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1. Introduction. Let
1) D@1y +e- ) = p(a) = C(2)+Q (@) +L(@)+N

be a cubic polynomial with integer coefficients, where C(x) denofes the
cubic part of ¢, @ (x) the quadratic part, and so on. The invariant h = h(0)
is defined to be the least integer for which O(x) is representable identi-
cally as

(2) L@+ -+ 1aln

where Ly, ..., Iy and Qy, ..., @5 are linear and quadratic forms respec-
tively with integer coefficients.

The object of the present paper is to continue the investigation,
started in [5], into the conditions under which ¢(x) represents infini-
tely many primes. (Here and throughout this work we use the word
“prime” to mean positive prime number.)

Tt was proved in [5] that if & > 8(-) then ¢ () represents infinitely
many primes for integer points & provided certain necessary congruence
conditions are satisfied, and an asymptotic formula for the number of
such representations was given. In the present paper we are interested
in the case k < 7. We shall prove that under the same necessary conditions
¢ (x) represents infinitely many primes in this case also, provided thab
¢ (=) is irreducible and n is large enough. It is assumed here that ¢ (x) is
non-degenerate. It is in the nature of the method used that it does
not give rise to an asymptotic formula. The proof depends on some
results on the representation of primes by quadratic polynomials and the

first part of the present paper (§§ 2-7) is taken up with proving the main
result in this direction.

(*) The main result of [5] was obtained under the hypothesis h* > 8, the in-
variant h* being defined somewhat differently from h, but b > 8 is a stronger hypo-
thesis than this since, as was remarked in [5], we have ¥ > h.
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Let P be a large positive number and let
(3) Op(@15 ..., W) = dp(®) = Q(@)+Lp(x)-+Np

be a quadratic polynomial with quadratic part @ (x), linear part Lp(x),
and constant term Np. Here the-coefficients of @ (x) are constant but
the remaining coefficients of ¢p(2) may depend on P. Suppose that for
all P the coefficients of ¢p are rational and the value of ¢p(a) iy integral
for every integer point &. Denote by r the rank of @ (x). Let f,, f, be posit-
ive real numbers and let # be a box (i.e. a cartesian product of intervals)
with volume V guch that for every point & in the expanded box PZ

(4) HP* < ¢p(8) < fa P

(It is necessary for the existence of such a box # that the cocfficients of
Ly(x) are O(P) and that Np is O(P?).) Denote by 47(P) the number of

integer points & in P4 for which the value of ¢p(®) is a prime. We shall '

prove the following result.

TaeoREM 1. If ¢p is as in (3) and v = 3, and if for all large P the
numerators of the coefficients of ¢p in their lowest terms have mo common
factor and there is some integer point & such that ¢p(x) 3% 0 (mod 2), then

n

VP
K (P) ~

g o

where S(P) is a function of P lying between fized positive bounds.

The proof of Theorem 1 uses the Hardy-Littlewood method and is

on the same lines as the proof of the main theorem. of [5] although the

- details are considerably less complicated. It is necessary for the appli-
cations, however, that Theorem 1 be stated in more general terms than
the theorem of [5].

It can be easily verified that for any number ¢ the number of solutions
of the equation ¢p(x) = ¢ with x<PZ is < P"', where the implied con-
stant depends only on » and &. Thus it is a consequence of Theorem 1 that
the number of distinet primes represented by ¢p(x) for e PH is > P/logP,
and in particular that infinitely many distinet primes occur ag values
of the polynomials ¢p.

In the second part of this paper (§§ 8-11) we deal with the represen-
tation of primes by cubic polynomials ¢ having n substantially greater
than k. The method is to fix some of the variables in such a way that ¢
reduces to a suitable quadratic or linear polynomial in the remaining
variables and then apply to this resulting polynomial either Theorem 1
or else the well-known theorem on primes in an arithmetic progression.
Both these theorems are also used in the initial reduction of ¢ to & poly-
nomial of smaller degree.
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Qur main result is the following.

THEOREM 2. If ¢(x) is a non-degenerate, irreducible cubic polynomial
of the form (1) such that for any inleger m > 1 there is an integer point x
with ¢ (x) == 0 (modm), and if one of the following three conditions holds:

(i) h=1 and n =5,

(i) h =2 and n =9,

(i) # >3 and n = h-+38;
then ¢(a) represents infinitely many positive prime numbers for inleger
points ®.

- Combining Theorem 2 with the main theorem of [5] we obtain the
following general resulf.

THEOREM 3. If ¢(®y,...,%,) 18 a non-degenerate, irreducible cubic
polynomial in n variables with n = 10, and if for every infeger m > 1 there
s an integer potnt x for which ¢ (x) 7= 0 (modm), then ¢ represents infinitely
many positive prime numbers for integer values of the variables.

For if » > 8 the theorem of [5] is applicable to ¢, and if & < 7 The-
orem 2 is applicable, so that in either case the result follows.

In the last two theorems and throughout this paper the word
irreducible refers to irreducibility over the field of rational numbers.

We note that the hypothesis that the coefficients of ¢ have no com-
mon faetor together with the cases m = 2 and m = 3 of the congruence
condition would imply all the remaining cases of the congruence condition.

2. Elementary lemmas.
LA 1. If

O(@yyoney @) =Z aiiwimi+21imi+N

im1j=1 i1

18 a quadratic polynomial whose value is integral at every integer point a,
then N is an integer and the other coefficients of ¢ are rational numbers which,
expressed in their lowest terms, have denominators at most 2.

- Proof. Trivially N = ¢(0,...,0) is an integer. Next we have
$(1,1,0,...,0)—¢(1,0,...,0)—¢(0,1,0, ..., 0)+¢(0, ..., 0) = 2a;,.

Since all the terms on the left-hand side of this equation are integers,
80 is 2a,,, and similarly 2a; is an integer whenever i + j.
Finally
¢(@+1,0,...,0)—¢(z,0,...,0) = 2ay; 04y -+l

Since the left-hand side of this equation is an integer whenever « is,
we deduce that 2a,; and a,,+1, are both integers and hence a,,
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are rational numbers with denominators at most 2. Simi-
are rational numbers with denominators at most 2
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and 1,
larly @y and I
fori=1,...,n

LeMMA 2. If ¢ () is a quadratic polynomial with rational coefficients
whose value is integral at every imteger point &, and if ¢ is such that

(i) the numerators of the coefficients of ¢ in their lowest terms have

‘no common factor,
(ii) there emists an integer point x for which

¢(x) # 0(mod2),
then given any integer m there ewists am infeger point y swech thet
(6(y),m) =1.

Proof. First we prove the result of the lemma when m = p, a prime,
If p = 2 the result is just condition (ii) of the statement of the lemma.
Suppose p > 2. If the result were not true, we should have ¢(x) =0
(mod p) for all integer points @, and so the polynomial p~¢(x) would he
integer valued at all integer points. Hence, by Lemma 1, the coefficients of
p~'¢(x) have denominators at most 2 and so all the numerators of the
cocfficients of ¢ () are divisible by p, contradicting hypothesis (i) of the
lemma.

Now let m be any integer. If m = 1 or —1 the conclusion of the lemma
holds for all integer points y. Otherwise denote by p,, ..., p, the distinet
prime factors of m. For each p, there exists an integer point y; such
that ¢(y;) # 0(modp;). Write

’

=yt 2y
Yy ,P1y1 e 7s Yss

where

Then y it an integer point, and ¢(y) 5= 0(modp,) for i =1, ...,
is the conclusion of the lemma.

8, which

3 Exponential sums. Let gy, g, be real numbers satistying
(5) . 0 <g1 <fi<fa<gy

where fy, f, are the numbers occurring in (4).
We define ths exponential sums T(a) and 8(a) by

() T(a) = ) ¢(ap),
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where p runs through the primes in the range ¢,P* < p < g,P% and

D) elapp(),

xePE

1 . . 8(a) =

where ¢p(x) is as in (3).
Then we have

1
® H(P) = [ 8T (—
[
Denote by = [a;] the symmetric matrix associated with the
quadratic form @Q( ), so that
" n
) Q) = wda = Y Y aymiz;.

i=1 =1

It follows from Lemms 1 and the hypotheses of Theorem 1 that 2ay
is an integer for all pairs of suffixes ¢, j.
Now define 4;(x) by

n

(10) Ai(@) = D ayay,

=1

so that for all ¢ the linear form 2.4;(x) has integer coefficients.

Denote by A(x) the vector (4;(w), ..., dy(x)).
LeMMA 3. For a fived box &, we have
an St < 3 [ min(P, [2ad( @)™,

x i=1

where the sum is over integer points & satisfying |x] < P.
Proof. We have

(et = D' D elagp(y)—adp(z)) =

yPE 2P

> elapp(@+e)—adp(2),
#ePR aePE—2
and the box P# — z is contained in the cube Je| < P for a suitable value
of the implied constant depending on %. Hence

(12) S@eE< Y| 3 elasp@+s)—ase(z)],

la| <P peR()

-where Z(x) denotes the common part of P# and PE—x
Now c
n

$p(x+2)—dp(* 2

z’a‘l‘Q(w +—LP )
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and the last two terms on the right-hand side are independent of 2. Hence
repeated application of the well-known inequality

PX 6(42)| < min(P, |27,

where the summation is over any set of < P consecutive integers, yields

| 2, cledrimte)—abe@)| = | 3 o(2a )f’Ai(w)%H

eR(a) seRx)

n
< ” min (P, [[2ad,(x)] ).
Tl
Now substitution in (12) gives (11).
Throughout the remainder of this paper we shall write I — log P.
Levma 4. Let U be o parameter satisfying

(13) L < U <PL'™
Then the hypothesis
(14) IS(a)| >P"L"T~"™"

implies that the number of integer points satisfying
. lel< P and |20d(x)|] < P!
is
(15) > PPy
Proof. This follows from Lemma 3 in just the same way a8 Lemma 3.2
of [1] follows from Lemma 3.1 of that paper.

LeMMA 5. Under the hypotheses (13) and (14) of Lemma 4 the number
of integer points satisfying )

' 2] <« UL and |24 ()| < UP-2L~Y2
is
(16) > UV,
Proof. We apply Lemma 8 of [2] to the symmetric linear forms

2«1A(.’v),1 takl;ng A (of 2y =P, Z =6, (a suitable constant), and Z,
= UP™'L™'2 By (15) of Lemma 4

V(Z)> P L"U".
Condition (29) of [2] now takes the form
U"PLT <7, < g

wthich is satisfied by our choice of Z, if P is large enpugh. Now (30) of [2]
gives

V(Z) > o~ v
which is equivalent to (16).
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LEMMA 6. Under the hypotheses (13) and (14) of Lemma 4 for all suffi-
ciently large P a has a rational approximation alq satisfying

17 (e, =1, ld<U, l|og—al<TUP™

Proof. The equation A(x) = 0 is identical to the matrix equation
Ax = 0, and the integer points satisfying this equation form a lattice
of dimension n—7. Hence the number of integer points in the range
|2| < UL™Y* which satisfy A(x) =0 is < UL 2 But (16) of
Lemma 5 states that the number of integer points in the range |2| < UL~
satistying ||2ad ()| € UP2L™Y* is > U™ "L Hence for large enough
P there is some integer point satisfying |e| < UL and |[2a4 (x)|
< UP™2L*? for which A(x) # 0. Suppose for instance that 4;(x) s 0.
Then 24;(2) is a non-zero integer and there exists an integer b such that

[2a4;(2)—b] < TP*L™~
Take a/g to be the rational number b/24;(x) in its lowest terms. Then
lgl < As(@) < 2] < UL,
and so |g] < U if P is large enough. Also
lag—a| < |2ad;()—b| < UPT*L7",
50 |ag—a| < UP~?if P is large enough; and a/q satisties the requirements
of the lemma.

4. Minor ares. Let &(U) denote the set of all real a in the interval
[0, 1] which have a rational approximation satisfying (17), and let. €6(U)

.denote the complement of this set relative to [0, 1]. We define the minor

arcs, m, to be €& (U,) where

(18) U, = I*™
LeMMA 7. If r > 3 we have
(19) [18(a)T(—a)|da < P"L™.

Proof. The proof follows the same lines as the proof of Lemma 14
of [5].

The set &(U) increases with U and, by Dirichlet’s theorem on Dio-
phantine approximation, if U > P it consists of the whole interval [0, 1].
Denote by #(U) the complement of &(U) relative to &(2U). Then the
interval [0,1] can be decomposed into

E(UY, F(Uy), F(20y),...,F (2T,
where ? is the least integer such that 2*+' U/, > P. Hence m is the union of

F (U, F(2U,), ..., F(2'U,),
and clearly ¢t < L.
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Now take U = 2"U,, where 0 <w <(#. Then U satisfies (13). It
ae (U) then a does not have a rational approximation satisfying (17)
and it follows from Lemma 6 that the hypothesis (14) fails to hold for sucﬂ
an a. Thus for all aeF#(U) we have

18(a)] <K PIL*U™
Also

a
Dl2g2UP™ < 8UP

1<e<2U a=1

\F(0) < 8(20)] <
It follows that

[ 18(@)T(—a)de <P"L"T~" [ |T(—a)|da
FO) #(U)

1
<P I THFE O [ 12 (—a)Pda}”

< P’nLﬂ U-—r/2{U2P—2}1/2 {PzL—l}llz
< b2 Ul-—r/an—l/Z < Pn U—1/2Ln—1]27
since 7 > 3.

Since there are < L sets #(U) and this estimate applies to each
of them and the least value of U is U, = L*", we deduce that

[18(a)T(—0)|da < P"L™" < P72,
m
which is (19).

5. Major arcs. We denote by M., the interval (2) for « defined by

11
a— —

(20)

<PIF, 0<axl,

where % is a suitable constant, and we denote by S the union of these

intervals for ‘
0<a<g, (a9 =1, 1<g<It

The intervals (“2;0) are disjoint for large enough P, and if we choose & > 4n
then 9N contains &(U,) where U, is given by (18).

Levua 8. If o is in May and f = a—alq, then we have

(21) 8(a) = ¢7"8,.4(P)I(B)+0 (P" ' L),
where
Seal®) = 3 o S 42,
@(modg) )

(*) In fact My,1 consists of two intervals, one at each end of the interval: [0, 1].
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and

1) = [ e(pen(&))ds.

PZ

Proof. Bxcept for some trivial differences this is the same as the °
proof of Lemma 15 of [5].
Writing ® = gy-+# we have

y e(1¢P(z>) > elportay-+2),
v

#(modg)

(22) 8(a) =

where the second summation is over the integer points in the box
(Pg Y@ —q 'z This box can be regarded as a union of V(Pg )"+
+0((Pg~")*"") cubes of side 1, together with a boundary zone which has
volume O{(Pg™")""") and contains O((Pg™")y*™") integer points. Bach cube
corresponds to a single term of the sum, and we can replace this term by

[ e(pe(qn+2)dn+0(IBlaP),

gince, as was remarked in §1, the coefficients of the linear part
of ¢p are O(P). The integral here is taken over the cube in question.
Putting together these integrals and allowing for the boundary zone
we obtain

S(a) = ¢ " 8aq(P)I(B)+O(d"18 1¢P(Pg™)")+0(¢" (P ")
Since |8 < P-2I* and ¢ < I, this gives (21).

Levyma 9. If a is in My,q we have

#(q)
®(q)

for some positive constant ¢,, where

(23) T(a) = I,(B)+0(P*exp(—6, L")

P2

ne= |

9,P?

o) ..
logz

Proof. This is just Lemma 16 of [5], and a proof is given in [6],
chapter VI, Satz 3.3.
Levva 10. If (a, q) =1 we have

(24) [8,0(P)| < g*(logg)",

where the implied constant is independent of a, g, and P.
Proof. We note that the implied constants occwrring in Lemmas
3,4, 5, and 6 depend only on =, %, and the coefficients, a;, of @, and that
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they in no way depend on the other coefficients of ¢p. Hence we can
apply Lemma 6 to the exponential sum 8,,(P) with P (of Lemma 6) = q,
U = g—1, ¢ = a/g, and a unit cube in place of #. The inequalitics (13)
are then satisfied, but a/g has no rational approximation satisfying (1m),
for if ¢’ /¢’ is any rational number with ¢’ < ¢—1 then a'/g’ # a/q (because
(a, ¢) = 1) and %0
’q’_‘i»._(’,' S_l >._q_’:£

q T ¢
We deduce that inequality (14) does not hold with this choice of «, P, U,
and # provided that ¢ > ¢;, where ¢, is a large constant. Thus for q>¢
we have

180,0(P)] < ¢"(logg)"(g—1)"" < ¢"*~""(log )™
For g < ¢; we have the trivial estimate
[8aq(P)] < ¢ < 65
Hence in either case (24) holds.
Lemma 11. If » > 3 then for a suitable constant ¢, > 0 we have

28) [ 8(a)T(—a)da
m

={&B+0L ) [ (B (~B)ap-+0(P"LY,

18]<P~2L
where
had [
(26) er) = > N A g, ).
= & e
(@.2)=1

Propf. The proof follows the same lines ag the proof of Lemma 17
of [5] with only trivial differences, Lemmas 8, 9, and 10 being used in
place of Lemmas 15, 16, and 13 respectively of [5].

6. The singular series.
LmvmA 12. With the hypotheses of Theorem 1 we have
: 1< S(P)<1.

Proof. It follows from (26) and (24) of Lemma 10 with 3> 3 that

the series &(P) iy uniformly absolutely convergent. Also, by well-known
arguments,

a
2;: 47" 80q(P)

A=
(a.9)=1

is a multiplicative function of q. Hence, by (26),
(27 &) =[] x(a,P),
. @
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where & runs through the primes and

@1

~ ‘__ 1 ~—T J
28) 1B P) =1=——=6"" 3 8,4(P).

&—1

a=1
The infinite product (27) converges uniformly and so there exists a con-
stant ¢; such that
(29) 1< []x@ P <2.
@>C5

Also for any integer point a and any prime & we have

s—1 (i )_ d—1 if ¢p(x) =0(moda),
2, e\ 5 er@ *{_1 i ¢p(@) % 0(mod ).

a=1
Hence
&1 @1 a y
al P ~
(30) D) SaalP) = e(g«ﬁp(m)) = (&"—-M)(6—1)— M,
a=1 a=1 x(moda)

where M is the number of integer points @, distinect (mod &), for which
¢p(x) = 0(mod o).
Substituting (30) in (28) we obtain
M

P) e
z(a, P) d')n—l(d')—-l)
Now trivially M < &", and it follows from Lemma 2, with & in place
of m, that M >1 for all sufficiently large P; and hence we obtain
1 . ) -
d')"_l(rl')--l) < z(d, P) < ’

a—1

and so ” x(®, P) lies between fixed.positive bounds. On combining
B<og

this last statement with (27) and (29) we obtain the result of the lemma.

7. Proof of Theorem 1 and a corollary. We observed in § 5 that if &
is chosen to be > 4n, then 9N contains &(U,), from which it follows that

€M < ¥8(U,) = m.

Hence, on dividing the range of integration in (8) into the two parts N
and €M, we deduce from (8), (19), and (25), which are valid under the
hypotheses of Theorem 1, that

(1) A (P) = {S(P)+0(L™}J (P)+0(P"L7?),
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where

(32) JP)= [ IBL(—pdp.

18)<P- 2Lk
As in §10 of [5] we have

L(ﬁ- f

9

—pPa)do+0(P* L™ min (1, | BP*| ™),

and we multiply this approximation by I (B), as defined in the statement

of Lemma 8, and substitute the resulting product in (32). The main term is

fz_ f { fe(ﬂqu(E))dE}{ f —pP*x dﬂ?} dp = ._ﬁ_;J (P),

2L \B1<P= 2Lk PR

where
Lk I

@) ne) = [ { [ ebree@)de}] f (—ya) da} dy,
~IF g

and the error term is majorised by

"P'PL [ min(l, |gP27Ya < PP L TP Mlog L < P"L7Mlog L.
161 <P=2Lk

Thus we have

(34) J(P) = % J1(P)+-0 (P L *logL).

Interchanging the order of integration in (33) and performing the inte-
gration with respect to y we have
k
f dy f [ e(y(Per(Pa)—a))dy
~ Lk
2 . k(p—2
sin2n L (P Pr)—
— [y | SELErP) % 4o
i 5 mEee(Po—d)

b(nP) | p’
sin2nL"4
= d-,) ____.I;_;I__dt,
@ a(n.P) "
where
a(n, P) = g,—P *¢p(Py),
and

b(n, P) = gs—P *¢p(Pn).
It follows from (4) and (B) that for all large P and all ne#
a(n,P) <g,—f, <0
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and

b(9,P) = gs—f> > 0.
‘Hence the limit of the inver integral is 1 as P — oo, and this limit is uniform
in %. Thus

(35) Jim J,(P) = fdv; =

It now follows from (31), (34), and (35) that
vP"

A (EB) = 2L

S(P)+o(P"L™ as P—>oo

and, by Lemma 12, S(P) lies between fixed positive bounds. This com-
pletes the proof of Theorem 1.

It will be convenient for later appllca.mons to have the following
straightforward corollary to Theorem 1 stated explicitly.

COROLLARY. Let

o(x) = Q(2)+L(x)+N

be o quadratic polynomial in n variables with constant rational coefficients
whose mumerators have no common factor. Suppose that the value of ¢ is
integral at every imteger point, and that there is some integer point at which
the value of ¢ is odd. Suppose also that Q (), the quadratic part of ¢(x), has
rank =3 and is neither negative definite nor megative semi-definite. Then
for any box B with volume V in n dimensional sptwa such that Q(x) is posi-
tive in and on the boundary of % the number, 4 (P), of integer pomts x in
the expanded box P for which ¢(x) is a prime satwfws

Vet
N (P) ~m—=
F) log P*
where S is a positive constant.
Proof. Let e,, ¢; be the lower and upper bounds of @ (x) for x in 4,
and let fy,f, be real numbers satisfying
0<f <e <eg<fs
For @« in %,
¢(Px) = P*Q(x)+0(P)
and hence for y in P# and large enough P we have
7P <o(y) <[P

Thus ¢ satisfies all the requirements of Theorem 1.
To obtain the result of the corollary it only remains to observe that
gince the coefficients of ¢ are constant, the exponential sums 8,4(P)
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defined in Lemma 8§ are independent of P; hence, by (26), & = S(p)
is a constant, and it follows from Lemma 12 that this constant is positive.

8. Lemmas. In this section we derive a number of results about
polynomials which are needed in the proof of Theorem 2.

LeumA 13. If ¢(x) = ¢ (24, ..., %) 18 a quadratic polynomial in n
variables with rational coefficients which satisfies the following four con-
ditions:

(i) ¢(x) is am integer at every integer point e,

(ii) the numerators of the coefficients of ¢ in their lowest terms have

no common factor,

(iii) there is an integer point a for which

¢(x) # 0(mod2),

(iv) the variable sy occurs in the linear part of ¢ but not in the quadratic
part;
* then the value of ¢ () is prime for > P**'[log P of the integer points a satis-
fying
| < P?,
o] <P (i=2,...,n),
where P is o large parameter.
Proof. By condition (iv), ¢ is of the form

(36) O (Bry-evy Tn) = ¢1(Byy .-, Tp)+-amy,

where ¢, is a quadratic polynomial in w,, ..., z, and a is a constant, and
it follows from condition (i) that a is an integer and ¢, (2, ..., @) is in-
tegral for integer values of the variables w,, ..., z,. By i), (11), and (iii),
¢ satisfies the conditions of Lemma 2, and so there exigts an mteger point
Y = (Y1, ..., ¥a) such that (¢(y),a) ~1 I now @® = (@, ..., z,) is any
integer point in (n-—1)-dimensional space satigfying

(37) {2y <oy T) = (Y3, ..., Yn) (moda),
we have
(38) oo (¢1(w2, ey By), a,) =1.

Denote by @:(z) = Qy(, ..., ,) the quadratic part of ¢, (which is also

the guadratic part of ¢), and choose a box in (n—1)-dimensional space

such that for all points & in &

- (39) &l <1
and
(40) 1@1(8) < }lal.
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This can be done, for example, bv taking # to be a sufficiently small
box containing the origin.

Take  to be any integer point in the expanded box P4 satistying (37 ).
Then = satisfies (38) and also, by (40), we have

61(2)| < P* }|al+0(P) < P*}la]
for large enough P, so that the range

[—P%lal+:1(x), P*laj-+¢; ()]
includes the range )
[0, 3P*|al].
We now apply the well-known theorem due to de la Vallee Poussin and

Landau on the number of primes in an arithmetic progression (see, for
example, [3], Satz 382) and deduce that the number of primes p satisfying

—P%|a] -+ () <20<P'|a[+¢1 )

and
P = ¢, (x) (moda)
is
P2
(41) > 'i’o‘gf,

this estimate being uniform in .
Also the number of integer points @ in P# satisfying (37) is

(42) > p+!

and, by (39), all these points satisfy |x| < P.
Now from (36), (41), and (42) we obtam the result that the number
of integer points a.with v

ol <P, lal <P (zéé;...,n>

for which ¢ () is prime is > P"*flogP.
LeMmA 14. Let L(2) = l,+La,+...+l,2, be a non-constant linear
polynomsal in Ty, ..., 2, such that ly,l;,...,1, are iniegers having no

common factor, and let o be a box in n dimensional space. If there is q.

Point @& = (ay, ..., a,) in the interior of o such that loas-+,. Aty > 0
then the number of integer points ® in P for whwh L(z) is prime

Y >P"/10g1’

- Proof. Since L(x) is noﬁ const;mt We can fmd 3 pomt bin o suc!f’
tha.t Libyt.. . +1ab, > 0, and then we can choose s small box % containify’

Acta Arithmetica XI1.2 10
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b and.contained in s# such that Iy & +... 41, &y 2> 0 for all points geg.
We shall in fact obtain the result of the lemma when x is restricted to
lie in the box P4.. . |

We denote by %' the projection of # on the x; axis, and by #"
the projection of & on the (w,, ..., ¥,) hyperplane, gmd ‘we write

Ly(ag, ..., 501;) = lo'{"lzmz""- oy,
go that
(43) L{x) = Ly(@y; .-y Bp)+ly 1.

Since the coefficients of L(x) have 1o common factor, we can find
an integer point (¥, ..., ¥,) in (n—1)-dimensional space such that

4 L("Jza- 7.7/n)7l1)==17

and ther f01 anw* 1nteger point (zs, ..., x,) satisfying
(Xgy ooy @) = (Yo, -+, Yu) (modly)

we have
(44) (Ly(@gy cery @)y by) =1
Hence the number of integer points (z,; ..., @,) in P#" ! satisfying (44) is
(45) > P
For each of these points the interval ‘
(46) TIPEZI—I-LI(wZ, favy B)

(i.e. the mterval Z st’l translated by an amotnt L (wz, )] has length
a fixed multiple of P. Also for (#,...;,) in PF™ ! the interval (46)

is bounded above by a constant multlple of P and is bounded below by the

constant 1y b
i Tt follows from thie theerem c1ted in the previous lemma on the number

of primes in an arithmetic progression that the number of primes p ir
the interval (46) sa,tlsfymg

) P = Ly(y, ..., &) (modll)
18 R . |

(47
) , > TogP logP
tlus ;esmma.te bemg umform in mz, vy .

LEMMA 15, Let ¢y(@ryeuy@n)yeeey bp(®y, .0, @) be 7 polynomials
with. .integer coefficients in the n 'uamables Byyeeey @y SUCh that dyyee.ydr

have no common factor and ¢, is not constant, and let Uy,,..., Uy be.n func:

bm@

_The. conclusion. of the lemma pow follows from (43), (45) and (47) .
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tions of P tending to infinity with P and each bounded above by a fized power
of P. Then for any & > 0 the number of integer poinis x satisfying

(43) |l < Uy (0=1,...,m)

and

(49) di(2)ds(x)  (J=2,...,7)

s

(50) < max U; ' UP’,
iig<n

where

n
=[] v
=1

Proof. This is a generalization of Lemma 11 of [2] and method of
proof is the same.

Sinece ¢, is not constant, we can suppose, by permuting the variables
if necessary, that ¢; is not a polynomial in x,,...,#, only. Also, since
¢1y ..., %, have no common factor, it follows from Satz 101 of [4] that
there exist polynomials 4 (®y, ... ®n)yeeey Yl@ry ooy @p)y H(@ay ... ) )
with integer coefficients and with H not identically zero such that

$1p1t- - +bry, = H
identically.

The number of integer points x satisfying (48) for which H (x,, ..., @,)
= 0 is < max U;'U, and for « satisfying (48) [H (s, ..., 2,)| is bounded

2<i<n
by a fixed power of P and so if H(z,,
If @ also satisfies (49) we have

91(@) | H (22, -, 23),

.oy @) 7 0 it has < P° divisors.

and so for any particular set of values of z, ,: ooy @p With H (@5, ..., 2,) # 0
there are < P° possible values for ¢,(x) with a satisfying (48) and (49).
If ¢ is any one of these values, the equation ¢1 = ¢ can be Wntﬁeu m the

‘form

To(@ay s Ca) A T3 (@0, oy @) 2E TGy s Ba) = 0,

where k& > 1 and J, is not identically zero and is independent. of ¢. The

number of possibilities for z,, ..., z, for which J, =0 is < max U5 ' U7 ' ¥
2i<n

and for these there are < U, possibilities for 2, . Otherwise for any «,, ..., @,

there are < P° possibilities for ¢ and then at most & possibilities for z;;

and the total number of gets of mtegers Dy, . ., 0, satisfying ja| < U;

(t=2,...,n) is < U’ :
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Hence counting all the possibilities we obtain the result that the
number of integer points o for which (48) and (49) hold satisfies (50).
LeMMA 16, Let

(@s, ey ) = (@) = Q)+ L)+

be o quadratic polynomial with integer coefficients, irreducible over the
rationals, whose coefficients have no common factor and for which there is
some integer point x with ¢(x) 5 0(mod2). If @, the quadratic part of é,
Factorises over the rationals inio distinet Uinear factors then ¢ (x) represents
imfinttely many primes for integer points .

Proof. Since Q(a) factorises into distinet factors, there is an integral
unimodular transformation taking @ () into @, (am,--bx,), where ¢ and b
are integers with b # 0. Such a transformation is permissible as it affects
neither the hypotheses nor the conclusion of the lemma. Tf after this
transformation ¢ contains a variable other than &, #,, then it satisfies
the conditions of Liemma 13 and our result follows. Hence we, can suppose
that ¢ is of the form

" &4 (0 +-bats) oy +diy e,

where all the éoefﬁcfents are integers and b 0.

Denote by m the product of the coefficients of this polynomial. The

quadratic polynomial ¢ satisties the conditions of Lemma 2 and so there
exigt integers X,, X, such that
61y (X, Xy m) =1
‘We now make the substitution 2, = X,+my and obtain
(52) (@, 3;) = @y (amy+bwy) +o0y +dwy+-e = 0y (bw, +d) +aw}+om, +e
= w,(bmy +b X, +d) +om*y* +2amX, y +omy 46X, +-e+aX]
= 2y Ly (9)+Q1(y). .
Here L,(y) is & linear polynomial in y which is not constant, since b = 0,
and @,(y) is a quadratic polynomial in y.

The polynomials bx;-+d and aa}--cx,--¢ have no common factor
a8, by (52), such a factor would divide ¢ (x,, x,), contradicting the irre-
ducibility of ¢. Hence there exist integers 4, B, 0, D with .D 7 0 such
that L
(83) , (4w, +B) (b, +d) +0 (0} + ey +6) = D, :
and so for any integer », the h.c.f. of bz, -+d and ax}+-cw, +e divides D.
Thus for any integer y the h.c.f. of L, (y) and @, (y) divides D.

Denote by 4, the h.c.f. of the coefficients of L;; then A,|bm and so
A|m?. By Dirichlet’s theorem on primes in arithmetic progression there

bm@
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are infinitely many integers y for which L,(y) = 4,p, where p is prime,
and so we can choose some integer, ¥ say, for which Z,(¥) = 4,p and p
is a prime not dividing D. For this ¥ the h.c.f. of I,(Y) and Q,(Y) is
a factor of 4,. )

On the other hand it follows from (51) that ¢(X,+mY, X,) is prime
to m and hence, by (52), that the h.c.f. of L, (Y) and @,(Y) is prime to m.
Hence (L,(¥),@:(Y)) =1, and so, again by Dirichlet’s theorem,
2oLy (¥)+Q,(X) is prime for infinitely many integers z,, which, by (52),
is the result of the lemma.

LEemMA 17, If Qo(@1y.-e) Bn)y @1(Bry vvy Bn)y oevy Qu(@y, ...y 2,) are
quadratic forms, not all vawishing identically, with rational coefficients in
the variables ., ..., ©,, then at least one of the following three propositions
holds: :

(I) there are < P™™' sets of imtegers Ayy...,r with |4 <P

- (8 =1,...,7) such that the rank of @,+2,Q:+...+A4.Q, 18 <2;

(IT) there is an integral unimodular transformation of coordinates

taking Qo, @, .--sQr into Qo Q1,y...,Qr, where the forms
Q0,Q1, -, Qr do mot involve the variables @, ..., Ty

(IIT) Qgy @1y ---, Q- hawve a common linear factor with rational coeffi-

cients. )

Proof. We express each of Q,, @y, ..., @, in diagonal form; that
is we write each of these forms as a sum of rational multiples of squares
of linear forms with rational coefficients. Denote by L,, ..., I; the com-
plete set of linear forms arising from @,, ..., @, in this way.

First we show that if no three of the linear forms L,,..., L, are
linearly independent over the rationals then (II) holds.

Write L, = a,2,+...+a,3,. We can suppose, by taking a rational
multiple of L, if necessary, that a,, a,,..., a, are integers having no
common factor, and then there exists an integral unimodular transfor-
mation taking L, into z,. If on making this substitution L,,..., L, all
become multiples of #; we have (II). Otherwise one of these linear forms,
say L., is of the shape L, = b2, +by2y+...+b,2,, Where by, ..., b,
are not all zero. Taking a rational multiple of I, if necessary, wé can
suppose that b,,..., b, are integers having no common factor, and then
there is an integral unimodular transformation fo the variables @,, ..., #n
taking 0,%5+-...+ by, into 2,. This transformation takes L, into b, x; -+,
and, since we are supposing that no three of the linear forms L,,..., Lg
are linearly independent, it takes all the remaining linear forms into
linear combinations of #, and z,. Thus (II) holds.

To prove the lemma we can now assume that at least three of the
linear forms I, ..., L are linearly independent and that (I) does mnot
hold and show that these assumptions imply that (XIT) holds.
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If for any real numbers Ao, Ay .+., A the quadratic form 2,0),--1,0,
+...+2,Q, has tank >3 then (I) holds, for in that case the 3x3 minors
of the matrix of the quadratic form @,+4,Q,+...+4@Q,, considered as

polynomials in 1y, ..., 4, are not all identically zero, and hence at least
one of these minors vamshes for < P"" of the sety of integers 2,,..., 1,
with |4} <P (i =1,...,7). ‘

Thus We can now suppose that each. of the quadratic polynomialy
Q6,0Q4, .., 9, has Tank <2, and we consider separately the different
cases that can arise. In each case we shall suppose that the linear forms
Ly, ..., L, have been ordered in such a way that L;, Ly, Ly are linearly
independent. For the remainder of this proof. a, b, ¢, ete. will denote
non-zero rational numbers.

Case 1. Q; = al?, @, = bL;, and @, = ¢Lj each have rank 1 and
Ly, Ly, Ly are linearly independent.

In this case the quadratic form @;+@;+@, has rank 3, and so, by
our remark above, (I) holds.

Case 2. Q; = aL}-+bL; and @; = cL; have ranks 2 and 1 regpectively
and Ly, L,, L, are linearly independent.

In this case @;1@; has rank 3, and so again (I) holds. ‘

Case 3. Q; = aL}-+bIL: and Q; = ¢Li-+-dL; both have rank 2 and
Ly, Ly, Ly, L, are linearly independent.

Here @;-+0Q; has rank 4, again giving (I).

. Cage 4. Q; = aLli+bL; and @ = cLi+dL; both have rank 2, L,
L,, Ly are linearly independent, and L, is a linear combination of L“ Ly,
and L. ‘

In this case there is a rational non-singular transtormation taking
Q; and Q, into ayi+by; and eyi+d(Ly, 1y, +lays)® respectively, wheie
Uiy Iy, Iy are rationals with I, and 7, not both zero. If (I) does not hold,
then 2Q;--pQ; has rank < 2 for all real 2, 4 and so the determinant of
AQ;--pQ; vanishes for all real 1, u. This determinant is:

| 2a4udl  udll,  pdll,
wdlyly b —{-ydlg wudlyly |
udl, 1, pdlaly o udl
This is a polynomial in 1 and u and since it is zero for all real Ay it ds

identically zero. The coefficient of A%y in this polynomial is ab(c--dl2)
and hence, since ab # 0, we must have

(54) ¢ = —dL,

Also the coefficient: of Au? is od(ali+bE), and so all-+-bl = 0, whenee
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Using (54) and (55) we can write @; and @; as

Ay —Byd)
and ’ . .
d(lﬂll Ly, +lys) -dliyi‘

respectlvely, where A is a non-zero raional number, and these two poly-
nomials have the common linear factor Ly, +1.y, with rational coeffi-
cients. ) .

Hence another rational non-singular transformation té.k% Qs
and @; into 2,2, and 2,2, respectively.

. Now if @y = eLi--fL} is another of the qua,d_la,tm forms Qo,. ,Q..
with rank 2, we need to show that if (I) does not hold then z, is. also a faetor
of Q. Neither Iy, L, L;, Ls nor Ly, L, Ls, Ly can bé a linearly inde-
pendent set of linear forms, for'if so we should have the situation, of case
3 which teads-to (I). On the other hand it is impossible for both L and L,
being linearly independent, to be linear combinations of L,, L, and of
L, L;. Hence, on interchanging the roles of @; and @; if necessary, we
can suppose that just three of the forms Ly, Ly, Ls, L, are linearly inde-

pendent. But this is just the situation considered above, and we deduce,
on the hypothesis that (I) does not hold, that @; and Qx have & common
linear factor. This linear factor is either z; or z,, and in the latter 6aye
at least three of the linear forms Ly, L,, Ls, Ly are linearly mdependent,,
If all four of these linear forms were linearly independent we should again
have the situation of case 3 and (I) would follow; hence just ‘three Oﬁ
these linear forms are independent and, since we are agsuming that (I)
does not hold, we deduce as before that Q; and Q; have a common linear
faetor, and this factor can only be #;. Thus Qy, is a multiple of 2, 25, an,d
8o the quadratic form @, +Q;+Qy has rank 3 which leads to @. Eeﬁce,
on the assumption that (I) is fa.lse, the only possibility is that 2, is & faetor
of Qk

Finally, if Q, = g L2 is one of the forms @, .., Q, havmg rank 1 and
(X) does not hold, then L, must be a linear combination of #; and 2y, smce
otherwise we should have the situation of case 2 which led to (I). Slmlla.nly
L, is a lineat combination of z; and ;. Thus L7 is & multlple of z and so
2, is a factor of Q. )

Hence in case 4 either (I) holds or else a.ll the quadratlc fm:ms
Qo, .- -, Q- have a common rational linear factor, which is proposition (IH)
of the enunciation. T : oY
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Cases 1-4 cover all the possible ways in which the linearly independent
linear forms Ly, Ly, L; can occur in the quadratic forms @, ..., @, subject
to the condition that none of these gquadratic forms has rank greater
than 2; and so this completes the proof of the lemma, G

9. Cubic polynomials. In proving Theorem 2 we can always replace
the cubic polynomial ¢ () by a polynomial obtained from ¢ by an integral
unimodular transformation of coordinates, as such a transformation
leaves unaltered the seb of values taken by (b(:c) at integer points = and
preserves the property of having integer coefficients, so that both the
bypotheses and the conclusion of the theorem are unaffected by the

substitution. -

If ¢(x) is any cubic polynomial we can, by means of an integral
unimodular transformation, arrange that the linear forms L,,..., L,
occurring in the expression (2) involve only the variables w, ..., .
If at the same time we replace the variables ®p.1, ..., Ty DY 41, ...\ ¥y
where s = n—h, ¢ takes the form :

(56) ¢ =o(@,y) =Cl@y, .., m)+ D ¥ii(®@, ..., @)

1<ics :

-+ 2 yiykL:!lc(mz.; AR

1<d, o8

Where C, Q;, and L, are cubie, quadratic, and linear polynomials respec:
ﬁvely in @, ..., 2, with integer coefficients. Here gome of the polynomial§
C, Q;, Ly, may vanish identically or have degree less thamn their apparent
degree, but, since we are interested in a non-degenerate cubic polynomial
¢ with > h, not all the polynomials Q;, Ly, (1 <1, j, % < ¢) will vanish
identically in our case. )

Owr object in the remaining sections of this paper will be to show
that the variables #,, ..., z; can be given integer values in such a way
that the resulting quadratic or linear polynomial in the variables 1, ..., ¥s
represents infinitely many primes. For this purpose we shall be dealing
with spaces of dimensions h and s (== n—Hh). We use the symbols , X,
&, a, to denote points in 7 dimensional space, and =7 to denote a box in
that space; and we use ¥, ¥, », b, to denote points and # to denote a box
in & dimensional space. :

Lewma 18. If the cubic polynomial ¢(x, y) of (56) satisfies the condi-
tions” of Theorem 2 and p denotes the product of the coefficients of ¢, then
?here exist integer points X = (Xy,..., X3) and ¥ = (¥, ..., ¥s) such
that for every point ® salisfying . o

(87) x= X(modﬁ,u)
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the h.c.f. of the integers C(wx), Q. (@), ..., Qs(a), Ln(®), Lya(®), ..., Lss(a)
is prime to 6u and ¢ (x,¥Y) & 0(mod2).

Proof. One of the hypotheses of Theorem 2 is that for any integer
m > 1 there exists an integer point at which the véalue of ¢ is not divisible
by m. By choosing such points corresponding‘to each of the prime factors
of 6y and combining them in the same way as in the proof of Lemma 2
we obtain an integer point (X3, ..., Xn, Y1, .0y ¥Yo) = (X, ¥) such that
$(X,Y) is prime to 6u. It is then clear that the integer points X and ¥
have the properties required by the lemma.

LeMMA 19. Let ¢ = ¢(x,y) be a cubic polynomial of the form (56)
satisfying the conditions of Theorem 2, and let Uy, ..., Uy be functions
of alarge parameter P each bounded above and below by fized positive pou{eﬂ‘
of P. Denote by R(x) = B(wy, ..., 1) any particular one of the polynomials

Q.(@), ..., @s(@®), Ln (), Lng(®), ..., Ls{) which is mnot constant, and
write U = ﬁ U,. Let u be as in Lemma 18, and let X, Y be the integer points
whose em'st;;;:e is asserted by that lemma. If there are > U [logP integer
points & = (1, ..., Bn) satisfying the following three conditions
() il < Ta@=1,..., b),
(ii) x = X(modbu),
(iii) R(x) is of the form R(x) = mp, where m is a factor of (6u)® and
p 18 prime;

then there are > UflogP of these points for which the imtegers C(zx),
0.(®), ..., @s(x), Ly (), vy Lgg(2) have mo common factor and ¢(x,Y)
= 0(mod2).

Proof. If x is an integer point satisfying (i) then, by Lemma 18,
the h.c.f. of the integers C(z), ..., Ls(w) is prime to 6u. If in addition &
satisfies (iii) and the h.c.f. of the integers C(x), - .-, Lss(®) is not 1, then
this h.c.f., being a factor of mp and prime to 6y, is equal to p. Hence p
divides each of C(x), ..., Ls(x) and so R(x) = mp divides each of
(6u)*C(x), (6u)2Q:1(x), vv.y (Bu)3 Lgs(x). Since ¢ ig irreducible, the poly-
nomials (6u)2C (), (64)°@1(®); ---, (61)* Les () have mo common factor
and so Lemma 15 (with ¢, = R and = = h) is applicable to this set ‘of
polynomials and we deduce that the number of integer points @ ssms.;—
fying (i) for which R(ax) divides each of (6u)*C(x), ...,'(Gy)sLss.(w) is
< max U7 UP, for any &>0. Hence the number of integer points &
satisfying (i), (ii), and (i) for which the integers C(a), ..., Lss(®)
have 2 common factor .is < max Uy UP, and this pumber is of
a smaller order of magnitude than UflogP if & i8 gmall enough. Thus
under the conditions of the lemma the number of integer points x sat-
isfying (i), (ii), and (i) for which 0(x), ..., L () have no common
factor is > U/logP. Finally we note that, by Lemma 18, o (x, ¥)


Pem


154 P. A. B. Pleasants

= 0(mod?2) for any point « satisfying (ii). This completes the proot
of the lemma. ‘ .

In the proof of Theorem 2 we need only consider cubic polynomial
¢ which are expressible in the form (56), and we shall suppose from now
on that ¢ is of this form. We shall deal separately with the tiwo principal
cases, namely: ' ‘

: Case A Not all the linear polynomials Ly (®y, ..., %x) (1 <74,k <)
are identically zero. : ‘

Case. B. The linear polynomials Ly (®y, ..., 25) (1], k<'s) are
all identically zero.

10. Proof of Theorem 2 in case A. In thig section we suppose that
¢ is expressible in the form (56), where not all the linear polynomials. Iy,
(1 <74,k <s) are identically zero. : . B

By rearranging the terms in the expression (56) we can write ¢’ a8

(88) ¢ =d(m,u) =Clon, oy )+ Y vy, oy @)

I€iss

+Q3‘(?/1:-~-7?/s)+ 2 wiQ;(ﬁ’/la--‘J?/s)iy

1<ih

where Q3 (41, --s ¥), QT (31 -5 Ys)s -+ Qaly1, .-, ¥s) are quadratic forms
in 4y, ..., Ys, and, in case A, they are not all identically zero.

In proving Theorem 2 in case A we shall consider separately the
three cases that arise according as the guadratic forms @QF,Q%, ..., Q%
§atisfy alternative (I), (II) or (III) of Lemma 17 (where 7 of Lemma 17
is now % and » is now s). In the first of these three cases, case I, the proof
of Theorem 2 falls into three further cases depending on which of the
following statements applies to ¢.

(i) Not all the linear polynomials Ly (1 <j, k& < s) occurring in
(56) are constant.

(ii) The linear polynomials Ly (1 <j, & < ¢) are all constant but
at least one of the quadratic polynomials @; (1 < ¢ < ¢) of (56) has non-
~ vanishing quadratic part.

(iji). The linear parts of the polynomials Ly, (1 < j, & < 8) and the
quadratic parts of the polynomials @; (1 <4 < s) are all identically zero
but tht? cubic polynomial ¢ of (56) has non-vanishing cubic part.

¢ is certainly of one of these three forms since otherwise its cubic
part would vanish identically. :

Case I (i). The quadratic forms QF, ..., Q% ; i
(I) of Lemma 17 and condition (‘if) abo'ue? ;»;lds.’ G of (58) satisfy. atternathe

We suppose that the linear polynomial Ljx is not constant for some
particular pair of suffixes J, K. It follows that not all of the quadm'tib

icm®
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forms QF, ..., @4 of (58) vanish identically, and so-we can choose a’ poitn

5 = (fiy -+, 7s) SUCh that QI (7), ..., Q%(n) are not all zero. Then we can
find a point @ = (ay, ..., az) such that : . .

@ QF(n)+ .- +anQi(n) > 0
and a box o in h dimensional space containing @ such that :

{59) EQ ()t ..+ EQA(n) > >0

whenever &, where ¢ is a fixed positive number. :

Let u denote the product of the coefficients of ¢ .and _let
X = (X, ..., X5 be the integer point given by Lemma 18. We make the
substitution R
{60) x = X-+6uz ‘
and let = range over the integer points in the expanded-box (6u) ' Pst,
where P is a large parameter. Under this substitution Lyg(x) becomes
Lz (#) where the coefficients of the linear part of Ljg are just 64 times
the corresponding coefficients of Lk, and 50 Asx, the h.c.f. of the c‘oeffi‘—v
cients of Ljg, is a factor of 642

Now at least one of. the-linear polynomials AFALYe, —MkLix
satisfies the conditions of Lemma 14 with respect to the box (6u)” 7,
and so it follows from that lemma that there are > P"[log P integer points
2 with z¢(6p)” P« and Ljg(2) = mp, where m = +1;5 and p is prime.
For the corresponding. points x we have xePod —X and Lyg(x) = mp:

We now apply Lemma 19 to ¢ with R(x) = Lyg(x) and U; = cP,
(i =1,...,h) for a suitable constant ¢, and deduce that there: ate
> P"[logP integer points x in the box Psf—X for which ¢é(x,y),
considered as a quadratic polynomial in y, has integer coefficients
with no common factor and is not even at all integer points y. Fur-
thermore the quadratic part of ¢(w,y), considered as a polynomial
in y, is : : - ' L

(@ y) = )+ Qi)+ nW)-

For <P/ —X we can write @ = P§—X, where §es, and then we have
Q*(, %) = @} () +(PE —X)@E () ..+ Pl — Xn)Gi (1)
C>Ps+0(1) (by (59)), ' Lo

and so Q*(x, y) is positive if P'is large enough. Hence for zcPo/ ~X

)

and P large enough Q*(x, y), considered as a polynomial in y, is neither
negative definite nor negative semi-definite. Finally we are assuming that
Q:,Q%, ..., Q% satisfy (I) of Lemma 17, and it ‘follows from this that
Q*(x,y) has rank <2iny for < Ph-* of the integer points 'z in the

box Pof —X.
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Hence for large enough. P there is some integer. point @ in {he hop
Pot —X for which ¢, y), as a quadratic polynomial in -y, satisties g
the conditions of the corollary to Theorem 1 (stated in § 7), and it fol]owg
that ¢(x, y) represents infinitely many primes.

Case I (ii). The quadratic forms Qx, ..., Qn satisfy aliernative (I) of
Lemma 17 and condition (ii)-holds. g

Since in this case the linear polynomials Ly, are all constant, we have
Q7 =0 for 1 <i <%; and, since we are supposing in this section that
the polynomials Ly, are not all identieally zero, @7 i3 not identically zero,
Thus in this case the set 'of quadratic forms @7, @7, ..., @} contains only
one non-vanishing form, namely. @7, and since we are supposing that
this set of forms satisfies (I) of Lemma 17, the rank of @ is > 3.

Suppose that the particular linear polynomial Ly does not vanish
identically, so that Lygx == l;x # 0, where l;% is a congtant, and denote
by Q1(), ..., @:() the quadratic parts of the polynomials @, (), ..., Qs ()
t_)f (86), so that, by (ii), @1, ..., Qs are not all identically zero. We fix a point
a = (a,, ..., a) such that Q1 (a), ..., @,(a) are not all zero, and then a point
b = (b,...,b,) such that ' ‘

(D) -+b:Q1(a)+...+b,Q(a) > 0.

Now we can choose a box & ins dimensional gpace containing b and
50 small that

(61) & <Q(n) ‘i**"?l’@é‘(’“f)"l’v.-’|‘77aQ;(a) < &

for all points r;e% where e, and ¢, are suitable positive numbers. We also
choose mumbers f, and f, such that '

ol

(62) 0<fi<e <e<f,.

i If X s%nd Y are the integer points given by Lemma, 18, then for any
ylteg.er point ® satisfying (57) the h.c.f. of the integers C(x), ..., Lg(®)
18 prime to 64 and ¢(x, ¥) is odd. (Here denotes, a8 before, the product

of the coefficients of ¢.) But the h.c.t, of ¢ (@), ..., Ly(x) is a factor of

lJK., ‘which is itself a-factor of 4, and so this h.c.f, is 1 for any integer
point @ satistying (57). ' ,

Now for each large number P we chooge an integer point &) satistying
(57) as close as possible to the point P*a. Tt y is a,ﬁy point in P# we
have y = Py, where <4, and substituting &®) and y in (h8), remem-
bering that Qf =0 for ¢ = 1,..., b, we obtain ‘ ,

o (a®), y) = Cla®) +- Z‘thi(w'P))—FQ:(y)

X Isiss

= POs () +mQi(a)+... 1,0} (a)) +‘o (P,

bm@
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I nowifollows from’ (61) and (62) that for P large enough and y<P#
we have, o
FiP? < (@, y) < foP*

Now ¢ (), y), considered as a polynomial in y, has quadratic part
Q(y) with constant coefficients and rank > 3. The coefficients of the
other terms of ¢ (), y) depend on P, but we have shown that, together
with the box @, ¢(a®), y) satisties all the conditions on the quadratic
polynomial of Theorem 1; and so we deduce that ¢ represents infinitely
many primes. ‘ ’ . ,

Oase I (iii). The quadratic forms Qy,..., Q% satisfy alternative (I)
of Lemma 17 and condition (iji) holds. )

Tn this case, as in case I(ii), @i =0 for ¢ =1,...,h, and the rank
of QF is > 3. Also as in case I(ii), it X and ¥ are the integer points given
by L'emma  18,] then for any integer point a satisfying (57) the integers
0(x), ..+, Les(x) have no common factor and ¢ (x, ¥) is odd.

Denote by C'(x) the cubic part of (a). Then (iii) states that
¢’ (@) # 0 and so we can find a point @ = (ay, ..., as) such that ¢’(a) > 0,
and then we can choose a small box % ih s dimensional space containing
the origin such that o

(63) , e, < 0'(a)+Q5 () < ex,
for all points <%, where e, and e, are suitable positive numbers. We
algo choose numbers f, and f, satisfying

(64) . ' ' 0<fr<e <e,<fs .

Tor each large number P, we denote by 2 an integer point satis
(57) ‘which is as close as possible to P**@. Then if y is any point in P#
we have y = Pv, where y<%, and substituting «® and y in (58) (Where

in this case Qf = 0 for ¢ =1, ..., h) we obtain '
(65) $(@®, y) = 0@®)+ D 5@+ W)
1is '

— PO (@) +QL () +O (BT) + O (P*),

the order of magnitude of the first error term arising from the fact
that, by (iii), the polynomials @; (i =1,..., s) have degree at most 1.
Tt now follows from (63), (64), and (65) that for P large enough and yeP%
we have : '

£P* < (P, y) <fuP"

Now, as in case I (ii), ¢ (&, y), considered as a quadratic polynomial

in y with coefficients depending on P, together with the box %, satisfies
the conditions of Theorem 1, and so represents infinitely many prime
numbers. ! . ... e it ‘ o
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. Gase IL.The quadratic. forms @y, ..., Q5 of (68) satisfy alternatine
(IT) of Lemma 17; that is there exists an integral unimodular transformation,
of the wariables y,...,9s taking Q5 Q%,..., Q5 simullamcously into
quadratic forms involving only the variables vy, y,.

' In this case the transformation in question reduces ¢ to the form

$(@,y) = Claos, oy m)+ S yiQiler, .., o)+
I8

“H/?Ln(wu ooy @n) FY1Ya Lna (@1, -y @) "|"’.7/§L22(5”17 ey @),

where the polynomials €, @;, and Ly are as in (56), and, since we are
dealing with case A, at least one of the linear polynomials Lyyy Lygy Ly,
is not identically zero, say Ljx # 0. Also the quadratic polynomials
@y -+, Qs aTe not all identically zero as in that case ¢ would not involve
the variables ys, ..., ¥, whereas the hypotheses of Theorem 2 state that
¢ is non-degenerate and # > h-+3. By permuting the variables Ysyoeer Us
if necessary we can siuppose that @, = 0.

Now let X, ¥ be the integer points given by Lemma 18. If Ly is
constant it follows, asin case I (ii), that for every integer point x satisfying
(87) the integers C(x), ..., Ly (x) have no common factor and o(x,Y)
?s odd. If Lyg is not constant then, as in cage I (i), there are > P"/logP
integer points 2 in the region |#| < P for which C(x), ..., Ly(a) have
no common factor and ¢ (x, ¥) is odd. In either case, since @, is not identi-
eally zero, there are < P*~* integer points & in the region || < P for which

@a(®) = 0, and so there is some integer point x for which O(®), ..., Ly(a)

have no common tactor, ¢ (a, ¥) is 0dd, and Q4(®) s 0. For this point
x ¢(ac,.y), considered as a quadratic polynomial in Yy -+vy Ygy cONtAIng
the variabley, in its linear part but not in its quadratic part and satisfies

all. the: other conditions of Lemma 13. Hence ¢ represents infinitely many
primes. : . ) .

Case III. The quadratic forms @, ..., Q% of (58) satisfy alternative
(IID of Lemma 17; that is QF, <oy QF have a common linear factor with
rational coefficients.

‘In! this case, after an integral unimodular transformation of the
vg,mables Y15 ..., Ys If necessary, we can suppose that %, is 4 .common
factor of 9, ..., @5, and then ¢ has the shape l

(66) $(@y) = Cloyy ... a+ Y y:Quay, ..., )
Iisgs
[ A SO X R ' + 2 ylyil;ld(wly-":wh)’
Lo . . . . 1<ISs

W?lere the polynoymi@lsi C, @y and Ly; are ag in (
with case A, not all the linear polynomials

bm@

56). Since we are dealing :
Ly, ..., Li; are identically *
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zero, and, in fact, we can suppose further that Ly, ..., L), are not all
identically zero since otherwise ¢(x, y) would be of the form considered
in case II. Thus L, 5 O for some J in the range 2 < J <.

Now, just as in the cases we have already dealt with, there are
> P"[logP integer points a in the region |®| < P such that Ly(x) # 0,
the integers C(®), ..., () have no common factor, and such that there

_exists an integer point ¥ with ¢(a, ¥) 3 0(mod2). If, for any one of

these points x, ¢(x, y) were irreducible over the rational field as a p015.r-
nomial in ¥y, ..., Ys then, for that ,d(x,y), considered as a qllladra;mc
polynomial in g, would satisfy all the conditions of Lemma 16,. gince tl}’e
quadratic part of ¢ (x, y) has ¥, as a factor but is not a multiple of y7.
Hence ¢ (x, y) would represent infinitely many primes.

We now suppose that ¢ (x, y) factorizes as a polynomial in ¥y, ..., ¥s
for > P"[logP of the integer points x in the region |?c[ <P, for some
large P, and obtain a contradiction from this assumption. )

We introduce a new variable, ¥..,, to make ¢ homogeneous in
Yry -¢y Ysslssr, and denote by é1(Y1y---y Ys+r) the quadlfajtic f?rm in
Yuy -rvy Yoy, With coefficients in Q(w, ey T1)s produqed in this way.
(Hete Q(&y, ..., %) denotes the field of rational functions of ..., Tn
over the rational field Q.) Let A be the symmetrie (s+1)X (s +1) matrix

of ¢, with elements in Q(2y, ..., Z). )

Now ¢, factorizes for > P*[logP of the integer ‘points ® in the
region |®| < P, and for these points the rank of 4 is < 2. We deduce
that the 3x3 minors of A all vanish identically, is these minors are
polynomials in ®,, ..., @, and if any one of them did not Va.nish‘ identically
it would vanish for only < P*~* of the integer points x in || < P.
Hence 4 has identical rank < 2, and so ¢, factorizes over A, the algebraic
closure of Q(wy, ..., #). Thus

(67) $1(Y1y ooy Ysr1) = (@Y1t -+as+1ys+1}(bly1+~ Abss1Yern)s

where a;, b for 1=1,...,8+1. But [y, ..:,y{], the rmg of
polynomials in ¥, ..., ¥, Over X, is a unique factorization dom.am, ?,pd
it follows from (66) that the part of ¢; not involving ¢, factorizes into

Y1 (Lut+- - +LaYs) - )
Hence, after exchanging an element of o between the factors of ¢, in (67)
if necessary, we have
=1, a=0 (2<1<s), b =Ly, ey ) (A<IKs).
We a;fe supposing that L, is not identically zero for some ?'nteger J 'in
the range 2 < J < s, and for this J the coefficient of ¥s¥e.iin ¢y, Which

belongs t0 Q(&y,-.., @), 18 Geyiby = gy L. Hence‘, since Ly # 0,
541€Q1d1, . .., @) Also the coefficient of 1954110 ¢y belongs to @ (@1, ..+ s%a)
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and is equal %o bgyr+as1by, and hence bg..1 be.longs to Oy, ey )5
since both ., and b, = L, do. Thus ¢, factorizes oyer Oz, e )
and hence, since the coefficients of ¢, are all polynomials in ay, ..., a,

¢, factorizes over Q[@y,..., ], the ring of polynomials in a,...,m,
over the rationals. On sebting .., = 1 this gives a polynomial factor-
ization of ¢(x,y) in which both factors are linear in y,...,;,

Since we are dealing with case A in which ¢ has non-vanishing -

terms which are quadratic in y, ..., ¥s, Deither of these factors can be
constant; and this contradicts the irreducibility of ¢.
This completes the proof of Theorem 2 in ecase A,

11. Proof of Theorem 2 in case B. In case B all the linear polyno-
mials Ly, (1 <j, k < s) of (86) are identically zero, and 80 ¢ ig of the form

(68) b =0(@y) = 0@, -y m)t D UiQuly ooy ),
118

where C,Qi,...,Q, are the cubic and quadratic polynomials of (56).
Thus the variables 4, ..., ¥ occur only linearly in ¢. Since ¢ is non-degen-
erate with n > h not all the quadratic polynomials @, ..., @, vanish
identically and so, by permuting the variables 9,,...,¥s if necessary,
we can suppose that @,(zy, ..., z5) & 0. )

We deal first with the simple cases & = 1 and & = 2. In fach in cage
B both these values of % are incompatible with the hypotheses of Theo-
rem. 2. -

If b =1, by rearranging the terms of (68) we can express ¢ in the form

@, y) = BLH®, Y1y ooy Ynmt) F8 L3 (2, Yy -5 Ynt) +
FL3 (@, U1y ey Ynd)s ,

where L, L, Li are linear polynomials in @;, ¥, ..., Yn—y1. Hence ¢(x, y),
is unimodularly equivalent to a polynomial in 4 variables, contradicting
condition (i) of Theorem 2. '
If b = 2, 8o that s = n—2, we can similarly rearrange (68) to express
¢ in the form . ‘ : ’ :

¢({l}, y) = 09%13;‘(5017 m.27 Y1y --ey yn—z)“{"mla"zL:(wl’ Wy Yuy veey ?/w~2)”|‘"
L (@, Byy Yiy ey Ynmg) B L5 (B1) By Yuy oo vy Ynmg)
a5, LE (1, Bay Y1y -+ - yn-z)—FL:(m1: Doy Y1y vry Ynms)y

where L3, ..., I} are linear polynomials in @, @y, ¥, ..., Yn-z, a0d hence
é(x, y) is unimodularly equivalent to a polynomial in 8 variables, contra-
dicting condition: (ii) of Theorem 2. won
Now we assume that & > 3. Here two cases arise according to whether;
or not the rank of the quadratic part of the polynomial @, of (68) is > 3»

icm®
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Case (i). b == 3 and the rank of the quadratic part of Q,(a) is > 3.
Let X be the integer point given by Lemma 18. We make the substi-
tution (60) and let z range over the integer points satisfying ’

(69) |#] < ¢P,

where ¢ is a constant satisfying 0 < ¢ < |(64)7Y|. (Here u again denotes
the product of the coefficients of ¢.) Then, provided that P is large enough,
we have |a| < P for the corresponding points . With this substitution
Q,(x) becomes Q1(#), a quadratic polynomial in z whose quadratic part
has coefficients which are just (6u)? times the corresponding coefficients
of the quadratic part of @, (a). Thus the quadratic part of Q. (=) has rank
> 3 and 1, the h.c.f. of the coefficients of Q1(»), is a factor of 36u°.

The polynomial A7 'Q1(=) has coefficients having no common factor,
and if 27'Q1(=) is 0dd for any integer point z then at least one of the
quadratic polynomials 427Q; (=) satisties the conditions of the corollary
to Theorem 1 ( §7), and we deduce that in this case Q1(2) = 4-A,p, where
p is prime, for > P"/logP of the integer points z satisfying (69). If, on
the other hand, 7@} (2) is even for all integer points z we consider the
polynomial (22,)7'Q;(2). This polynomial is integer valuéd at integer
points z and cannot be even at all integer points 2, for if it were (42,)71Q1 (%)
would be an integer valued quadratic polynomial having some coefficient
with denominator 4, which is contrary to the conclusion of Lemma 1.
Hence at least one of the quadratic polynomials 4(24,)7*@;(2) satisties *
the conditions of the corollary to Theorem 1, and so we have Q1(2)
= 4-21,p, where p is prime, for > P"/logP of the integer points # satis-
fying (69).

Thus, in any case, for > P"/logP of the integer points z satisfying (69)
() is of the form A}p, where p is prime and i} is a factor of (64)° The
corresponding points @ satisfy '

lg) <P, @=X(modéu), () =AHP,
and so the conditions of Lemma 19 are satisfied with R(e) = @,(x) and
U;=P (i =1,..., k). It follows that there is some integer point & such
that the integers O(a), @,(®),..., @s(x) have no common factor and
Q.(x) = 0, and for this point ¢ (=, y) is a linear polynomial in y sabis-
fying the conditions of Lemma 14 (with s in place of 7). Hence ¢ (x, y)
represents infinitely many primes.

Case (ii). ¢ s of the form (68), with h >3, @ # 0, and the rank of
the quadratic part of @, < 2. '

In this case, after an integral unimodular transformation of the
variables z,, ..., @, if necessary, we can suppose that @, is of the form -

Oy (x) = a1, +-~~+”h-z-’”h-2+QT(-’l’h—1; ),

Acta Arithmetica XII.2
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where @} is a quadratic polynomial in ,_; and @;, with integer cocfficients
and a,,...,a,_, are integers. We sghall consider separately the caseg
a, # 0 and @; = 0.

If @, # 0 the variable 2, occurs in the linear part of ¢, (x) but not
in the quadratic part. In this case we make the substitution (60), where
X is the integer point given by Lemma 18 and u is the product of the
coefficients of ¢, and restrict 2 to range over the integer points satistying

|2y < 6P, Jzl <ceP (2 <@ <h),
where 0 < ¢ < |(6u)”"|. The corresponding points x satisfy
| <P Jml <P (2 <4< h),

for large P. With this substitution (%) becomes @1(2), a quadratic
polynomial in #, where the variable 2, occurs in the linear part of Q,(z)
bl,lt not in the quadratic part, and 2,, the h.c.f. of the coefficients of
01(z), is a factor of 3643 Just as in case (i) above either A7'Qi(z) ar
(24)72Q1(z) is an integer valued polynomial which is not always even
and then the appropriate one of these polynomials satisfies the conditioné
of Lemma 13. Hence we deduce that there are > .Ph“/log.P integer points
x satisfying '

lm| <P, ol <P (2 <i<h),
® = X(mod6u), Q(x) =iy,

where A} is a factor of (64)® and p is prime. Lemma 19 now applies with
'R(m) = Ql(m), U, .=P2, U; =P (2 <i<h), and it follows that there
13 some integer point a for which the integers C(x), ..., Q,(x) bhave no
comx.mln‘x fact«;r and ¢,{(x) # 0. For this point ¢(x,y) is a linear poly-
nomial in y satisfying the conditions of Lemma 14, and 50 ¢ (¢

infinitely many primes. ’ #{, gl reprecend

If on the other hand @, = 0, then @, is a polynomial in x,,...,

only which is not identically zero, and we can find a set of integers

@y ..., @ satisfying
* ___ v y .
oy = Xy(modbu) (i = 2,000, Ql‘(wlzky sy w;) # 0,

where X is .the integer point given by Lemma 18 and w is the product
of the coefficients of ¢. Now either the polynomial C(wy, ..., ) of (68)
contains a term in a} or else one of the polynomials Qz,(wl 7.... @p)y e
Qs(wl, ..+, &p) containg a term in 2}, for otherwise every term’of t,he c’ubit;
pa:rt' of qS Wf)llld contain one of the variables a,, ..., @, contrary to the
mJ:mma,hty in the definition of h. We denote by R(x,,..., o) an appro-
priate one of these polynomials, so that R has degree ,d, v;fhere d=2or

3, and the coefficient of m‘f in R is not zero. We ghall show that there:

bm@
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exists an integer %7, with #y = X,(mod6y), such that any prime which
divides both R(a,...,ay) and @ (af,...,a5) (=@l ..., @) also
divides 6u.

On making the substitution

@y = X +-6u2;, mi:m: (6 2= 2,0, B),

R(xy, ..., %) becomes R,(2), a polynomial in 2, of degree d whose leading
coefficient is non-zero and divides 6°u* If p is a prime not dividing 64,
then R, is not identically zero (modp), and so, by a theorem of Lagrange,
Ry (#;) = 0(modyp) for at most d residue classes #, modulo p. Hence, sirce
p >3 > d, there is some integer #; with R,(2;) # 0(modp). By finding
such a #, for each prime p which divides Q. (@, ..., #5) bubt not 6x and
combining these integers z, in the manver of the proof of Lemma 2 we
obtain an integer 2 such that any prime which divides both R;(z}) and
Q,(at, ..., ) also divides 6u. Then af = X,+6us! is an integer with
the properties we require. '

Now x* = X(mod6py), and so it follows from Lemma 18 that the
het. of C(a*), Qi(x), ..., @s(a*) is prime to 6x. Hence, gince this h.c.f.
divides both R(x*) and @,(x*), it must be 1. Thus $(x*, y), considered
ag a linear polynomial in y, satisties the conditions of Lemma 14 and so
represents infinitely many primes.

This completes the proof of Theorem 2 in cage B.

The author is indebted to Professor H. Davenport for suggesting
the problem which is the basis of this work.
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