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X1I(1966)

A method in diophantine approximation*
by

Cuarres F. Oscoop (Urbana, 11.)

The object of this paper is to present a theorem which gives a method
for obtaining results about the diophantine approximation of some values
of certain functions into B™ where m > 1. The method is then applied
in two corollaries and a number of examples to functions satistying linear
differential equations, both scalar and vector with not necessarily (real)
analytic coefficients. Two examples deal with applications to non-linear
functional equations.

Section I. Suppose that:
(1) v is a function from a set § to B™ (the m by 1 matrices over R);
(II) U is a vector space of functions from § to R™ over the field R;
(@) T is a linear operator and U, 2 U, 2 2U; (1=2) are
subspaces of U such that T° is defined from U; to U (1 <1 <1);
(IV) y belongs to Uy
(V) M is a vector space over R of functions from S to the m
by m matrices over R;
(VI) @ is a function from M to M;
(VII) if f belongs to U, and ¢ belongs to M, then gf belongs to U,
and Tgf = gTf+&(q)f;
(VIII) we have

1
(1) v =D eI

i=1
where the g; belong to M and each &'(g;) = 0;

(IX) there exists a subspace W of U, and a linear operator 7',
defined from TW to U such that T-'T|W = I/W;
(X) & (g;)T7-"y ig defined and belongs.to W for each 1 <
Jj >0, and k >0, as does each T~"y for n > 0;

"\\\(. Z’.

* Supported in part by the National Science Foundation.
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(XT) there exists a 6> 0 such that

N

Ty (o), < (~—~—~O(’“”")) (= 1,20,

n

where () is positive and independent of n, for each o, belonging to §;
(XTII) we ave given @, belonging to S such thab each & (1) () belongs

to sz (@ denotes the rationals) for each 1 =74 =01, 0 <0 § <045 and
(XIIT) gy(2,) is nonsingular.

Now set
,

dcggi = min {_ﬂ(]’H 1({]‘0 0[
)
and

degg;
d = max 2l g

1ziz0 i —degy;

DrrINtTIoN. By the absolule value of a matrix we mwan the max-
imum of the absolute values of its entries.
TarorEM. Under conditions (I)-(XIIT) cither

(a) each Thy(e) =0 (0 =24 = {-1)
or
(b)  for each e > O there exists C(e) => 0 such that

max |Ti(l/(w1)'-'ri,/(1\ e 0(”)‘1” (Lidfdre

0icl—1
for all m by 1 matrices of integers Py and positive integers q.

We defer the proof until later; instead, we now illustrabe the theorem
with two corollaries and several examples.

DEFINITION. Given & >0 and f a veal valoed funetion, by f
belongs to O (1 2 2) on [0, &1, (0, &7 or [0,¢) we shall mean that |
belongs to 0*~* on (0, &;) and that each of the indicated derivatives can
be continunously extended to the endpoini(s).

Given v, and v, such that 1/p, and », belong to ¢ S oo, e ly we
seb

T s 1/’121% + g

and consider the functional equation

1) ' Y= D aly

[N
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where here each g; belongs to [0, ¢,) an ay i
A 010, &) d each %E g: = 0. Pick 2,

| e <)
and g;(#;) is nonzero. Let degg; and d be as defined before.

CorOLLARY I. Under the above conditi 3 isfi
‘ i 1 itions if y satisfies the functs
equation (1) on (0, &), y belongs to G on (0, &), and functional

. a i d ifl1-k
lﬁﬁ [(%(ﬂ) .qu [(%E +%) 7/] =0

for each 0 <j <7, % >0, and t—j—1—Fk = 0, then either

. 7
belonging to (0, &) such that each (%i) g4(z;) belongs to @ (0

(a) Ty(a) =0  (0<i<I-1)

or

(b)  for every e > 0 there exists C(e) > 0 such that

208X 1Ty (2)—pifa] > O(e) g0+

for all integers p; and all positive integers q.
Proof. We apply the theorem:
(Iy 8 =(0, &) and y: (0, &) - R;
(II) U is the space of all continuouns functions from (0, &) to R;
() r =1p1i +y, and U; = " on (0, ¢,);
a 2 i ) €1);
(IV) y belongs to Uy;

(V) M is the vector space (over R) spanned by the (w,i)gg-
124
A<ig<lj=0) "

(Vi) D =y, dii
@
(VII) “Tgf = gTf+ (%%Z_)f;
1
(VIID y=Dg:T';
T . x F3

IX) 7% =exp[_ ﬁdsl o [ " ds] h(t)dt

: Df% 5[ P J ¥ v

Acta Arithmetica XII.2
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114 C. I. Oggood

for all & in TW, where W is the space of O* Eum,tlons Joon (0,¢)
satistying hm f(z) = 0.
If f belongs to W, then T If = f. Hence T7'T|W = I|/W.
(X) By assumption, lim &’(g;) T""~"Fy =0 for each 1 <i<1,
-0
0<j<i,k>=0,and i—j—1—% > 0. It follows that under these con-
ditions each. @’( ) T2 %y belongs to W. If {—j—1—%k < 0, we geo

that the limit is, again, zero since @'(g;) belongs to C'[0, &) and
hm T™"y = 0 for each % >1. Bach T™"y (n > 1) belongs to C'[0, al)

hence & (g;) T2 "%y belongs to W for 1 <451, 0 <j <1, and & >
ag does each T~ "y for n > 0.
1 )”

£ ) .
exp[— f 33olsJ
v Y

U- e 1)’ exp[f%:—dgj dt'g(%@_)".

By hypothesis both (XII) and (XIII) hold. The corollary then follows
immediately from the theorem.

Exameie I. We wish to show that the hypotheses of Corollary I
. @

(XL) [Ty (@)l <

( max
(R

max
ogwsxo

9

are satisfied under many circumstances. Let t. Then

P
¥ /1_

d
T =y

T -y =

Et— . (F)

where we now regard u,,y, and each @ (g;) ag functions of ¢. (Since
did not vanish on [0, ¢,), we see that this change of variables is an I times
differentiable homeomorphism.) We see that

]
¢ ¢
d
exp(fwzds)l’y e a—t—exp (f zpads)y.
0 0o,

The identity @*(g;) = 0 says that drggjat = = 0, hence each ¢, is a poly-
nomial in ¢ of degree less than i. 'We obtain from (1) under these circum-

stq,nces
exp(ft Ya )y = Zgw exp(fwzds)
0

(9

bm@
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Suppose that zero is a regular singular point of the above analytic linear
differential equation in

Y =exp (fthds)y.

Suppose further that r of the roots of the indicial equation associated
with the differential equation (2) in ¥ have real parts greater than I—1.
By the construction of solutions about a regular singular point (see 2h
when the coefficient functions are polynomials there exists an # dimensional
solution space over R of functions ¥ which satisfy (2), belong to C® on

Sld
(O_[ —S) in ¢, and satisty

1
Y
m—/—=09 (O<n <1-1).
It follows thatb

i f
0 = lim exp (f%ds)l’”y =lmT"y = HmT™y.
150 2 10 0
Thus
Ii:m & (g) T~y = 0

for 1<i<y, j<i,b> Oandz—_y——l k> 0. If we can find an z,
such tha.t each & g;(x;) belongs to @ and g;(x,) does not vanish, we may
apply the Corollary.

Exawrir IT. We treat in detail a specific equation, consider

sy

dy —Ba d*y
do®

dx?

a2

Here T = djda, g, = 9, g, = —5%, and g, = 2% Two solutions of this
equation which are linearly independent are y, = a*+..., and g, =
{(Inz)y,+y, where y, = a*+.... Set y = 0,9,+0,y, where 0, and C,
are arbitrary constants. Here
lim & (g) T* 7%y =g, 1
0

<i<8,j<i,k>0,i—j—1—k>0

If @; > 0 is rational, then for every ¢ > 0 thére exists C(e) > 0 with

dy s

m .
ax | - .

120,12

I > C(e)g 9,
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by Corollary I. At any rational point », larger than zero we have

Yo (@1) Yalts)

’ ' 7 O’
Y1 (1) Yalor)

ginee otherwise there would exist nonzero constants ¢, and 0, with
y =4 = 0 and y" = 1. Thus we may define y by

Yy (@) 1
Yi(oy) 0

Yu(®1) Yal@)
91 (@) ’!/; (1)

L yg(2y)
'»'—-"0 o (ZRE

' ! Yar
Ya (1)

Now we have that y(z) =1 and (%) = 0. Hence given. & >0 there
exists C(e) > 0 with

ly" (@) —pla| = Cle) q_(a“%

for all integers p and positive integers ¢, where

1 (@) Y1(1)
Y (@) = ’_'L/z (@) 1 Ya(,)
! Ya(®y) (’/’ i

1
Y2 (@y) yé(ml

)
)

Exampie ITI. Consider the nonlinear differential equation y =

2
as(di -l-y) y. We shall show that there exists a solution
%

©
= Sawr
N==]

which converges in an open digk of radius § about the origin. The recur-
rence formula for the coefficients is gotten by simplifying to y = w(y''+

+ 8yy'+y®) and substituting y = } a,s" for y. We obtain
n=0

¢} (=] o0 o0
Za,,w" = Zn(n——l)anw"“l—l—ii 2 2 N O 2™
N=0 n=0 Ne=al Maa ()

o0 o0 o
1\ I
£33 S

Mma ) Moaa0 m)

We must have that °

= (n+1)nay 1 +3 Zmam“n—m‘}‘

=0

O B O mg—1+
mgn—1

bm@
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Letting # = 0, we obtain a; = 0. Now set ¢, =1. If » >0 we define
Gny1 DY

U Og an_m_q_l] .

Upyy = (nTl) P [ —3 Z MOy, Qo

Now bla | =0 < 2° and |a;] =1 < 2. We shall show by induction that
lag} < 2” If n > 0, then applying the induction hypothesis we obtain

2 -1—]—3";47@—!——;—' Z’ ]

(n41)(m) [ it

m+g<n—1

la'n+1| <

2 .3 .3 1%
L e | 1 — o — — —1—
S mrnm T T T q; (o Q)]
= Gl }+3m+3n+lmm@n]<wﬂ
BCESNON 2 2 =T
Now apply Corollary I to the linear equation y = «T?y, where T = d/dx
+y, and ¥y = y,. We verify that y, belongs to ¢* on [0, %] and that
D?(p) = d?x/da® = 0. Since y, vanishes at & = 0, we see that

lm & (@) %y, =0

z—0
for j <2, k>0, and 1—j—k > 0. For each rational number in (0, })
then it follows that one of the two numbers y, and y, > is irrational.

Exampre IV. Consider the equation

T (0 g) v

If there exists a solution ¥, of (3) which belongs to €2 on [0, &) for some
& > 0, satisfies lim y, = 0, and does not equal —1 on [0, &), then we
z—0

@

dat

(3) ) Ty

y_

may apply Corollary I to the linear differential equation

&
y=( )P
Jity)

(14y,)d/dz and y = y,. Tt will follow that one of

where T =

at
—_— and (1 N
!1+y17 Y1y Ity

is irrational at each point of (0, &,).
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‘We now construct a function y, which satisfies the above requirements.
Congider the function )

Suppose that we can find a solution y, of the; equation

which belongs to 0% on [0, &) and does not equal —~1 on [0, ). Note
that

2

d
S—d‘t'z‘f(s)v

fre )

, _(’” B\ gy LT
Y= (; 1+y1) [( ‘I'?/].)dm] Y1

We know that the non-linear differential equation 1/¥’'—1 = f(¥) ha.
an analytic solution ¥, in a neighborhood of the origin with ¥,(0) =0
(See [1]). Set y, = 1/¥;—1 = F(¥,). Since ¥,(0) = f(0) =0, we have
91(0) = 0. There exists ¢; > 0 such that y, belongs to ¢ on [0, &) and
y1 # —1 on [0, &). Finally, since y, = 1/¥;—1 and %,(0) = 0, we have

f 14y,

fls) =

hence

Theretore

1
Yy = g —1 = f ==
h Y, (f 14 4/1)

80 ¥, satisfies.(3) on (0, ). This completes example IV.

DuFINITION. If g = (gy) is'a function into the m by m matrices
over B, then by g belongs to C*™* (I = 2) on [0,¢,], (0, 8.] or [0,e,) We
mean that each gy belongs to ¢'~! on the appropriate set. ‘
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Now we show that Corollary I can be extended to the case of matrix
coefficients. As before

a
T= ’Pl% +.

where now yp; and vy, are mafrix valued functions. We assume that 1/)1
takes on only nonsingular values and define y; by y.(z (% (w))
Assume that p, and p, belong to ¢'~* on [0, &,) and that each g1 0<i< l)
is a matrix valued function which belongs to ¢* on [0, s,). Assume that
each g; satisfies (w,d/dz)’g; = 0 and that v, and v, both commute with
each (y,d/dx) g;. Define degg; and @ as before. Choose z, belonging to
(0, ;) such that each (yjld/dm)fgi(wl) belongs to the m by m matrices
over @ and g;(#,) is nonsingular. With these assumptions we again con-
sider the functional equation (1).

CoROLLARY II. Under the above conditions, if y is a function from
(0, &) to B™ (the m by 1 matrices over R), y belongs to Con (0,8),y satisfies
equation (1) on (0, &), and

111_13 [(% %)j(yi)] [(va % +1pa)i—j_l_ky] =0

(for each 0 <j <4,k >0, and i—j—1—Fk > 0), then cither
(a) each Thy(m,) =0 (0 <i<1-1),
or

(b)  for every e > O there exisis C(g) > 0 such that

max | Ty (2,) —Pyfq| > O(e) g~ *+4
oIl

for all m by 1 matrices P; over the integers and positive integers g.

Proof. We apply the theorem.

{(I) 8 =(0,2,) and y:(0, &) > E™;

(II) U is the space of all continuous functions from (0, &) to R™;
(III) T = y,d/de+v, and U; = C* on (0, &);

(IV) y belongs to Uy

(V) M is the vector space ypanned by the &/(g;)(1 <i<1,j = 0);
(VI) @ = y,dfds;
(VII) Tgf = gTf+¢(g)f for all g in M and f in U,.

1

(VITI) g = 3 g: T'y and
T=1
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.m
(IX) I = a(@) [ {p.(t) ()" R(H)d for all k belonging to w,
0

where W is the subspace of U, consisting of all functions whose limit at

@ =0 is zero and a(x) is a certain m by m matrix valued function on
[0, &;). We choose a(x) to be any solution of

d
(d—E ~]—1p31/)2)a(w) =0 on  [0,e)

which assumes nonsingular values on [0, &). (Such an a(x) exists since UR'R

is continuous on [0, &;). See [1] where this result is proven.) It f helongs

to W then T7 fis defined and belongs to W. Noto that 717 'f—f belongs

t0 W and also to the kernel of 7. By the uniqueness of the solution of

Ty =0 when y(0) is known we see that T77'f = f or 7™ T/W = Ijw.
(X) The argument of Corollary I holds here.

(XT)  |T"y(2)| < <mmax1a(m)l)"(mmaxl(a(m))‘lr)“

(mmax|y,|)* (mmax |y|) ]f
0

1)'

Y ”
< ((/ (mo)) 7
n
where each maximum is taken on [0, z,].

Oonditions (XII) and (XIIT) hold by assumption. Thus Corollary
II follows.

The equation
7

o= Sl

Tl

1) — 'l/"q),’; Y

may be transformed into the equation

@)Y, = a “)Z i (1/11 ) Y

(23]

where a(z) is as in the proof of Corollary LI, if a(x) can be chosen so as

to commute with p, and cach g;. In the general case there is no particular

reason to believe that this is possible, or if possible, that it is casy to

accomplish. Tt might be supposed that the g, could be shown to be poly-
o

nomials with matrix coefficients in # = f pr'ds. This does not appear

%0 hold, however. We know that ( (1 d/dm)®gy = 0, whence (w,d/dw)?gy == ¢;.
Since , commutes with each &(g;), we have

d
Y15 iz g3 = 61140y

bm@
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and
E

a _ _ - i
— gy =Gy lpT eyt S0 gy = clftzpl Yds e t+c4.
1]

dz

Now ftwl—ldg = $2/2 if and only if y; 't = ty7*. The most that we know

is that 7 (eyt¢;) = (e1t-+e,)yi* which is not good enough.

Ag we ghall see we have reached the first place where the (possible)
non-analyticity of our coefficients appears to represent a true generali-
zation. For scalar equations of the type freated in Corollary I the change
of dependent variable from y to ¥ given by

x
Y = exp Uwgds)y
0
and the change of independent variable from « to ¢ given by

*ds
y V1

f =

combine (see Example I of Corollary I) to yield an analytic differential
equation in Y () to which we may apply Corollary I. Calculating the
&Y /|dt* at

~ ds

y

i =

and the Ty at «, (0 < ¢ < 1—1), it becomes clear that each

%—;—Z(m = exp(f " pads) Ty (22).

Recalling that y is at most determined up to a multiplicative constant,
it follows that we obtain the same number-theoretic information from
the analytic differential equation for ¥ as from the original equation
for y. Certainly, however, an analogons argument does not go through
in the case of vector differential equations, for the reagons outlined above.

We may treat scalar analytic differential equations in the plane by
writing them as vector differential equations. Given the equation

31—2.%

i=1

~
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we investigate the behavior of y at the point ¢+-if % 0 by substituting

- o —t\"td
(: Z) for 2, (:E )) for y == u-iv, and (t G) a for ZZ%— 0<s<
< o). This puts the equation in a form where it may be possible
to apply Corollary II.

Several final remarks before proving the theorem. It seemb very
natural to generalize these regults to functions of more than one vamable
and have T be, say, a partial differential operator. Suppose that

d
—[—j;; —i"/”é;;’;

where y is an m by m matrix valued function of #, and » commutes with
each T7(g;). It v, then 77(g;), and the space U, are sufficiently “nice”
one might hope to define 77" by

‘ = M
-1 __ . v n
z ‘{Z( E”’awa)}ﬂ

=0

where
&y
Bh = [ (t, 2,)00.
0

(Suppose that U conéisté of all funetions f which. are real analytic functions
of #, and #, and which as analytic functions of 2; and 2, in Dx (, where
D is an open disk about zero, satisfy

[F (215 22)] < fexp(aley|),

for fixed a > 0 and § > 0 depending on f. If we define ||f|| = infB, then
U is a Banach space. Using the integral representation of 6f/622, we see
that

< offexp(alz,l),

hence 8/0z, is a bounded operator. Suppose that ¢ = y(w,) belongs
to U. Then T~ is a bounded operator from U to U. It is easy to show
that [|7~"} < B™ [|B"| for a constant B > 0. W would consist ofall fin U
which vanish when 2z, = 0.

. For the above choice of U and W one might also investigate the
operator

’

0
= T")Z +yd,

where y iz a8 before and

Aof (21, 20) = f(21, 22 +1)—f (21, 24).
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If g(2,, #;) belongs to M implies g(#, 2,) = g(2;) we have that

dg

: Tgf = gT(f)+ 5

f

for all fin U. Here we may seb
-1 . . n
- {S (—Byar)|s

a8 A, is a bounded operator on U.)

Section II.
Proof of the theorem. From (X) we know that each & (g,) T"7-*~1y
belongs fio the vector space W. Hence so does w where

degg;—7

w= D (~1p@te(g) Ty

a=0

Since T is defined on U; o W, we may apply T to w. Now each
&' (gs)

belongs to M, each Tty (0 <4< 1—1) belongs to U;;= U,, and each
T~y (0 <n < oo) belongs to W < U,. Thus we may apply the identity
of (VII) to obtain

T¢i+u( )T——7—k—a—1y — @7+a+1(g)1ﬂ—7-—a— y+@7+u( ) Tl—i—k-u—-ly

It i—j—k—a—1 >0, then TT /% ely — T*7% ey }hy Qefinition.
If i—j—k—a—1 < —1 then the function T*/~*~*y belongs to W. It is
easily verified that if T/W: W —TW and T TW - W satisfy
T-'T|W = I/W, then T/WT™' = I/TW. Hence

Tlﬁ—i*k«u—ly — TT—IIVivf—k—ay — lﬁ—f—k—ay
here also. It follows that we always have

T@H-a (gz) .rl-fi—-:i—k—a—ly — qji+a+l (,t,h) _Ti—f-k—a—ly +4§f+a (gt) Ti—f—k-—uy .
Thus

degg;—J
a a i—f—k—a
Tw = — ;‘ (—1)* &gy T ey +
degg;—f i o
D (CLr @) Ty = P g Ty

a=0
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Now using 77w = w, it follows that

deg gy—i

(4) T () Iy = 3

a=0

__l)a (pi-lm (gm) _/lﬂ—:’vkw—u—lgll

‘We next show, by induction, that for each n =1
deg g

(8) T Ty = D' (

a=0

—1)CF, @ (go) Ty

for nonnegative integers 7, satisfying Cm < n® If n =1, then line (5)

follows from (4) with j =k = 0. (Hach O}, =1 ==1%) We assume the

induction statement for » > 1 and shall prove it for n--1. By (4) we see

that

deggi—a
PR

B=0

1ge (gm) Ti~a—ny — -1 ),ﬂ q)a-lv‘l(g{) T—-('ﬂ+1)+(i—~ a--f) Y.

Hence we obtain from (5), by applying 7%

degg; deg gi—a
g,y = 3T (=108, ) (1)@ (gy) Pt Hiamiy
a=0 =0
Setting y = a--f§, we obtain
deg g;
Tty = 3 (<17 (3 ) @ Ty
y=0 a=0
Set
¥
(6) o5t = ) Ok
=)
Then ’
¥ k4
o< M < 2( ) (n-F1y.
a=0 == i
This proves (5). From above
@ deg oy
T SN = (i"“)ﬁ o (t - dog 01)(1 K x5 plbma)

We now define Cf, for degg; < a < i—1 to be zero. Hence our result (5)
may be rewritten as

i1

M TP T'y = ) (—1)*CL 0% (g) T-H+1-9y

a=0

where each OF, < n%-=9),

ot
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Apply the operator 77" now to the funetional equation (1), term by
term. We obtain

e,
|

1

Ty = (—1)° 03, (go) Ty,

i
il
i

i @

which becomes, where i—a = f,

1 1-8
Ty = 3 (3 (—1)*0kpa P (arg)) T "y
B=0 a=0
Set
i-$
@y(@y) = 3 (—1)°Clapa®(Garp) (@)
a=0
Then
1
8) Ty () = ) df (@) T~y (@)
p=1
where
—B
|3 )] = | 2 1) 00 P (Fas) (20) | < (B () )
a=0

[

> 1. Now we may write for n > 1
T~y (xy) =Dy (@)
: =0, :
T =Dy ()

for some K, (x)

Ty ()

where 6,, is an [ by I matrix with the identity (the entries are in sz, the
m by m matrices over @) in all of the 441, 4 positions (1 <i<1-1),
a first row consisting of (d” (), r?(ccl)), and zeros everywhere else,
Thus where 6, = (67), we have :

xl)l.).j—-i.

(9) 16} < (K (@)n

‘We now show that an inverse matrix exists for 0,.
to showing the existence of

This amounts

(d?(-’%))_l
By definition,
& (1) = Cogu(@1)-
Since by (XIII) g;(%,) is nonsingular, g;(z) % 0 and we have 0 < degg;(w)-
Therefore (%, is defined inductively by line (6). Using (6) we have

Ch=0G"=...=0p=1.
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Then
ai (1) = qa(w:)
which as noted above is nonsingular. So 6;' exists.

Since each @’ gi(®,) 18 ratiomal (1 <¢<1,j>0), we may chooge
a positive integer K, (x,) such that ezwh Ko(2,)d7 (@) is an integer. Hence
each enfry in K,(2,)0, belongs to Z"L the m by m matrices over the in-
tegers. Set

Y (a) Iy (@) P,
Y = : ,y IT"Y = : , :
Ty (@) T+ gy () P,
and
= (Ey(2,))" 00y ... 6;.
Then we have
(Eo(@))"T™Y = 4, Y

where 4; " exists and the entries of 4, belong to Z™. We define the absolute
value of a matrix with matrix entries to be the maximum of the absolute
values of the entries. Now write

(Ko@) T = 4, (y__;i)Mn:;i

or ,
P P
a,(z- 2 -- (An—q— — (Ea(or T y),
which implies that

(-2

Since A, exists, 4, Plq is the zero vector if and only if P is zero. We
exclude this case. (There are two possibilities. If each T y(m,) == 0,
0 <4 <1—1, we have nothing to prove. If some T’y (s,) is nonzero,
it suffices to prove the theorem for nonzero P.) Then |4, P/q| > 1/q since
each entry in 4, belongs to zm Using also ‘nhe bound for |I™"y(m,)| in

(XT), we see that there exists I,(a,), a positive real number independent
of n, such that ‘

P
Ay ril (Ka(e,)) T~ X].

P, |
-4

lIAnim?x Ty (a,) —

1
2y~ Eal@)n)™
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Choose n sufficiently large that (K(m;)/n)’" < 1/2¢. It follows then
that

Ty (@, (12q|4a)7"

(10) max
2

To be definite in our choice of n we take » to be the first positive integer
such that (Kz(wl)/n)"" < 1/2¢. Since Kg(x;) > 1, we must have n>1
and therefore we may write

(11) (Bl fn)™ < 1/2¢ < (Es(zy) [(n—1))"0.

Observe that log(Ks(z,)/n)™ is asymptotic to log (K4 (2,) [(n—1))°¢=3.
Thus given &, > 0, there exists N such that if our » > N > 1 we have

(Ka(ml)/n)dn = (Ks(ml)/(”_l))ﬁ(nyl)(l—ﬁz’-
Therefore, if n > N
(12) (Eg () [0)™ = (o) [(n—1)) @700+ > (2g)~C+),

If n < Kq(m,) then line (11) cannot hold. Thus n > K,(w,). For n > Ky(x,)
the extreme left-hand side of (11) decreases in a strictly monotone manner
to zero as m — oo. Therefore, if we restrict ourselves to values of ¢ which
satisfy (E5(@.)/N)™ >1/2¢, we must have »>¥ and we may use (12).
‘We restrict ourselves to values of ¢ in this range in what follows.

At this point an estimate of |4, in terms of » is needed. The desired
inequality is
(1) ] < (Ey(@)n)
for some positive number K, (z,) independent of . We shall demonstrate
that the theorem follows from (13) and end the proof of the theorem by
ghowing (13). We have that

[4al < (K4(.'L‘1)K3 wl)) (”/Ks(%) )
so there exists K;(z,) > 0, independent of », such that
|4a] < Ks(zq) (n/Ka(%))n(de):

as may be seen by consideration of the orders of growth of the functions
involved. Now apply (12) to obtain

14| < E(w,)(2g) 20+
which we wuse in (10). Then
max |1y (2,) — il > (K@)l (2q) DAY,

»
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if ¢ is sufficiently large. We see that there exists Jg(w;) > 0 such that

max[T (@) —Pifg] > K(my) g~ Erolal,

Choose =, such that (d-Fep)(Ll-+eg) = d4-de. Then
(18) max |1y (wy) —Pafd] 3 Kq(ay) g~ 01,
2

Corresponding to the finite number of ¢’s for which (12) does not hold
find the minimal value of

ma,L{T’z/ (@) —Pifq |
and call it K,(z,). If K,(»,) is not zero let C(s) bo the smaller of I ()
and Kg(z,). Then

(16) max| Ty (@) —Pilg| > C(e)q" "1+

for all P/q with ¢ > 0. It K,(2,) is zero, then ¥ = P/q, for some ¢; small
enough that (12) and, hence, (15) does not apply. But then obviously

mP
Y =
i
form =1, 2,.... At some point (15) applies, and we have a contradiction.

Thus (16) holds, and except for (13) the theorem has been proven.
Now to establish (13). Recall that

A = (Eo(0))" 000y - 65

Hence we would be through if we could show |0,...0,| < (Kg(wl)nd)",
for some positive constant Ky(x,) independent of n. We shall establish
by induction a much stronger statement that the erm. in the ith row
and jth column of 6, ... 6, is less in absolute value than

K9(W1)(K1(m1)lmnd)n+j“i
for some positive K,(#,) independent of n. This would imply that
On - 0] < Iy () (B (00) b= < (I () '

for some positive K, (w,) independent of n. We choose Jy(w,) large enough
that our statement is true for n =1, 2,...,1—1. Assuming the induction
hypothesis for n >1—1, we shall ghow it for n--1. Recall line (9) now
that

Wff[ < (Kl(“/'l)nd)lﬂud

bm@
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where 6, (0’7) Then the i, jth term of 6,,+, . 6, has absolute value
less than or equal to

m Z (B (@) (m A1) 0+ Ky () (I () b=
k=1

< Koy () (I () I (10147,
This completes the proof (13) and of the theorem.
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