Bimeasurable functions *
by
R. Purves (London)

1. Introduction. Let / be a real-valued continuous funchion on
the unit interval. We will say that f is bimeasurable if the image under f
of each Borel set in the unit interval is itself a Borel set. Lusin (r21,
p. 178) gave a sufficient condition that the range of a continuous func-
tion defined on a Borel set be Borel: that each value in the range of the
tunction is taken on at most countably many times. This condition is
hereditary, in the sense that if a function satisfies it, so does the re-
striction of the function to any Borel set in its domain. Thus the hypo-
thesis of Lusin’s theorem is sufficient for the function f to be bimeasur-
able.

A slightly weaker condition, also sufficient for bimeasurability,
is that there are at most countably many values in the range of the
function which are taken on uncountably often. What follows is a proof
that this condition is also necessary.

2. Definitions and main theorem. By Borel set is meant a set
in a complete separable metric space which belongs to every sigma-field
containing the open sets. By a Borel function is meant a function whose
domain is a Borel set, which takes its values in some complete separable
metric space and which is Borel measurable in the usual sense. A Borel
function is bimeasurable if the image of every Borel set in its domain
is a Borel set.

Baire space is the product space of all sequences of positive integers,
the integers endowed with the discrete topology. Throughout, this space
will be denoted by J. A non-empty subset of a complete separable met-
ric space is said to be amalytic if it is the range of some continuous
function defined on J. The empty set is taken to be analytic.

TEEOREM. Let f be a Borel function. A necessary ond sufficient con-
dition that f be bimeasurable is that there are at most countably many val-
ues v in the range of f such that {x ¢ domain f| f(#) = v} is uncountable.
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Sufficiency is an immediate consequence of a theorem of Lusin
({2, p- 406). In the proof of necessity given here, it is helpful to have
a relation of “similarity”. Borel functions f, g are said to be similar
if there is a 1-1 Borel function T, whose domain is the domain of f and
whose range is exactly the domain of g, such that for all @,y in the
domain of f, f(z)=f(y) if and only if g(T(a))=g(T ().

Here are two examples of how similar functions bebave alike:

(1) Let f be a bimeasurable Borel function. If f is similar to g, where
g is a Borel function, ¢ is bimeasurable.

Why is this? The similarity of f, g induces a 1-1 Borel function I'*
defined on the range of f and onto the range of g as follows: if v is in
the range of f, T*(v) is ¢(T(x)), where # satisfies f(#) = v. The inverse
image under T'* of a borel set B is

HT g™ @)

and so analytic. The same is true of the complement of E, and by the
famous theorem of Souslin ([2], p. 395), T* is a Borel function. Since
the range of f is a Borel set and T'* is 1-1, the range of g is also Borel
([21, p- 897). If B is a Borel set in the domain of g, f restricted to T™(B)
is similar to g restricted to B. Then ¢(B) is a Borel set, by the above
argument applied to the two restricted functions.

In the next instance, U(f) is the set of those values v in the ramge
of f such that f(v) (= {# e domain f| f(#) = v}) is uncountable.

(ii) Let f be a Borel function such that U(f) is uncountable. If f is
similar to g, where ¢ is a Borel function, U(g) is uncountable.

For in terms of the funetion T'*, v ¢ U(f) implies 7*(v) € U(g), and
U(g) containg an uncountable subset.

Two further properties of similarity which will be used implicitly
throughout the exposition are:

(ili) Similarity is an equivalence relation.

The only difficult part, that it is a symmeiric relation, depends
on one of the first successes of the theory of analytic sets: the inverse
of a 1-1 Borel function is Borel ([2], p. 398).

(iv) If f, g are similar Borel functions, the restriction of g to a Borel
subset of its domain is similar to the restriction of f to a suitable
Borel subset of its domain.

The following three sections are the three steps in the proof of the
“neces-sity” half of the theorem. In the next section this is ghown for
a particular class of continuous functions, and in the final two sections
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a reduction is made to this special case. All three gections begin with
a proposition and the purpose of the section is to establish that pro-
position. With the exception of any lemmas in a seetion, the hypotheses
of the proposition are assumed to be in force throughout the seclion. That
the three propositions constitute a proof of the theorem depends on
a simple argument by contradiction beginning with the assumption that
there is a bimeasurable Borel function f for which U(f) is uncountable.

3. PROPOSITION. Let f be a continuous funciion defined on a Borel
subset G of the Camtor set which satisfies

(i) 17Y(v) is a perfect subset of the Cantor set for all v in the range of 1,

(ii) 7 4s bimeasurable.

Then the range of f is countable.

Proof. In this and the next section, the Cantor set is represented
a8 the space C of all sequences {x:} of 0’s and 1's with the customary
product topology.

Suppose for this paragraph and the mnext, that for each v in the
range of f we have a 1-1 map ¢, from ' (v) onto C such that the over-
all map s,

s(@) =g@sw) when f(z)=0v

is 2 Borel function. Let R be the set of all those # ¢ G which satisfy
(-S‘ (w)); =0

for every positive integer 4. Then E meets every non-empty F(w) in
exactly one point. More than that, the map » which assigns to each v ¢ &
the unique member of R in {y € G| f(y) = f(#)} is a Borel function. As is
eagily seen,

{@e@| r(w)eBy={wed| f(o)=7F(y) for some yleB~ E}.

Ii B is Borel, the right side is apalytic. This implies that r is Borel.
The map
1 m>lr(@),s@), @@,

shows f and the projection to the first coordinate on R x ¢ to be similar.

If R is uncountable, there is a 1-1 Borel function defined on E and
onto the unit interval ([2], p. 538). The same is true of O and the trans-
formation obtained by taking the ordered pair of these two maps and
compoging the result with 7' establishes the gimilarity of f and the pro-
jection to the first coordinate on the unit interval. As is well known,
the latter is not bimeasurable and by contradiction, B is countable.

Tt remains to construct the map s. The mext two definitions and
lemmas are directed toward setting up a tractable function ¢p, which
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for any perfect non-empty subset D of 0, is a homeomorphism between
D and C. The remaining discussion shows that putting the maps together
in the case that the D are the sets f~*{(v) yields an over-all map s, which
is a Borel function.

DEFINITION. Let D be a subset of the Cantor set ¢ and zeD.
A positive integer k is said to be a free coordinaie of @ (with respect to D)
if there is a 4 D such that ys =i, 1 <1<k, and yx 7 o.

Our candidate for gp is the ‘projection’

("171) oy Py we) = (@ 5 Lroy Bioas )

where J, = k%), ks = ko(®), ... ave the free coordinates of @, written in
inereasing order. For this to be well-defined we need the
TeMua 1. Let D be dense-in-itself. Given any ©eD and n a positive
integer, there is an m >n such that m is a free coordinate of .
DErINITION. Let D be dense-in-itself and @ ¢ D. Then

Ly(w) = the least free coordinate of x;
Fsy1(w) = the least free coordinate of © greater than ki(x);

and
op(x) is the sequence y € O satisfying

Y1 = Dryzy 5 i=1727"'

LeMMA 2. If D # 0 is a perfect subset of the Cantor set, pp s & homeo-
morphism from D onto the Cantor set.

Proof of Lemma 2. Let I be theset of all finite sequences (a,, ..., ay)
of 0’ and 1’s. The number 4, of terms in the sequence will be called the
lengih of the sequence. If @ eI, define N(a) to be the neighbourhood

Zelloi=a, 1<0<3}

where § is the length of a. We are going to prove that if d « I of length »
is given, there is an a €I of length m == such that

DAN()#0,
(%) If xe DA~ N(a), kulw)=m,

zeD A N(a) if and only if ¢p(z) e N(d).

The proof is essentially an inductive rule for determining ¢5'(N(d)).

For n =1, let m be the least integer ¢ for which there are z,y in D
such that @ 7 y:. Then there is a w e.D such that wm = d, and every

zeD satisfies @ =u;, 1<<i<m. Set #el to be the sequence of
length m composed of the first m terms of u. Now if © ¢ D, then @ has m
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ag its first free coordinate, and if, further, » ¢ ¥ (#), then pp(x) is in N (d)-
Conversely, if gn(z) e N(d), then

&y = Brya) = B

and d, = Um IMpPly @m = un. We have already shown why ;= u:,
1<i<m, 80 ®eN (). Finally, w e D ~ N(#) so D ~ N () is not empty.

For the inductive step, let ¢ e I of length n+1 be given and d be
the first » terms of ¢. By the inductive hypothesis, there is an a eI of
length m = n such that (+) holds. By the preceding lemma there are
integers 4 such that, for some x,y in D ~ N (a), #; # yi. If § is the least
of these, then j == m-1 > n+1 and there is a % ¢ D ~ N(a) such that
i = Cp41 and every @ eD ~ N(a) satisties o= wi, 1<1<j. Setting
fie I to be the first § terms of u, we know that D ~ N(#) is not empty-

If weD ~ N(a), ku(z) =m. But j is a free coordinate of » greater
than m and is the least such. Thus knii(w) = j. Further, z ¢ D ~ N (a)
implies that the first » coordinates of gn(w) are dy, ..., dn. When 2 e D
nN ('ﬁ):

(991)(00))"4-1 =5 = Uj = Cpt1 .

It @p(®) € N(¢), po(w) e N(d) and xeN(a) ~D. Therefore @:= i,
1<i<q, and knpya(z) =4§. Now .

ntr = (Ppp@)nr1=a; and  us=eny

imply @; = u;. This completes the inductive step.

The last clause of (%) establishes that @p is continuous. Suppose
that » = @p(®) = @p(y). Then if § eI is composed of the first n terms
of v, by (%) applied to d= %, there is an a ¢ I of length at least n such
that both , ¥ belong to D ~ N (a). This holds for every n 5o v=19 and
@p is 1-1. By the first and third clauses of (x), the range of gp is dense
in €, and by the compactness of D, ¢pis a homeomorphism of D onto C.
This completes the proof of the lemma.

We now return to proving the main proposition. The aim is to
show that
when f(z) =7

and D= f~(v)

8 (@) = gp(®)

is a Borel function.
If we can show that
{we @ (s(@)i=1]}
is a Borel set for every 4, we will be done. This set can be expressed
a8 the countable union

U{z € ¢ w;=1}r\{weG| k(@) = §}
i
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and we may concentrate on the measurability of
Ey= {m € GI k;(.’v) = 7}

where ki(z) is the ith free coordinate of # with respect to {y e ¢| f(y)

= f(x)}. Set .
F(i)= {we@ ¢ is a free coordinate of x}.

Then each Fiy is a Boolean combination of sets F(1),..., F(j) and it
suffices to check that the #(i)’s are Borel sets. That is, the set of w ¢ G
such that for some y €@,
fa)=1@); and w@=y;, 1<j<i; and @ F#y;
is Borel. If a eI is a finite sequence of length ¢
F (i) ~ N(a)={@ e G| for some y e @~ N (@), {(y)=f(®)}~N(a)
where & = (ay, @y, ..., -1, 1—a;). The right side is
If6 ~ N @)~ N (a)
which is Borel by the assumed bimeagurability of f. It follows by taking
the union over all & of length ¢ that F(i) is a Borel set.

4, PrROPOSITION. Let g be a continuous funciion defined on the Cantor
set whose range is uncountable and coincides with U(g). There is a Borel
subset G of the Cantor set such that f, the restriction of g to @, satisfies

(i) F~(v) 4s @ perfect subset of the Cantor set for all v in the range of f,
(ii) the range of [ is uncountable.

Proof. The proof of the proposition is given in six steps, the first
being a summary of some known results which will be needed in the
succeeding steps.

1. Let X be a compact metric space and 2% the space of closed,
non-empty subsets of X, endowed with the usual compact metric topol-
ogy ([2], p. 106). Then we have ([3], Sections 38, 39):

{a) {(K,L) <25 x2%| L is a subset of K} is closed in 2% x 2%,
() {@, E) e Xx 25| &K} is closed in X x 2.

{¢) The set P, of all perfect non-empty subsets of X, is a G, in 2%.
Q) If g is continuous, defined on X, the fumction

v —>g~*(v) v eTange
48 Borel. ’ g

2. We are going to use the results of (1) in the special case that
X = 0. Returning to the situation of the proposition, let ¥ be the range
of g, and S be the set of all pairs

(v, E) eV x2°
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with K perfect in O and K a subset of g-2(v). By 1(d) and a familiar
property of measgurable functions, the function

(v, K) "(g_‘('”)’K); (v, K) eVx2°

is Borel. The inverse image under it of the Borel set defined in 1(a) is
therefore Borel. As 8§ is the intersection of this inverse image and ¥V x P,
8 is Borel.

3. As each g~(v) contains a set homeomorphie to C, it is clear that
the projection of S to the v-axis is all of V. The lemma in’'(6) below
shows that S contains a subset D, compact in ¥ x2°, which has an
uncountable projection to the v-axis.

4. Applying a selection theorem ([1], p.135) .D contains a Borel
subset B such that z(B)==(D) and
B,= {K 2 (v, K) ¢ B}

containg exactly one point for all v ew(D). In other words, B is the
graph of a function
v->Q(v)

and since B is Borel, this function is a Borel function ([2], p. 398) de-
fined on z(D) to 2°,
5. Set
H=/{zxe0| g(x) en(D)},
G=|ocH| z<Qg(@)}.
Tt is clear that G ~ ¢—1(v) is empty for all v ¢ #(D). If v en(D)
Grngio)=@(v)

which is a perfect, non-empty, subset of . Once G is shown to be ]?qrel,
then it will follow that G meets all the requirements of the proposition.
Now the function

2->Qg@), oeH,

is a Borel function, so that
a:—>(a:, Q(g(m))), veH,
is also a Borel function. The inverse image under this function of the

Borel set defined in 1(b) is just the set G-

6. Lmvma. Let V, Y be compleie separable metric spaces and 8 .CV x X,
If 8 is analytic and m(S) is uncountabls, there is a D C 8, compact tn VXY
such that (D) is uncountable.
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Proof of Lemma. § is analytic and so is the continuous image
under h (say) of the Baire space J. As =(8) is uncountable and analytic
it contains a subset homeomorphic to the Cantor set ([2], p. 352) and
we can define a probability measure on the Borel subsets of #(S) which
give singletons measure zero. The reasoning of Sion (see the proof of
Theorem 4.2 of [6]) leads to a compact set D, in J with the property
that its image under the composition =(k) has measure at least one-half,
say. Now take D = h(D).

5. ProposITiON. Let f be a Borel function jfor which U(f) is uncount-
able. There is a Borel subset F, of the domain of f, such that f|F is similar
to a continuous function g, defined on the Cantor set, whose range is un-
countable and coincides with U(g).

Proof. 1. The function f is similar to a continuous function defined
on a closed subset of the Baire space J. To show this, let ¥ (V) be a com-
plete separable metric space which includes (resp.) the domain (range)
of f. The graph of f is a Borel subset I' of ¥'xV and therefore can be
represented as the range of a 1-1 continuous function defined on a closed
subset B of J ([2], p.354). Composition of this function with the
projection

(y, v) >, (y,v) e Y XV,

gives us a continuous function defined on E similar to f. The similarity
is provided by the function
z->(z,f(®), ®edomainf,

composed with the inverse ([2], p. 398) of the function whose domain
is B and range is I

By this argument, and (2) of section 2, we may proceed as if the
function f in the proposition is continuous and its domain is a cloged
subset F of J.

2. Now to find a compact set K in J such that U(f|K) is uncount-
able. The method turns on the simple fact that a closed set K in J is
compact if and only if theve is a b eJ so that for all d e K

di<by, i=1,2,8,..

‘We abbreviate the displayed relation by <.

Let 8 be the set of all pairs (v,b) in V'xJ such that j(») and
{y €J| ¥ < b} have an uncountable intersection. The projection of § to
the v-axis is U(f). For if ve U(f), f(v) is an uncountable cloged set.
As such it contains an uncountable compact set and there is b eJ such
that b dominates (in the sense of <) all the members of this compact
set. Then (v, ) e S. The other direction is obvious.

Bimeasurable funciions 157
As will be shown below, § is an analytic set. Applying the lemma
of section 4, there is a compact subset D of § whose projection to the
v-axis is uncountable. The projection of D to the other axis is compact
and so dominated by some by eJ. Claim: if j is vestricted to the com-
pact seb
K={ye|y<b)nE,

U(f|K) is uncountable. For the section of § at b, includes 7(D) and is
precisely the set of v such that (f|K)™*(v) is uncountable.
To shows that § is analytic, set

H={v,b,2)VxJxE| v<b, f(a)=0).
Then H is closed and
8= {(v, b) eV XJ| Heyy is uncountable} .

By a theorem of Sierpixiski and Mazurkiewicz ([2], p. 405) § is analytic.

3. In order to end with a function which takes on all of its values
uncountably often, we select a compact uncountable subset I, of U(f| K)
and restrict f to the set K, = f (L) ~ K. This we can do since U(f| K)
is uncountable and analytic ([2], p. 405). By deleting at most a count-
able number of points from K,, we get a perfect set F. If J is considered
to be the subspace of irrational numbers in the unit interval, F becomes
a compact, perfect, nowhere dense subset of the unit interval. All such
linear sets being homeomorphic ([5], p. 146) we have a homeomorphism
b defined on the Cantor set onto F. Further restriction of f to ¥ gives
a function similar to f(h) defined on the Cantor set satisfying all the
conditions of the proposition of this section.

I wish to thank both David Blackwell and David Freedman for
the encouragement they have so freely given me throughout the writing
of this paper.
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