

ACTA ARITHMETICA XII (1966)

The number of solutions of a special system of equations in a finite field*

h

L. CARLITZ and CHARLES WELLS (Durham, North Carolina)

1. Introduction. Let GF(q), where $q=p^z, p$ prime, denote the finite field of order q and let $a_1, \ldots, a_n, b_1, \ldots, b_n$ be nonzero numbers of GF(q) such that

$$(1.1) a_i b_i \neq a_i b_i (i, j = 1, 2, ..., n, i \neq j).$$

Let k, k_1, \ldots, k_n be fixed positive integers and let N denote the number of solutions $x, y_1, \ldots, y_n \in GF(q)$ of the system

(1.2)
$$y_i^{k_i} = a_i + b_i x^k \quad (i = 1, 2, ..., n).$$

We shall prove the following

THEOREM 1. The number of solutions of the system (1.2) satisfies

(1.3)
$$N = q + O(q^{1/2}) \quad (q \to \infty).$$

The proof of (1.3) makes use of the Riemann hypothesis ([4]) for an algebraic function field over GF(q). If in place of this we make use of the weaker result of Davenport ([2]), we have

$$(1.4) N = q + O(q^c),$$

for some c < 1. This result or indeed the still weaker statement implied by (1.4)

$$\lim_{q \to \infty} q^{-1} N = 1$$

suffices for the following application.

Let de = q-1 and consider the polynomial

(1.6)
$$f(x) = x(x^d + a) \quad (a \in GF(q)).$$

The first author ([1]) stated, and for e = 2, 3 proved, the following

^{*} Supported in part by NSF grants GP-1593, GP-1881.

THEOREM 2. Let e be a fixed divisor of q-1, e>1. Then for sufficiently large q there exist $a \in GF(q)$ for which f(x) is a permutation polynomial.

We recall that a polynomial $f(x) \in GF[q, x]$ is a permutation polynomial provided the numbers f(a) for $a \in GF(q)$ are distinct.

2. Some lemmas. Let χ, ψ denote characters of the multiplicative group of $\mathrm{GF}(q)$ and put

(2.1)
$$e(a) = e^{2\pi i t(a)} \quad (a \in GF(q)),$$

where

$$t(a) = a + a^{p} + \dots + a^{p^{p-1}} \quad (q = p^{p}).$$

Also put

(2.2)
$$\tau(\chi) = \sum_{a} e(a)\chi(a),$$

where the summation is over all $a \in GF(q)$.

LEMMA 1. We have

$$|\tau(\chi)| = q^{1/2} \quad (\chi \neq \chi_0), \quad \tau(\chi_0) = -1,$$

where χ_0 denotes the principal character.

Put

(2.3)
$$S(a,t) = \sum_{b} e(ab^{t}),$$

where t > 0 and a is any number of GF(q).

LEMMA 2. For $a \neq 0$,

(2.4)
$$S(a,t) = \sum_{\underline{v}} \psi(a)\tau(\overline{v}),$$

where the summation is over all non principal characters such that $\psi^t = \psi_0$, the principal character.

Lemmas 1 and 2 are well known.

Now let r > 0 and let h_1, \ldots, h_r be arbitrary positive integers. For $i = 1, \ldots, r$ let ψ_i denote a character satisfying

(2.5)
$$\psi_i^{h_i} = \psi_0 \quad (i = 1, ..., r).$$

For r > 1 put

$$(2.6) T_r = T_r(c_1, \ldots, c_r)$$

$$= \sum_{\lambda_1, \ldots, \lambda_r} e(c_1 \lambda_1 + \ldots + c_r \lambda_r) \psi_1(\lambda_1) \psi_2(\lambda_2) \ldots \psi_r(\lambda_r),$$

where the summation is over all $\lambda_1, \ldots, \lambda_r \in GF(q)$ such that $\lambda_1 + \ldots + \lambda_r = 0$ and the ψ_i are any nonprincipal characters that satisfy (2.5); also c_1, \ldots, c_r are arbitrary numbers in GF(q).

The principal lemma required in the proof of Theorem 1 can now be stated.

LEMMA 3. If $\psi_1 \psi_2 \dots \psi_r \neq \psi_0$ or if c_1, c_2, \dots, c_r are not all equal, then

$$(2.7) T_r(c_1, \ldots, c_r) = O(q^{(r-1)/2}) (r \geqslant 2).$$

Proof. It is convenient to put

$$T_{\tau}(\lambda) = \sum_{\lambda_1, \dots, \lambda_{\tau}} e(c_1 \lambda_1 + \dots + c_{\tau} \lambda_{\tau}) \psi_1(\lambda_1) \psi_2(\lambda_2) \dots \psi_{\tau}(\lambda_{\tau}) \quad (\lambda \in GF(q)),$$

where now the summation is over all $\lambda_1, \ldots, \lambda_r \in GF(q)$ such that $\lambda_1 + \ldots + \lambda_r = \lambda$. Then for $t \in GF(q)$

(2.8)
$$\sum_{\lambda} T_r(\lambda) e(\lambda t) = \sum_{\lambda_1, \dots, \lambda_r} e\left\{ \sum_{i=1}^r (c_i + t) \lambda_i \right\} \prod_{i=1}^r \psi_i(\lambda_i),$$

where $\lambda_1, \ldots, \lambda_r$ run through all elements of GF(q).

Since, for $\psi \neq \psi_0$,

$$\sum_{\lambda} e((c+t)\lambda)\psi(\lambda) = \overline{\psi}(c+t)\tau(\psi),$$

where $\bar{\psi}$ denotes the complex conjugate character, it follows from (2.8) that

$$\sum_{\lambda} T_r(\lambda) e(\lambda t) = \prod_{i=1}^r \{ \overline{\psi}_i(c_i + t) \tau(\psi_i) \}.$$

Summing over t we get

(2.9)
$$qT_{r}(0) = \prod_{i=1}^{r} \tau(\psi_{i}) \sum_{t} \prod_{j=1}^{r} \overline{\psi}_{j}(c_{j} + t).$$

Now let h denote the least common multiple of h_1, \ldots, h_r and let ψ be a character such that

(2.10)
$$y^h = y_0, \quad y^j \neq y_0 \quad (1 \leqslant j < h).$$

Then there exist positive integers s_1, \ldots, s_r such that

$$\overline{\psi}_i = \psi^{s_i} \quad (i = 1, \dots, r).$$

Thus (2.9) becomes

(2.11)
$$qT_{\tau}(0) = \prod_{i=1}^{r} \tau(\psi_{i}) \sum_{t} \psi \left\{ \prod_{j=1}^{r} (c_{j} + t)^{s_{j}} \right\}.$$

If $c_1 = \ldots = c_r = c$ and $\psi_1 \psi_2 \ldots \psi_r = \psi_0$, then

$$\psi\left\{\prod_{j=1}^r (c_j+t)^{s_j}\right\} = \prod_{j=1}^r \overline{\psi}_j(c+t) = \psi_0(c+t).$$

Since this is ruled out by the hypotheses of the lemma we have by Weil's theorem ([4])

(2.12)
$$\sum_{t} \psi \left\{ \prod_{j=1}^{r} (c_{j} + t)^{s_{j}} \right\} = O(q^{1/2}).$$

Therefore applying Lemma 1, (2.11) implies

$$qT_r(0) = O(q^{(r+1)/2}).$$

Since

$$T_r(0) = T_r(c_1, \ldots, c_r),$$

- (2.7) follows at once.
- 3. Proof of Theorem 1. If N denotes the number of solutions of the system (1.2), we have

(3.1)
$$q^{n} N = \sum_{\substack{\lambda_{1}, \dots, \lambda_{n} \\ x, y_{1}, \dots, y_{n}}} e\left\{ \sum_{i=1}^{n} \lambda_{t}(a_{i} + b_{t}x^{k} - y_{i}^{k}i) \right\},$$

the summation extending over all $\lambda_1, \ldots, \lambda_n, x, y_1, \ldots, y_n \in GF(q)$. It is convenient to rewrite (3.1) in the form

$$(3.2) q^n N = \sum_{\lambda_1, \dots, \lambda_n} e\left(\sum_{i=1}^n \lambda_i a_i\right) \sum_{x, y_1, \dots, y_n} e\left(\sum_{i=1}^n \lambda_i b_i \omega^k\right) e\left(-\sum_{i=1}^n \lambda_i y_i^{k_i}\right).$$

The right member of (3.2) may be broken up according to the number of λ_i that are nonzero. Thus it consists of $\binom{n}{r}$ terms of the type

$$(3.3) q^{n-r} \sum_{\lambda_1,\dots,\lambda_r} e\left(\sum_{i=1}^r \lambda_i a_i\right) \sum_{x,y_1,\dots,y_r} e\left(\sum_{i=1}^r \lambda_i b_i x^k\right) e\left(-\sum_{i=1}^r \lambda_i y_i^{k_i}\right).$$

We further decompose (3.3) according to whether

$$\lambda_1 b_1 + \ldots + \lambda_r b_r = 0$$

or not; we then have terms of the form

$$(3.4) \quad q^{n-r} \sum_{\lambda_1, \dots, \lambda_r} e\left(\sum_{i=1}^r \lambda_i a_i\right) \sum_{x, y_1, \dots, y_r} e\left(\sum_{i=1}^r \lambda_i b_i x^k\right) e\left(-\sum_{i=1}^r \lambda_i y_i^{k_i}\right) = q^{n-r} N_r$$

$$(0 \le r \le n)$$

and of the form

(3.5)

$$q^{n-r+1} \sum_{\lambda_1, \dots, \lambda_r} e\left(\sum_{i=1}^r \lambda_i a_i\right) \sum_{\nu_1, \dots, \nu_r} e\left(-\sum_{i=1}^r \lambda_i y_i^{k_i}\right) = q^{n-r+1} M_r \quad (0 < r \leqslant n).$$

In both (3.4) and (3.5) the λ_i are restricted to nonzero values. Now, by (2.3), we have

$$N_r = \sum_{\lambda_1,\dots,\lambda_r} e\left(\sum_{i=1}^r \lambda_i a_i\right) S\left(\sum_{i=1}^r \lambda_i b_i, k\right) \prod_{i=1}^r S(-\lambda_i, k_i).$$

By Lemma 2 this becomes

$$\begin{split} N_r &= \sum_{\lambda_1, \dots, \lambda_r} e\left(\sum_{i=1}^r \lambda_i \, a_i\right) \sum_{\boldsymbol{\psi}} \boldsymbol{\psi}\left(\sum_{i=1}^r \lambda_i \, b_i\right) \boldsymbol{\tau}(\overline{\boldsymbol{\psi}}) \prod_{i=1}^r \sum_{\boldsymbol{\psi}_i} \boldsymbol{\psi}_i(-\lambda_i) \, \boldsymbol{\tau}(\overline{\boldsymbol{\psi}}_i) \\ &= \sum_{\boldsymbol{\psi}, \boldsymbol{\psi}_1, \dots, \boldsymbol{\psi}_r} \boldsymbol{\tau}(\overline{\boldsymbol{\psi}}) \boldsymbol{\tau}(\overline{\boldsymbol{\psi}}_1) \, \dots \, \boldsymbol{\tau}(\overline{\boldsymbol{\psi}}_r) \sum_{\lambda_1, \dots, \lambda_r} e\left(\sum_{i=1}^r \lambda_i \, a_i\right) \, \boldsymbol{\psi}\left(\sum_{i=1}^r \lambda_i b_i\right) \times \\ &\times \boldsymbol{\psi}_1(-\lambda_1) \, \dots \, \boldsymbol{\psi}_r(-\lambda_r), \end{split}$$

where ψ ranges over the nonprincipal characters that satisfy $\psi^k = \psi_0$ and ψ_i ranges over the nonprincipal characters that satisfy $\psi^{k_i}_i = \psi_0$. The inner sum on the extreme right is equal to

$$\psi_1(b_1^{-1})\ldots\psi_r(b_r^{-1})T_{r+1}(-b_1^{-1}a_1,\ldots,-b_r^{-1}a_r,0)$$

Applying Lemmas 2 and 3 we get

$$(3.6) N_r = O(q^{(r+1)/2+r/2}) = O(q^{r+1/2}) (0 < r \le n).$$

On the other hand, where r = 0, we have

$$(3.7) N_0 = q.$$

In the second place, we have

$$\begin{split} \boldsymbol{M_r} &= \sum_{\lambda_1, \dots, \lambda_r} e\left(\sum_{i=1}^r \lambda_i a_i\right) S(-\lambda_1, k_1) \dots S(-\lambda_r, k_r) \\ &= \sum_{\boldsymbol{w}_1, \dots, \boldsymbol{w}_r} \tau(\overline{\boldsymbol{\psi}}_1) \dots \tau(\overline{\boldsymbol{\psi}}_r) \sum_{\lambda_1, \dots, \lambda_r} e\left(\sum_{i=1}^r \lambda_i a_i\right) \psi_1(-\lambda_1) \dots \psi_r(-\lambda_r). \end{split}$$

The inner sum on the extreme right is equal to

$$\psi_1(b_rb_1^{-1})\dots\psi_{r-1}(b_rb_{r-1}^{-1})\psi_r(-1)T_r(-b_rb_1^{-1}a_1,\dots,-b_rb_{r-1}^{-1}a_{r-1},-a_r)$$

In view of (1.1) we may apply Lemma 3 to T_{τ} . Thus by Lemmas 2 and 3

$$(3.8) M_r = O(q^{(r-1)/2+r/2}) = O(q^{r-1/2}) (0 < r \le n)$$

Acta Arithmetica XII. 1

Number of solutions of a special system

Combining (3.3), (3.4), (3.5), (3.6), (3.7), (3.8) we get

$$q^{n}N = q^{n+1} + O(q^{n+1/2}).$$

This evidently completes the proof of the theorem.

4. As remarked in the Introduction, if in place of Weil's theorem we use a weaker result we can prove that

$$(4.1) N = q + O(q^{\Theta})$$

for some $\Theta < 1$. Indeed the only significant change occurs in (2.12). Thus if we assume only that ([2])

$$(4.2) \sum_{t} \psi \left\{ \prod_{j=1}^{r} (c_j + t)^{s_j} \right\} = O(q^{\Theta}),$$

then (2.7) becomes

$$(4.3) T_r(c_1, \ldots, c_r) = O(q^{(r-2)/2+\Theta}).$$

It is now easily verified that (4.2) implies (4.1).

5. Application to permutation polynomials. We shall now apply Theorem 1 to prove the existence of permutation polynomials of a certain type. Let de = q-1 and define

$$(5.1) f(x) = x(x^d + a).$$

We shall show that for e fixed, e > 1 and q sufficiently large there exist numbers $a \in GF(q)$ such that f(x) permutes the elements of GF(q).

To prove this let w be a primitive eth root of unity in GF(q). Consider the following system of equations:

$$(5.2) (1-w^s)x^e + (w-1)y_s^e + w^s - w = 0 (s = 2, \dots, e-1).$$

This is a system of the type (1.2). The hypothesis (1.1) now becomes

$$(1-w^s)(w^r-w)-(1-w^r)(w^s-w)\neq 0$$
 $(r,s=2,\ldots,e-1;r\neq s).$

This reduces to

$$w(w^s - w^r) \neq w^s - w^r$$
 $(r, s = 2, ..., e-1; r \neq s),$

which is automatically satisfied for e > 1.

It therefore follows from Theorem 1 that for q sufficiently large there exists at least one solution of the system (5.2). Put

$$(5.3) a = \frac{x^6 - w}{1 - x^6}.$$

Rearranging (5.2) we have

$$w^{s}(1-x^{e})+x^{e}-w=y_{s}^{e}(1-x^{e}+x^{e}-w)$$
 $(s=2,\ldots,e-1);$

in view of (5.3) this becomes

$$w^s + a = y_s^e(1+a)$$
 $(s = 2, ..., e-1).$

This implies

$$(5.4) (ws + a)d = (wr + a)d (r, s = 1, 2, ..., e-1).$$

Now assume that $f(\xi) = f(\eta)$ for some pair ξ , $\eta \in GF(q)$. Then by (5.1)

(5.5)
$$\xi^{d}(\xi^{d} + a) = \eta^{d}(\eta^{d} + a)^{d}.$$

Since w is a primitive eth root of unity in GF(q), it is evident that $\xi^d = w^r$, $\eta^d = w^s$ for some integers r and s. Thus (5.5) becomes

$$w^{r}(w^{r}+a)^{d}=w^{s}(w^{s}+a)^{d};$$

because of (5.4) this reduces to $w^r = w^s$ and therefore $\xi^d = \eta^d$. Substitution in $f(\xi) = f(\eta)$ now yields $\xi = \eta$. Hence f(x) as defined by (5.1) and (5.3) is a permutation polynomial. This completes the proof of Theorem 2.

6. Some additional remarks. If (c, q-1) = 1 it is well known that x^c is a permutation polynomial. Using this fact one may prove using an argument like the above that for a defined by (5.3), the polynomial

$$f(x) = x^c (x^d + a)^k$$

is a permutation polynomial, where k is an arbitrary integer. We may therefore state the following result.

THEOREM 3. Let de = q-1, (c, q-1) = 1 and k arbitrary. Then for sufficiently large q there exist permutation polynomials of the form

$$f(x) = x^c g(x^d),$$

where g(x) is a polynomial of degree k.

Let c, r, s be positive integers. We note that if $(r, s) \neq 1$ and (r, s)|q-1 then

$$(6.2) g(x) = x^r + ax^s$$

is not a permutation polynomial for any a in GF(q). Indeed if d=(r,s), $d\mid q-1, d>1$, then there are distinct numbers ξ , η in GF(q) such that $\xi^d=\eta^d$. Then clearly (6.2) implies $g(\xi)=g(\eta)$.

We note also that

(6.3)
$$h(x) = x^{c+s} - ax^{s} \quad (s > 0, a \neq 0)$$

is not a permutation polynomial if either (c, q-1)=1 or a is a cth power in GF(q). For if (c, q-1)=1 there is a unique ξ in GF(q) such that $\xi^c=a$. This gives $h(0)=h(\xi)=0$. If (c, q-1)>1 and $a=\xi^c$ we again have $h(0)=h(\xi)=0$.

ACTA ARITHMETICA XII (1966)

References

 L. Carlitz, Some theorems on permutation polynomials, Bull. Amer. Math. Soc. 68 (1962), pp. 120-122.

[2] H. Davenport, On character sums in finite fields, Acta Math. 71 (1939), pp. 99-121.

[3] L. E. Dickson, Linear Groups with an Exposition of Galois Field Theory, New York, Dover, 1958.

[4] A. Weil, On the Riemann hypothesis in function fields, Proc. Nat. Acad. Sci. 27 (1941), pp. 97-98.

Reçu par la Rédaction le 19. 1. 1966

Further developments in the comparative prime-number theory VI

Accumulation theorems for residue-classes representing quadratic residues $\mod k$

bу

S. KNAPOWSKI (Poznań) and P. Turán (Budapest)

1. In this paper we return to the "modified Abelian means", introduced in paper [2] and further studied throughout [3] and [4]. Our present aim is to compare, in the sense of this means, the number of primes belonging to progressions $\equiv l_1 \pmod k$ resp. $\equiv l_2 \pmod k$, where both l_1 and l_2 are quadratic residues mod k. As before, we have to assume the Hasel-grove-condition: there is an E = E(k) > 0 such that none of the $L(s, \chi)$ -functions mod k vanishes in

(1.1)
$$\sigma \geqslant \frac{1}{2}, \quad |t| \leqslant E(k), \quad s = \sigma + it.$$

In addition to (1.1), we have to assume what we call "a finite Riemann-Piltz hypothesis": with a suitable η satisfying (1)

$$(1.2) 0 < \eta < \min\left(c_1, \left(\frac{E(k)}{8\pi}\right)^2\right)$$

none of the $L(s,\chi)$ -functions mod k vanishes in

(1.3)
$$\sigma > \frac{1}{2}, \quad |t| \leqslant \frac{3}{\sqrt{\eta}}.$$

There is no loss of generality in supposing

$$(1.4) E(k) \leqslant k^{-15};$$

this and (1.2) give automatically

$$(1.5) \eta < k^{-30}.$$

With these provisions we can state the following:

⁽¹⁾ c_1 and later c_2 ,... stand for positive numerical constants.