < 4; for ¢ =s+41,...,n,

n n n
(é eka/(lk)7 ceny kZ-: Eka(k)) (k%: nk“(lk), veey g nkagr)) (mod Chyy ...y b)),

k=1

If Q is a set of rational primes, then by wg(n) we shall denote the
number of distinet primes from @ dividing », and by 2q(n) we shall denote
the number of primes from @ dividing #, each counted accordingly to
its multiplicity.

Suppose a®, ..., a® are given non-zero r-tuples of nonnegative
rational integers satlsfymg (i) and (ii) and let @,, ..., @; be the correspond-
ing orbits. We shall assume that they are numbered in such way that

(@) =2 for i =1,2,...,¢ (possibly 8 =0), and r(0;) #2 for i=
8+1,...,t Let m be a natural number with the following decompo-
gition into rational primes:

t
(3) H (@H Pl (o> 0),
=1

t. Then we have
(3) into rational

where p; ~ 0; for k=1,2,...,8 and j=1,2,...,
LeMMA 3. The number m with the decomposition

primes belongs to the set G if and only if the system
QQt(m))

is G-admissible. (Q; is the set of all rational primes, belonging to ¢;.)
Proof. Let a® = (af?, ..., a) for ¢ =1,2,...,t and consider the
complex

(4) {-Tl"" Tr-N:le

8 = (a¥, ..., a®; Qg (m), ...,

I | -1 —1 — 1
oy Ty TEY o T oy TEY oy T,

e o . 1
whereT =X .. X" (i=1,2,...,t) and Ty, 1§
times.

Clearly (4) is the complex associated with m in the way explained
in the proof of Lemma 1. Note that évery factorlzation of m in K has
the samie length, i.e. meG if and only if every factor of the complex (4)
has the lengtzh 2. .

oceur £, (m)
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Suppose now that the system S is not G-admissible and m has all
its factorizations of the same length. With suitable &y ...y &My --ry M
satisfying
(&1, ] &) F (Ny oy 74)

0<Le,msl for i=1,2,...,8,
O<£¢,m<9@1(m) for iZS‘f"l,..-,t,
we have
[’ '
(8) Zem‘p = Yyl (mod hy)

for j =1,2,..,7
Congider now the system

(6)  {Tuyerey Tayeves Tayovey Loy Ty ooy I oy Ty oy I77}

where T; and T7'! appear &; respectively 7; times.

In view of (5) this is a complex, which is a subcomplex of (4) and
g0 every factor of (6) must be of the length two. It follows that every
factor of (6) has one of the following forms: {Ts, Ty}, {T4, T}, {177, T7 ")
Suppose that for some 4, j, {T;, Iy} is a factor. Then 1,7y == B hence T
and T; represent the same orbit thus ¢=j <s Bubt in this case
0 < &+n <1 and so T, can appear at most once in (6). It follows that
{T;, T;} is not a subcomplex of (6). In the same way it follows that
{T7Y, T7'} is not a factor of (6) and consequently every factor of (6) must
be of the form {T;, T;*}. As T; # T; for i s j it results ¢ ==j because
T;T7* = H. We found thus that every factorization of (6) has the form

{(Tn Tfl)’ (leTrl)y (X3 ) (Tt, Tfl)}

hence for every ¢, T; and T7* must occur the same number of times in
(6), ie. & = n; for ¢ = 1,2, ...,1, a contradiction. We proved thus that
if all factorizations of m have the same length then the gystem &
is @-admissible.

Now let us assume that m has factorizations with different lengths.
Then the complex (4) must have a factor of the length at least three, say

(M {Tu---an-"’Tu'~-’Tt’Tf1s---’T'rl’--‘11711-“'1'{L}

where T appears &; times, and 77" appears 7, times, Moveover 0 < &, 7y %
< Qq,(m) and gy = 0 for 4 =1,2,...0 a8 (7) i8 a factor and so cannot
have subcomplexes of the form {T;, T7'} and is not of this form Itself
because its length is = 2. By the same reason for 4 == 1,2, ..., & and n;
can assume the values 0 and 1 only, as otherwise (7) would have & sub-
complex {T;, T} respectively {T7', T7'}.

icm®
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From T%...TeIT™ ... T7" = B it results

: ¢

2 ga) = 2 70l (mod hy)

=1 =1
for k =1,2,...,7 and so the system § is not G-admissible. The lemma
is thus proved.

Now let a = (a, ..., a¥) be a F-admissible set of r-tuples, let
for i =1,2,...,% 0; be the orbit corresponding to the r-tuple a® and
let @; be the get of all rational primes belonging to the orbit ;. Let us
now define

Ba={n|n=p..py picQ (i =1,2,...,0},
Sp={n|n=p...08 pieQ, ;21 (i =1,2,...,1)}
and 8 = U 8,4, 8" = | 8; where the sums.are taken over all F-admis-
a

a
gible sety of r-tuples. Finally let Z be the set of all natural numbers all
prime factors of which are either products of two principal prime ideals
in K or generate prime ideals in K,
Then we have

LeMMA 4. For: every k,1
N{n <o|n =1(modk), n =nn,y, nyeZ, nyeS} < Fiy(w)
<N{n<ao|n=1(modk), n=nyny, nyeZ, nyeS'}.

Proof. Observe first that if a natural number m has unique factor-
ization in K, then m = m,m, where m,eZ and m,eS'. Indeed, if after
dividing m by its maximal divisor from Z we are left with, say
my = p¥t ... p’s then p,...p, must have unique factorization in K,
and from Lemmag 1 and 2 it follows that either » =1 and in this case
my = peS’ (because every set a satisfying (i) and (ii) and consisting
of exactly one non-zero r-tuple is evidently F-admissible) or else p;... Psel,
hence pi...pe¢ = myed',

Convergely, from Lemma 1 follows that every number m = MM,
(myeZ, myeS) has a unique factorization. The lemma is thus proved.

Let V = (a®,...,a",...,a%; 4,4, ..., 4;) be a G-admissible sy-
stem (ordered in the same way as stated before Lemma 8), let for
i=1,2,...,t 0; be the orbit corresponding to the r-tuple a®, and let
@; be the set of all rational primes belonging to the orbit ¢;. Finally. let
Oy be the set of all primes belonging to orbits different from 0y, ..., O,
(B, B), ie. §y = P\(Qov @i v ... v @) where P is the set of all rational
primes and @, is the set of all primes contained in Z.- )

Let %,! be given natural numbers with the greatest common
divisor (k,1) = D. We shall say the system V is D-G-admissible if for
P=1438,...,1 Qq,(D) <4 and 25,(D) =0.- . )
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Let
RPY = {n|n =1(mod k), Qo,(n) 21 (i =1,2,...,8), Qq(n) = A
(#=1+8,...,1), S5,(n) = 0}.

(Note that for different systems V the corresponding sets R{E¥ are
disjoint.)

Lemma 3 implies immediately the following

LEMMA 5.

{nin=1(modk), ne@} = | REH
v

where the sum is taken over all D-G-admissible sysioms V.
3. We shall use a tauberian theorem of H. Delange (see [2], theorem
b) which we state as

Lemma 6. Suppose that § is a real number, which is not zero or a neg-
ative integer, ¢ is a positive integer and A is o set of natural numbers such
that for res > 1 the following equality holds:

g

i
Zn"” = (s~1)"ﬁ2“7(8) (10g";;:1_T) +(s)

ned Jua0
with - ay(8), ..., ay(s), b(s) regular for res =1, and ay(1) s 0. Then
Nin <o |ned) ~ a,(1) 1 (f)x(loga)’ (loglog m)*.

We shall say that a set @ of rational primes is regular (cf. [2]) if there
exigts a nonnegative number § and a function g(s) regular in the closed
halfplane res > 1 such that

Dot = plog——+9(s)

e §—1

holds for res > 1.

(We shall in sequel denote by the same symbol g(s), with or without
indices, a function regular in the closed halfplane res > 1, not always
the same.)

The number # occurring in the definition of a regular set.is called
the density of this set. Following H. Delange ([2]) we shall associate with

every regular set of primes @ with a positive density § a constant Q
defined by

A5 = I(B)e™lim {(loga)’ [T (1~p~)

DB
P

where ¢ iy Euler’s constant,

bm@

' Oy 2910 oot
o 3

Natural numbers having unique factorization 9

We shall need the following lemmas:

LevmmA 7. (For the case ¢t = 1, see [2], theorems 36 and 41. In the
general case no essential changes in the proof are needed.) Suppose
Q1 ..oy @ are disjoint regular sets of rational primes with positive den-
8ities @y, ..., @y respectively satisfying a,+...+a; <1. Suppose that
Qis+--y G Gre givem nommegative rational integers, not all of them equal to
zero. Then

Nin<a|Q(n)=gfori=1,2,...,1
~N{n<o|wgn) =g fori=1,2,...,1%
A gaft ... aft(gy)! ... (g)!) '@ (logloga)+—+ai(logp)~Crt-+ad,

where Q is the set of all rational primes which do not belong to the sum
Ql oees W Qp

In the course of proving this lemma one arrives at the following
identities holding for res >1 and | <1 (¢ =1,2,...,1):

00

2™ | g
®

Al
i o k

= H(s)(s—1)2++u=1 n 22 a{-f}fl,,k(s)zf (1og

i=l Jm0 f=0

1
§—1

¥
) G

N=1
14 o k

= B =yt [T 3N aH), o)k (1og

=1 k=0 7=0

1
§—1

)i(j!)-l,

where H(s), H(s), fiks), k) (6=1,2,...,% j=0,1,...,%; k
=0,1,2,...) are regular for res >1, 2;(n) respectively_ wi(n) ‘stand
for Qq,(n), wg,(n) and H(1)H@)f}() ... fAMELQ) ... Fh(1) # 0 for
k=0,1,2,...

LeMMA 8. Suppose that @y, ...,Q; and ¢y, ..., q are the same as in
Lemma 7. Let moreover k& be a given natural number. Then

N{n <ol Q) =g (=1,...,1, (kn) =1}
~N{n<ao th(’fl/) =g (t=1,...,1, (k,n) =1}
w”(l—«p“l)N{n legq,i(’”/) =¢ (E=1,...,8},
|k
PeQ

where Q has the same meaning as in Lemma 7. .
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"

Proof. We use the method of H. Delange ([2]). Let |#| < 1 for
t=1,2,...,% Then for res >1 we have

Dloy oy g m) = 3 A0 PO = [T (1=t a0y

(n,k)-l ik
oo

= n (1— o) | 2P)p~e) Z' A | Pyt
ik Nl

(here 2;(n) stands for Qg,(n)) and using (8) we get

B8y 21,00y ty) = ” (1—2010) . 2PiP)p=*) H (5) (8 —1)"F+od ¢

[] 3 St e tos 25

==l Km0 fe=0
Now,

(1—21® | p0u0)p =2

Pk
i

Hl P H[] —~aup™* H(t-p*“)ﬂ pX dyd-*
Tuel 5:'01 Tl {1~o (9,;'(%!;:‘-1 )}

where 7; is the number of rational primes dividing % and belonging to ¢,
and D; is their product. Finally we get

B8, 21y ..y 0) = H(s)(s—l)“”"'“‘“ln(l —p~°)X

)

DeQ
¢ ©
F e 0 D'l, T

xH{Z

= V2

2 " d)(log~—~) G,y <s><u>-‘d“')},
9{ d)=]

where v, = min(s, 7).
It follows by equating coefficients that

2% = H(s)(s— 1)""1F g1 ]]1 P x

ik
?(33:31 @
¢ A 0~ 1 v
1P D o ST
Pl om0 731))‘1 81
nyd)
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with 4; = min{r;, ¢;}, and it results finally

(10) 2 n*

n
n,k)=1
() =4i
(1) f(t)
= z@e—var-rt [T a—p { 0o Toal®) g
Dk - g!
PQ
1 \at.+a 1 \%bekg-l
X (10%' s—-l) +91(8) (log s-—l) +--'+gal+...+n1¢(8)}-

By Lemma 6, we get
(1) Nap<o|Qn) =g (@=1,...,1), (kn) =1}

£, )...18, ) _@(loglog )t
¢! @ T (ay+. ..+ @) (log )™ t--+%

N”(l—-;—) H(1)

ok
DeQ
But from (8), we get
182,(8) - fS‘L,

Z n ’—H(s)(s —1)fte +““{ o alt ... aft x
gi(")-ﬂi
1 gyt tay 1 Qg+l
X{log +4.(s) |{log Foo Yo (8)
s—1 s—1

and after applying Lemma 6 and comparing the obtained result with (11)
one finishes the proof of the first part of our lemma. The second part,
concerning wg,(n), can be dealt with in a similar way using (9) in place
of (8).

LEMMA 9. (See e.g. [4]). If K is a quadratic number field and
0 =(X,XY) (B, B) is an orbit of H, then the set Qo of all rational
primes belonging to the orbit @ is regular and has the density 1/he(X), where

e(X) =2 if X* =B, and ¢(X) = 1 otherwise. Moreover the set Q, of all

rational primes belonging to the set Z (ocourring in Lemma 4) is reqular and
has the density (h--1)/2h. (In sequel we ghall use the notation @, for this
get of primes only.)

LeMyA 10. (See [4], [B]). Let | be an ideal in K and W let be an
ideal class (mod §) in the narrow sense. Then the following equality holds
for res > 1:

(LRl | -+
;._SP_;(N») h(f) 0g -~ g(8)
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where the sum is taken over all prime ideals in W and h(f) is the number
of classes (mod f).

(Two ideals a, b relatively prime tio f belong to the same class (mod f)
if and only if there exist in K two totally positive integers » and y both
congruent to 1{(med f) and such that a(@) = b(y), where (¢) denotes
the principal ideal generated by ¢. Clearly a and b must belong to the
same absolute ideal-class.)

LuMuMA 11. Let K be a quadratic number field. Suppose that X, ..., X,
are ideal-classes belonging to disjoint orbits, and suoh that &~ (X )+ ... <
+67H(Xy) < h. Let Q; be the set of rational primes belonging to the orbit
(Xiy XY (6 =1,2,...,1), and let Ai,..., A, are given nomnegative ra-
tional integers, not all of them equal to zero. Winally let & be a given natural
number, relatively prime to the discriminant of K, and let x(n) be a non-
principal character (mod k). Let f stand for one of the funclions w, Q.
Then the series

D a(myn® = H(s)

(where the sum is taken over all m which are relatively prime to T, and for
which fo,(n) = A; (i =1,2,...,1)) defines for res >1 a funotion HJ (s)
which can be continued to a function regular in the closed halfplane res 3= 1.
For the principal character y, this series defines a function II,‘Q (8) reqular
for res > 1.

Proof. Only the possibility of continuation needs a verification.
Congider a division of ideals relatively prime to (%) into classes defined
a8 follows: two ideals belong to the same class if and only if they belong
to the same absolute class and their norms are congruent (mod %),
It is easy to see that the classes so defined form a group under
multiplication. Let us demote it by J, and let Jy,...,J, be the
elements of J.

Clearly two ideals belonging to the same class (mod (k)) belong to
the same class J;. Moreover the number of clagses (mod (%)) forming
a class J; is independent of 4. Indeed, let W, ..., W, be clagses (mod (%))
forming a class J; and let U, ..., U, be classes (mod. (%)) forming the
clags J; = consisting of all principal ideals whose norms ave songruent
to 1 (mod k). Let wye W; (i ==1,2,...,2), let J7* ba the class inverse
to J; in the group J and let weJ7'. Then awy (i = 1,...,2) all belong
to J, (which is the unit of J) and are inequivalent (mod (k)). Thus # < Y
Now take wu;eU; (i =1,...,y) and congider wuyw;. These ideals belong
to J, and are clearly inequivalent (mod (k)), hence y < ¢ and the equality
y =z follows, as asserted.

Let us denote by O(k) the number of clasges (mod (k)) forming
a class J;. .

Natural numbers having unique factorization 13

Now let X be an absolute ideal-class, j a norm-residue (mod %),
relatively prime to %k and let Uy, ..., Ugg be classes (mod (k)) contained
in the class K = {a|aeX, Na = j (mod k)}. Finally let P;(X) be the set
of all rational primes congruent to j (mod k) which are norms of prime
ideals from the clags X. From Lemma 10 we get for res > 1

_; @ \" 8 -1 -1 1
Pt = 2 D 7" = 0 ((k) e (X)log —

pe'P (X) Mm=1 P=Np
1(X) oy

+9g(s).

As & has no ramified prime divisors, the set of all principal ideals a
with N(a) = j(modk) (with an arbitrarily given j, relatively prime to %)
is not void. It follows easily that the set of all ideals a belonging to the
class X and satisfying N (a) = j(modk) is not void. This set contains
a class (mod(k)) and so, by the theorem of Hecke (see [4]) it contains
infinitely many prime ideals of the first degree.

It follows that for every character y(mod%) and res >1 we have

- , 1
Dalp)p = SO ()X D gli)og = +0(6).
P=Np 1<i<k
peX .K)=1
For non-principal yx this implies obviously
(12) D xp)p~ = gls)
»=Np
peX
for res > 1.

Let first f = Q. Let 24, ...,2; be arbitrary complex numbers inside
the unit circle. Then for res >1 we have (writing shortly £:(n) for

Qo,(n))
Zn 2ty ()0 = H(l——z‘fl(“’) v 2@y (p) )t

(k) =1 ’ ) ‘
=[] []a—zz@p™) [] @~z@p™)"
=1 Dtk P
DeQy 11¢'t9101-,
13
= ﬂ {65, 2 exp e mzk x(p)p~JJexp MZ; ©(P)p

i
DeQy 2.0.0;
d=l

t
[1{Eus, wexplagio)exp D) x(@)p™
deal mt-rk
Ming»;

Il
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by (12). Here H,(s,2,), ..., Hi(s, ) are regular for res = 1 and | < 1
and not vanishing there, by Lemma 4 of [2].
Moreover for res > 1 we have

> xp)p™ = 3 x@)p” 22% = log L(s, z)+9(8) = g(s).

pj’lc Ik Te=1 szi
Pt U Q@
i=1

It follows that

‘
D) Ay ()" = Hy(s, 7). Hils, 2)g(8) exp {3 i (s)}

(‘n,kr)‘-l el
with Hy(L,2) ... Hy(1l,2)g(L) # 0.

After expanding the right-hand side in a power series and equating
coefficients on both sides we obtain the required regult for f == £

In the case f = o one shall start with the following identities valid
for res >1 and |z <1:

5‘ 20 oty ()~ = I'I( Q@___fiﬂpz)
sied

. % 2~ (p)
(n,k)=1
: '
n”( n zHCp) ) (%,"_’ﬁ?i’lm)
=l wfk —x(p) pik P'=x(p)
o mi!lq'
= H (8 z“)exp{ Z 2(p S)GXP{ 2 Z(P)P"a}
mql ik
"

with H,(s,#1),..., Hi(s, %) and H(s) not vanishing for res ;=1 by
lemma 4 of [2], and then proceed as above.
LeMMA 12. The assumptions are as in Lemma 11. Moreover lel

(k,1) = 1. Then
Ni{n<aoln=1l(modk), Q(n) = A; (¢ =1,2,...,1}
~N{w @|n=1l(mod k), wo,(n) =4y (i =1,2,...,1)}
~e B\ N{n<o|(n, k) =1, Qo,n)y = 44 (1 =1,2,...,1)}.

Proof. Let F,,( Zn"’ where the sum is taken over all natural
numbers congruent to m- (mod k) and for which Qq, (n) = A; (i = 1,2, ..., 1)
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Then for the function H{(s) (as defined in Lemma 11) we have

HOG) = D g(m)Fuls) (res>1)
1<m<ck ;
(km)=1

and it follows by Lemma 11
Fi(s) = ¢ (k) ) xMHL(8) = ¢-1<k>H<“> )+gls)  (res>1).
As ’
2O = Y
gé:”(’f:i:h{
thus by (10) and Lemma 6 the desired evaluation follows in the case
of Q. In the case of o ingtead of 2 the argument is the same (instead of (10)

one has to use its analogue for o which is easy provable along the same
lines).

LEMMA 13. The assumptions are as in Lemma 11. Moreover let
(k Z)If for some 1, A¢< Qq,(D), then
Nin<o|n=1(modk), O (n) =4; i =1,..,0} =0 for all .
If for i=1,2,...,% A;> QD) then

N{n <w|n=1(modk), Q,n)=4; (i =1,2,...,0}

&:qa'l(kl)n( YN {n <o/D|Qq(n) = Ai— (D) (i =1,2,...,1)}
o t
o () ([ [ (1 — 7))o oh™* ([ (X~ (i)~ )@ D™ (logloga)* (loga) ™,
2 - '
where ky =k/D, m = Ai— Qo (D), myt .. +me=p, (e(X) 7.
+e(X))h™t = v, Q is the set of all rational primes not included in the

set Q1 o e w Qg and b is the class number of K. The constant X o is defined
before Lemma 7. )

Proof. The first part is trivial. To establish the gecond part observe
that the functions Qg (n) are completely additive and o

N{n <o ] n = l(modk), .Qoi('ﬂ) = .A,‘; (1 == 1,2, ...,t)}
= N{n < /D |n'=1D(mod k), 2q,n) = A;—2(D) (6 =1,2,..., )}

The lemma follows now from Lemmas 7, 8, 9 and 12.
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4. Now we can find the asymptotic evaluations of the functions
Tya(m) and Gy(x). Let us start with Fpy(z). In this cage we assume
. that % and ! have no common divisor larger than 1. By Lemma 4 the
problem is reduced to the evaluation of the number of elements < w
in following setis:

8D = fn|n = 1(mod k), n = mp, ... Py, Pielly, meZ},

SN = {n|n =1 (mod k), n = mpi.., pf, preQl, a; =1, meZ},
where & = (a¥, ..., a¥) is a F-admissible set of r-tuples, ¢ is the get
of all rational primes belonging to the orbit @;, which corresponds to
the r-tuple ', and Z is, as before, the set of all natural numbers all
prime factors of which are either products of two principal ideals in K

or generate prime ideals in K. ‘
We can write the sets S%? and S® in the following form:

88D = {n|n =1(mod k), Qo,(n) =1 (i =1,...,1),
Doy(m) = 0 (i =11, ..., 0)},
BED = {n|n = 1(mod k), wg,(n) =1 (i =1,...,1),
wg(n) = 0 (i = 141, ..., 0)},
where Q.. ..., @, are the sets of all rational primes belonging to the

remaining orbits @, ..., 0, % (H, B). From the Lemmas 7, & 9 and 12
we obtain

(13) N{n<az|neS¢N ~ N{n <o |neSih}

t
~ o7 @) []—p)# o)™ ([ ] e(Xa™) a(logloga) (loga)™
7?(‘0’00 it

where » is the density of the set @, v ... v Q.

Observe now that @, v @, u ... U @, is the set of all rational primes,
and so the density of @, (which is equal to (h--1)/2h by Lemma 9) equals
1—y. It follows finally that » = (h—1)/2h.

It is clear that for different F-admissible sets « and b the correspond-
ing sets 8 and S are disjoint, and the same holds for the sets
8D and S,

Let now

ly 1) Bl (X

A — LaJSa and 8% = La)S}g, )
where the sums are taken over all F-admissible sets a of r-tuplos. (Note
that there is only & finite number of these sets.) By Lemma 4 we have

Nin <o |ne8™} < Fiy(a) < N{n < o| ne§0N},

Natural numbers having unique factorization 17

From (13) we infer that

Fra(o) ~ Nin <o |ne8®} = Y N{n <o|nesS).
a

As every summand of the last sum is asymptotically equal to
Oy (loglogz) (loga)*~™"* (with a suitable positive constant (), we can
restrict ourselves in this sum only to such F-admissible sets a which have
the largest possible value of ¢, i.e. which contain the largest possible
number of r-tuples. Let us call such sets mawimal F-admissible sets and
let M be the number of r-tuples in such a maximal set. Let moreover
for any maximal F-admissible set a, f(a) be the number of r-tuples
(@, ..., a,) contained in a, with the property 2a; = 0 (modh;) for
¢ =1,2,...,r or, which means the same, the number of orbits (X, X~')
with X* = B corresponding to r-tuples contained in a.

Then from (13) we obtain the following

TeeoREM L. Let K be a quadratic number field with the class-
number h # 1 and let k and 1 are natural numbers with (k, 1) = 1. Assume
moreover that k is relatively prime to the discriminant of the field. Then

Fra(@) ~ (k)™ ]] (1=p )W g, ( ) 27) m(logloga)™ (loga) M1,
| o
P

where Q, is the set of all rational primes which are either products of two
principal ideals or generate prime ideals in K, M is the number of r-tuples
in a F-admissible maximal set, B(a) is defined above, and the sum is taken
over all maximal F-admissible sets a.

As a apecial case (k =1 =1) we obtain

TaEOREM II. Let K be a quadratic field with the class-number h % 1.
Then

)M

~ x(loglogw
F(#) ~ (MQOZ 9 ﬂ(a))W.

Observe now that the number M depends on the structure of the
class-group H only. To evaluate M the following result is useful:
Leya 14. Let H = Oy X ... XC, be a factorization of the class-
group H into cyclic factors, Then
r
D' [loghyflog2] < M < [logh/log2].
F=1
Proof. The number of possible sequences {s;}i_, (With & = 0,1) is 2*
and the number of r-tuples pairwise incongruent mod (hy,..., k. is
evidently ...k, =h, thus 2°<<h. On the other hand if we put

Acta Arithmetica XII. 1 2
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1y = [loghflog2]—1 for ¢ =1, 2,...,r and define
of=(mtet iy th=1)  fop gy E—1 <

p S Myt My - T,
ak) = .
0 otherwise

(k=1,2,...,75 J=1,2, .00y B+Not..+Np-7),

then the obtained set {(a{, ..., s} is clearly F-admissible and hag
fiy+ .. +n.+7 elements, which proves the first pait of the inequality,

CoroLLARY. If H s oyclic, then M == [loghflog2). In partioular for
the field R(V—5) considered by B. Fogels ([3]) we get

F (@) ~ A qulogloga(loge)™ .

5. Now we shall find the asymptotic evaluation of the functiong
Gri(®). We assume throughout that k is relatively prime to the dise-
riminant of the field K. By Lemma 5 and by the observation that
for different sets V the corresponding sets RV (ag defined on p. 8)
are disjoint we get
(14) Gia(@) = Y Nin <o |neR}

v

where the sum is taken over all D-G-admigsible systems V.

Let V= (a®, ...,a", ...,a" 410, ..., 4) (where a®, ..., a®
correspond to orbits ¢ with 7(0) = 2) be a D-G-admisgible system and
let, as in section 2, @; be the seti of all rational primes belonging to the
orbit @; corresponding to the r-tuple o, finally let Qp,,, ..., Q, be et
of all rational primes belonging respectively to the orbits 0., ..., 0
distinet from 0, ..., 0, and (E, ¥). The condition of D-G-admissibility,
we recall, runs as follows: for ¢ =1+4s,...,1, Qg (D) < 4; and for
t=141%...,9,2,(D) =0, and V is G-admissible.

From the definition of R{V it follows that

Nin<e| W,ER§}°")} =N{n <o|n=1(modk), Qg (n) == Ay
(i=148,...,1), QQi(”)>1 (i=1,..,9), 904("')’:0 (4= -4y 000y 0)}
and thig is clearly equal to

) (=1 ¥ Nin<a|n=1(modk), Qn) = A

F=0 1<1§1<...<'Lj<8
(t=1+48,...,9), Qo;(n) =0 (i =141, ..., ), Qon) = 0 (4= 4y, ..., i)}
=N{n<w|n=1(modk)), Qo) = Ay (4 = 1-g,...,1),

Qoim) =0 (i =14, o)+ 3 (=1 3 Ny, oy ).
Je1

(LT

bm@
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By Lemma 13 the first summand is asymptotically equal to
i
(16) ¢ k) [[ @—p7VEp, b7 [] (mi))7 "D 'a(logloga)* (loga)
pﬂf’]} i=1+8
where ky = k/D, m; = A;—02,(D) (i =1+s,...,8), p=m+ ... +my,
Pr=@Qyw@,...vQ, and o i3 the density of Py, which according to -
Lemma 9 is equal to (h-1)/2h—+s/2h, thus ¢—1 = (1+4+s—h)/[2h.

By the same Lemma 13 we get that N (¢, ..., ;) is either zero, or
is Oz (logloga)*(logx)®~"") with some fixed a, hence from (15) and (16)
we get that N {n <z |neRP} is asymptotically equal to Cpw(loglogz)” x
x (logz)A+*—MRh with a suitable positive constant Cp.

In view of this we may restrict the summation in the sum appear-
ing in (14) to such systems V, for which s assumes the largest possible
value. We shall now determine this maximal value in the case D =1
and get some evaluation of it in the general case.

LemMMA 15. If D¢Q then there are no D-G-admissible systems at all.
If D =1 then there exist D-G-admissible systems having g r-tuples corre-
sponding to orbits O with v(0) = 2. (We recall that g is the number of even
invariants of the class-group H.) On the other hand every @-admissible
(and a fortiori every D-G-admissible) system can comtain at most g such
r-tuples.

Proof. If D¢@G then there are no integers » congruent to I (mod %)
in @ and from Lemma B it follows that for every D-G-admissible set V the
corresponding set RV is void, but every such set contains D ex defini-
tione, and so there are no D-G-admissible sets at all.-

Now we prove that every G-admissible system has at most g r-tuples
corresponding to orbits @ with r(0) = 2, i.e. that s < ¢. Note first that
if the system (a®,...,a®,...,a®; 4., ..., 4,) is G-admissible, then
the system (a®,...,a"®) is G-admissible too. Indeed, otherwise one
could find {e;, ..., &} 7 {£15 ..., &} With 0 < &;, & <1 such that

Yol = Yao (mod k) (k=1,...,7)
d=1 qml

(where <af), ..., o’y = at?), and if we define & =& =0 for i=1+s,
..., t then ~

i ¢
D uef) = Daafd (mod k) (k=1,...,7)
i=1 =1

in contradiction to - G-admissibility of (a®, ..., a®; dgpy, ..., 4y).
Hence looking for the maximal value of § we may confine ourselves
to the case s = t. Without restriction we may assume that hy, ..., h,
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(X;“hl/z . Xg“ hﬂlz’ X71717L1/Z . X‘nlghaﬂ)

where 7, =0 or 1. Let V = (a¥, ..., a®) be an G-admissible set of
r-tuples corresponding to such orbits and let for ¢ =1,2,...,¢

a® = <’7§i)h1/2 o "79)7"0/2: 0,0,...,05

with % =0 or 1. From the definition of G~admissibility it follows that
all g-tuples of the form
8 8
(2 sinl?, .. Zczngt))
g=1 fm=l
with & = 0,1 must be incongruent (mod <2, 2,...,2>), or what means
the same, the system of vectors

<y .y 779))7 ) (77&8)7 veey 77!1”))

must be linearly independent in the g-dimensional vector space over
GF(2). But clearly there are at most g linearly independent vectors in
this space, and 80 § < ¢ results.

Now let D = 1. In this case D-G-admigsibility and G-admissibility

mean the same thing. Take a® = (6("%,/2, ..., 6"4,/2,0, ..., 0) where
8} is the symbol of Kronecker, and observe that Lhe system. (a(l) vy o)
is @G-admissible. The lemma is thus proved.
} Note that this lemma does not give any information about the larg-
et possible value of s in the case D 71, except the inequality s <g.
It can be conjectured that in this case also it is equal to g, but we are
unable o settle this. In any case let us define S(D) = maxs, where the
maximum i3 taken over all D-@-admisgible systems.

Now let #” be the set of all D-G-admissible systems for which s == §(D).
With the notation used above, let N be the largest possible value of
my+ ... +m, for systems in the set ¥ Let finally #7, be the set of all
those systems in %~ for which ¥ ig attained. Now by (16) and the remarks
before Lemma 15 we get the following

TumoreM IIL. Let K be a quadmm number field with h + 1,2, and
let &, 1 are natural numbers with (k,1) = D. Assume moreover ﬂmt ]
relatwelq/ prime to the disecriminant oj the field. Then

[
Greaf) g7 (k) DTN T T (1~ mp,, [l (mel)™} x
w5 D)

Vet %‘1

x @ (logloga)™ (loga)(+SD~1)h it D e,
Gralw) =0 f D¢@,
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where the summation is estended over all V = (a®, ..., al5®), ..., a®;
Arys@ys ooy d) e Wy Ky =k[D, m;=A; —o,(D), @; is the set of all
rational pmmes belonging to the orbit aorrespond'mg to a9,

N=l¥713;§(m1+g(p)—|—...—|—m,) and Py =Q,v@;v... v Qg

As a special case (k =1 = 1) we get with the use of Lemma 15 the
following
TuroreM IV. Let K be a quadratic number field with h # 1, 2. Then

13

G0~ 3 3 (o, [] (4 atogioga logayts+-

Vewy =1t

where the summation s ewtended over all systems V = (a¥,...,a";
Ajgy iy A)eW o, N = ma,x (Ayygt oo +A) and Py =Q, v @y ... v Q,
(where Q; is the set of all mt'bo'nal primes belonging to the orb@t correspond-
ing to a®),

In the case of cyclic class-group we get the following corollaries:

CoROLLARY 1. If the quadratic number field K has a cyclic class-
group and h is odd, then with o suitable, positive C

G (@) ~ Co(logloga)** (log )~/
Indeed, the system {(1)>; h—1} is G-admissible and for every G-ad-
1
missible system (a®, ..., a% 4145, ..., 4;) ome has J] (1+4) <h

i=1+g
whence N = max(4;,;+ ... +4;) <h—1.
COROLLARY 2. If the quadratic number field K has a oyclic class-
group and h is even, then with a suitable, positive C

Q(x) ~ (7a9(10g10ga,-)("—2)/z (10gm)(2~h)/2h’

Indeed, the system {<h/2),<1)>;(h—2)/2} is G-admisgible and the
inequality & < (h—2)/2 follows as above,.
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The representation of primes by cubic polynomials
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1. Introduction. Let

1) ¢ @1, -y Ba) = $(®) = C(x)+Q(x)+ L(®)+N

be a cubic polynomial with integral coefficients, where C(x) denotes
the cubic part of ¢,Q(x) the quadratic part, and so on. An obvious
necessary condition for ¢(x) to represent infinitely many primes is that
for any given integer m > 1 there is some integer point x for which ¢ ()
is not divisible by m. The object of the present paper is to prove that
in certain circumstances of reasonable generality, this necessary condi-
tion is also sufficient. .

. The investigation is based on the Hardy-Littlewood method, as
modified by Davenport in his treatment of homogeneous cubi¢ equa-
tions ([1] and [2]). Let # be any parallelepiped of suitable shape (that
is, with bounding hyperplanes parallel to certain particular hyperplanes)
in » dimensional space, such that O(x) is positive in and on the boundary
of #. Let P be a large positive number. Then the number of integer points
a in the expanded parallelepiped P#2 is asymptotic to VP", where V
is the volume of £, and the values of ¢(x) at these points lie between
fixed positive multiples of P*. Let .# (P) denote the number of these in-
teger points for which the value of ¢(x) is a prime. It is reagonable to
expect that .#(P) should be approximately proportional to V.P"/logP*
for large P, subject to the above necessary condition.

In the présent paper we ghall prove, subject to a further condition,
that

vp"

(2) "”(P)N_lz)—g?"

S as

P — o0,

where © is a positive constant (the ‘singular series’ for the problem)
depending only on ¢(x). Following Davenport and Lewis [4] we define
the invariant » = h(C) to be the least positive integer for which O(x)
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