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The number of solutions of a special system
of equations in a finite field*

by

L. Carurrz and CeHARLES WELLS (Durham, North Carolina)

1. Introduction. Let GF(g), where ¢ = p*,p prime, denote the
finite field of order ¢ and let a,, ..., ay, by, ..., b, be nonzero numbers
of GF(g) such that

(11) am-bj¢a,-bi (’i,j:l,Z,...,fn, 'Ix#j)

Let k, ky, ..., ky, be fixed positive integers and let N denote the number
of solutions @, ¥, ..., YncGF(g) of the system

(1.2) Yo = g bia®  (i=1,2,...,0).

We shall prove the following
THEOREM 1. The number of solutions of the system (1.2) satisfies

(1.3) N =q+0(¢g"™ (¢ o0).

The proof of (1.3) makes use of the Riemann hypothesis ([4]) for
an algebraic function field over GF(g). If in place of this we make use
of the weaker result of Davenport ([2]), we have

(1.4) ¥ =¢+0(g),
for some ¢ < 1. This result or indeed the still weaker statement implied
by (1.4) ‘
(1.5) limg N =1
g=00

suffices for the following application.
Let de = g—1 and consider the polynomial

(1.6) fl@) =a(@"+a) (acGF(g)).
The first author ([1]) stated, and for ¢ = 2, 3 proved, the following

L
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TaroraM 2. Let ¢ be a fized d@'visov of ¢—1, e = L. Then for suffi-
ciently large q there ewist a<GF(q ) for which [ (®) 8 a permutation
polynomial,

We recall that a polynomial f(x)eGF[q,»] is a permubation poly-
nomial provided the numbers f(a) for aeGF(g) are distinet.

2. Some lemmas. Let g,y denote characters of the nmlmplloa,tlvc
group of GF(g) and put

(2.1) e(a) = 6™ (acGF (),
where

Ha) = -t ... T (g = ).
Also put
(2.2) w(g) = D e(a)x(a),

@

where the summation iz over all ae¢GF(qg).
Levma 1. We have
()l =" (x#n), = -1,

where y, dénotes the principal character.
Put

(2.3) ' S(a, 1) = D e(ab)),

b

where ¢ > 0 and a is any number of GF(g).
Levma 2. For a %0,

(2.4) B(ay 1) = Yy(aye(p),
»

where the summation s over all mon principal characters such that 1/)‘ SR
the principal character.

Lemmas 1 and 2 are well known.

_ Now let # >0 and let hy, ..., h, be arbitrary positive integers. For
t=1,...,7 let y; denote a character satistying

(2.5) wi=y (=1,
For # > 1 put

(2.6) Ty =Ty, ...y 0)
= D e+ . Fah) () vlda) oo pe(A)s

bm@
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where the summationis overall 4, ..., 2,6 GF(g) such that 4,4+ ... +1, =0
and the y; are any nonprincipal characters that satisfy (2.5); also ¢y, ..., ¢,
are arbitrary numbers in GF(g).

The principal lemma required in the proof of Theorem 1 can now
be stated.

LEMMA 3. If wyws ... 9 5 9, OF if 1, Cay ..., G are not all equal, then
(2.7 Tu(Cry vny O) = O(Q(r_lm) (r =2).

Proof. It is convenient to put

To(d) = D) elah+ .. i)y wlh) ... pu(h)  (2eGF(g)),

Asensdy

where now the summation is over all 4,,..., 4eGF(g) -such that
M+ ... +2 = i Then for te¢GF(q)

(2.8) Jnmein = 3 e{ X o+ 02} [ [ walaa),
A A g=1

Doy A=l
where A, ..., 4, run through all elements of GF(g).
Since, for u # v,

D elle+02)p(2) = plet+9T(y),

A

where p denotes the complex conjugate character, it follows from (2.8)

that
M (ea) = [ [ fputest+nrva}-
. J

=1

Summing over ¢ we get

(2.9) 47(0)

= H *(p) Z _]_7 Piloy+1)-

Now let h denote the least common multiple of Ay, ...,k and let » be
a character such that

(2.10) Y=y, ¥#Ew Q<j<h).
Then there exist positive integers s;, ..., s, such that
pe=y" (i=1,...,7).

Thus (2.9) becomes 1

r r

(2.11) aZn(0) = [ [xw) 3 v {[] +0%)-

=1 t =1
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I e =... =10, = ¢ and p,p, ... P, = 9, then

r

o{[]G+11} = Hw o) = pyle-i-1).

F=1 f=1

Since this is ruled out by the hypotheses of the lemma we have by Weil's

theorem (g4])

”

(2.12) qu{” (074._ i)sf} .- ()(qm).

i fm=l
Therefore applying Lemma 1, (2.11) implies

qT,(0) = O(q"+1").
Since
.. T(0) = Tplery ooy Cr)y

(2.7) follows at once.

3. Proof of Theorem 1. If N denotes the number of Holuuons of
the system (1.2), we have

n
(3.1) ¢"N = Z ¢ {Z gy bﬂl}km- "l/f’f’)},
[ oo B o
iy

the summation extending over all Ay, ..., Au, @, Y1y ..v, Yue G (g). It is
convenient to rewrite (3.1) in the form

32) ¢N= Y e(j’lmi) X e(i’lﬂaw")e(»i’lmﬁ*).
Mty H=1 B oty A= oy

The right member of (3.2) may be broken up according to the number
of 1; that are nonzero. Thus it consists of ( ) termsy of the type

*
(3.3) 2 (2110/ 122[,?);’1) Elt(l]’ﬁ).
Mpvensdp el tcul ,,,,, [y
We further decompose (3.3) according to whether
Jabi4 oAby =0
or not; we then have terms of the form

34) ¢ Yo (Z‘Aiai) Z .3(2%”1»0

Mpendp A=l Ty

”
— 12}%/?1) = ¢"" N,
s |

(0 <r<n)

icm®
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and of the form
(3.8)

n—-rll (Z/’lia@) ZI ( Zli?/ )= N r+1MT (0<'r<n).

In both ( . ) and (3.5) the A; are regtricted to nonzero values.
Now, by (2.3), we have

Algre(ghai) (ZM’“ )Hg e, e

By Lemma 2 this becomes
.

K Z‘A) So(S)=@]] ;w—
") o) 3 o3y w304

A=

Il

Ny

;2

Xy (—=4y) oo w(—24),

where y ranges over the nonprineipal characters that satlsfy "P = 9
and v, ranges over the nonprineipal characters that satisty e = .
The inner sum on the extreme right iz equal to

w7 (07 Do (=07, oy =70, 0).
Applying Lemmas 2 and 3 we get
(8.6) N, = Qg+ = 0 (0 <r < ).
On the other hand, where r = 0, we have
(3.7) N, = g¢.
In the second place, we have

3 o3 a8y o) oo B )

Mrody =1

= Zr(wl)...r@)je(zaﬂi}w A) e el — ).

Yooy Moy T=1

The inner sum on the extreme right is equal to

Pr(BDTY) . P (B D) 0 — 1) (— BT Gy ey — BB sy — 1)
In view of (1.1) we may apply Lemma 3 to T,. Thus by Lemmas 2 ai}d 3
(8.8) M, = O(¢" ") = 0(¢™™) (0 <r<m).

Acta Arithmetica XII. 1
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Combining (3.3), (3.4), (3.5), (3.6), (8.7), (3.8) we gl
qu = qn+1_|_ ()(qn-l-llz) .
This evidently completes the proof of the theorem,

4. As remarked in the Introduction, if in place of Weil's theorem
we use a weaker regult we can prove that

(4.1) N =g+ 0(g®

for some @ < 1. Indeed the only significant change oceurs in (2.12),
Thus if we agsume only that ([2])

. r
(4.2) Zw[pwmﬂmom%
then (2.7) becomes

(4.3) Tp(Cyy.vry &) = O(gl"I*19),
It is now easily verified that (4.2) implies (4.1).

5. Application to permutation polynomials. We shall now apply
Theorem 1 to prove the existence of permutation polynomials of a certain
type. Let de = ¢—1 and define

(5.1) fl@) = w(a”+a).

We shall show that for ¢ fixed, ¢ > 1 and ¢ sufficiently large there exist
numbers ¢<GF(¢) such that f(z) permutes the elements of GE(g).

To prove this let w be a primitive eth root of unity in GF(g). Con-
sider the following system of equations:

(5.2) Q=)0+ (w—1)ys+w'—w =0 (s =2,...,6~1).
This is a system of the type (1.2). The hypothesis (1.1) now becomes
(L —w) (" —w)— (1 — ") (w* — ) = 0 (ry8 =2,,.., 6157 s38).
This reduces to
W' —uw') # ' (r s =2, vrey 0137w 8),
which is automatically satistied for ¢ > 1.

It t'herefore follows from Theorem 1 that for ¢ sufficlently large
there exists at least one golution of the system (5.2); Put
(8.3) el
) 1—a°
Rearranging (5.2) we have

(1= a)+0"—w = yi(1— 2"+ a° — w) (8==2,..., 6~1);

bm@
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in view of (5.3) this becomes

wa =ys(l+a) (s=2,...,e—1).
This implies :

(5.4) (w+a) = (w'+af (r,8=1,2,...,6—1).
Now assume that f(£) = f(n) for some pair &, 5 <GF(qg). Then by (5.1)
(5.5) (&L a) = n(n?+ )%

Since w is a primitive ¢th root of unity in GF(g), it is evident that
£ =", n% = w® for some integers r and s. Thus (6.5) becomes
wr(wr+a)d — ws(ws+a)d;

because of (5.4) this reduces to w’ = w° and therefore &* = 5% Substitu-
tion in f(&) = f(y) now yields £ = ». Hence f(z) as defined by (5.1) and
(5.3) is a permutation polynomial. This completes the proof of Theorem 2.

6. Some additional remarks. If (¢, g—1) = 1 it is well known that »°
is a permutation polynomial. Using this fact one may prove using an
argument like the above that for a defined by (5.3), the polynomial

(6.1) f(@) = o (& + a)*

is a permutation polynomial, where k is an arbitrary integer. We may
therefore state the following result.

THEOREM 3. Let de = ¢—1, (¢,9¢—1) =1 and &k arbitrary. Then

for sufficiently large q there exist permutation polynomials of the form

f(@) = g (2%,

where g(x) 8 a polynomial of degree k.
Let ¢,r,s be positive integers. We note that if (r,s)#1 and
(7, 8)ig—1 then

(6.2) g(z) = o’ +as’

is mot a permutation polynomial for any o in GF(g). Indeed if d = (r, s),
d|g—1,d > 1, then there are distinet numbers &, » in GF(g) such that
4 = 4% Then clearly (6.2) imples g(&) = g(x).
We note also that

(8.3) Wa) = " —ar®  (>0,a#0)

is not a permutation polynomial if either (¢, ¢—1) = 1 or a is a ¢th power
in GF(q). For if (¢, g—1) = 1 there is a unique £ in GF(g) such that
£ = a. This gives h(0) = k(&) = 0. If (¢, ¢—1) >1 and ¢ = & we again
have h(0) = h(£&) = 0.
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Accumulation theorems for residue-classes representing
quadratic residues mod %

by

Reguw par la Rédaction le 19. 1. 1960

S. KNAPOWSKI (Poznan) and P. TurRAN (Budapest)

1. In this paper we return to the “modified Abelian means”, intro-
duced in paper [2] and further studied throughout [3] and [4]. Our present
aim ig to compare, in the sense of this means, the number of primes belong-
ing to progressions = I, (mod k) resp. = I, (mod %),» where both I, and
1, are quadratic residues mod %. As before, we have to assume the Hasel-
grove-condition: there is an B = H(k) > 0 such that none of the L(s, x)-
functions mod % vanishes in

(1.1) o=t [<BE), s=o+it

In addition to (1.1), we have to agsume what we call “a finite Riemann-
Piltz hypothesis”: with a suitable n satisfying (1)

(1.2) 0 < 7 < min (01, (%’”)2)
T
none of the IL(s, y)-functions mod% wvanishes in
(1.3) o>t w2
) Vi
There is no logs of generality in supposing
(1.4) Bk) <&
this and (1.2) give automatically
(1.5) n< k%,

With these provisions we can state the following:

(1) o, and later o,,... stand for positive numerical constants..
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