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The complement of a topology
for some topological groups

by
M. P. Berri (New Orleans, Louisiana)

An unsolved problem concerning the lattice of all topologies for
a given set X ig whether such a lattice is always complemented (). If X is
finite or X iy countably infinite, Hartmanis [2] and Gaifman [1] have
given affirmative answers.

In this paper, we wish to give sufficient conditions for the topology
of a topological group to be complemented in the lattice of all topologies
for a given point set X. As a consequence of thig theorem, we will see
that the real line topology on the set of real numbers is complemented
in the lattice of all topologies on the set of real numbers. Finally, in
the lattice of all topologies on any infinite set X, we shall give a de-
seription of a topology, other than the discrete topology or the trivial
topology, which is always complemented. Furthermore, it will be shown
that the complement for such a topology is not unique.

DEFINITION 1. Let X be a fixed point set and let G be a topology
on X. A topology B’ on X is said to be a complement for B if and only
if the sup topology of B and B’ is the discrete topology and the inf
topology is the trivial topology.

DEFINITION 2. A topological space (X,B) is said o have property (%)
if and only if X has a partition into sets {X,| y ¢ I}, where I is some:
index set such that each X, is countable and for each non-empty proper
subset J of I, | J{X,| y ¢J} is not open in X.

THEOREM 1. If X is an infinite set and if (X, G) possesses property (x)
then 6 has a complement in the lattice of all topologies on X.

Proof. Let {X,| y «I} be a partition on (X, ) satisfying the con-
ditions of property (x). Let B, be the subspace topology on X,. Since
X, is countable, then by [1], B, has a complement in the lattice of all
topologies on X,. Let B, be such a complement. Since each %, is a col-

(1) Added in proof: This problem is now solved. The reader is referred to A. K. Stei-
ner, The topological complementation problem, Bull. Am. Math. Boc. 72 (1966),.
pp. 125—127.
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lection of subsets of X, then {G,] y eI} is a subbase (indeed, a base)
for some topology B on X.

We claim that B’ is a complement of G. We shall first show that
sup (6, ®’) is the discrete topology. Take x ¢ X. It suffices to show that
{z} e sup (6, B'). Now there exists y e I such that o ¢ X,. Since B, is the
complement of B, on X,, then there exist UeT,, V eT, such that
U~V = {z}.Since U €T, then there exists W ¢ G such that U= Wn X,.
By definition of €', 8, 6.

Thus V eG'. Hence W~V eSup(%, T').

But WAV=Wn(X,nV)=(W~nX)nV=Un~nV={z}. Hence
{z} e sup (B, ).

We will next show that inf(T,B’) is the trivial topology. Take
H ¢inf (6, 6'). It suffices to show that H=X or H=0. Let H,=H~ X,.
Since H e, then H,¢T,. Also H,eT, since H ¢B. Thus for each
yel, H,=0 or H=X,. Now

H=HAnX=H~nU{X,| yel}=U{HnX,| yel}=J{H,| yel}.

It for each yel, H,= @, then H =@. So suppose that there exists
some y, el such that H, = X, . Since (X, T) satisfies property (x)
and H is open and non-empty, then H,= X, for all ypeI. Thus
H=\J{X,| yel}=X. Hence inf(B, ') is the trivial topology.

THEOREM 2. Let (X,6) be an infinite topological group and let H be
-dense, non-open, countable subgroup of X. Then (X,6) satisfies prop-
erty (). Hence T is complemented in the lattice of topologies on X.

Proof. Let ¥ = {yH} be a partition of X by distinet left cosets.
Let I = {y e X| yH ¢ F} and let J be a non-empty subset of I such that
K = | J{yH| y eJ} is open. In order to show that (X, B) satisties prop-
erty (), it suffices to prove that J = I, or equivalently, K = X.

So take and fix z ¢ X. Since H is dense in X, then zH is dense in X.
Since K is open and non-empty, then 2H ~ K # @. Hence there exists
Yoed such that 2H ~y,H #@. Thus 2H = y,H. Hence z ey, H C K.
Since 2 is an arbitrary element of X, then X=X. Thus (X, B) satisfies
property (+) and by theorem 1, (X, B) is complemented.

CoroLLARY. If (X, B) is the space of real numbers with the natural
dopology, then G is complemented in the lattice of topologies on the set of
real numbers.

Proof. Since the subspace of rational numbers form a dense, non-
open, countable subgroup of the group (X, ), then by theorem 2, T is
complemented.

The next theorem gives us a recipe for finding a topology on an
infinite set X which is not uniquely complemented. In the description
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of the topology, one can easily see that this topology satisties (x) and
thus is complemented. But this is really no help to prove the non-uni-
quennes of its complement. So we shall actually construct one comple-
ment and modify it slightly to construet another complement.

THROREM 3. If X ds an arbitrary infindte point set, then there exists
a topology on X which has a non-unique complement in the lattice of topol-
ogies on X, namely, the topology

B={AdCX| X—A is finite} w {0} .

Proof. Define a topology 8’ on X in the following way. If 1 is the
cardinal number of X, partition X into A-many countable subsets
{Ys| w € X}. In each set Y, enumerate all the elements and well-order
them naturally in the form #, < , < 4, < ... Denote the ordering on ¥,
by < and put the topology of finite sections on each Y,. Call this
topology Gz. Let B’ be the topology on X with the subbase

U{Ts| @ e X}.

We claim that B iy a complement of B. We shall first show that
sup (G, G') is the diserete topology on X. Take 2 ¢ X. We wish to show
that {2} e sup(B,T'). Now there exists ze X such that ze ¥,. Thus
V= {yeYs| y<z2} is finite and open in ¥'. Since V is finite, then
X—V eB. Hence (X—V)u {z} ¢G. Thus

Y=V A[X~-V)u {g}]esup(B,6).

We shall now prove that inf(G,%’) is the trivial topology on X.
Take V einf(G, ') such that V s£@. We wish to show that V = X.
Since V ¢ B and V 5 @, then for each ¢ X, ¥V ~ V, £ 0. Now take and
fix ¢ X and take 2 ¢ ¥Y;. We wish to show that z e V. Now there exists
wzz € Yo such that ¢ < wy, and we, ¢ V. Since V €6, we have ¥V ~ Yy € Gy
Thus waz eV ~ Yz, Hence {y e ¥u| y <oz} CV. Hence z V.

Thus Yz CV. Since » is arbitrary, we have X = | J{¥,| 2 X}C7V.
Thus inf(8, B’) iy the trivial topology. Hence B’ is a complement of G.

Now another complementary topology 6" for B can be constructed
by simply taking one of the Y,’s above and interchanging the position
of the firgti two elements in the ordering for that ¥, and then defining B’
in the same way that B is defined.-Clearly 8" #G'. ’

Now Hartmanis [2] has stated that if X is a finite set with three
or more elements, then any topology on X which is neither discrete
nor trivial has more than one complement.

Thus wusing this result and theorem 3, we have the following
result.
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TEEOREM 4. If X is a set with three or more elements, then the lattice
of topologies on X is mot distributive.

QuusTION. In the lattice of topologies on an infinite point set X,
does every complemented topology, which is neither discrete nor trivial,
have at least two complements?
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Introduction. In the present paper we are concerned with the
linear functional equation of the first order (cf. [3], [6])

@ olf (@)] = g(@)p(@)+F (@),

where ¢(®) is an unknown function. The values of the functions g(w),
g(x), F(w) lie in the field X of real or complex numbers, # iz a real
variable, and f(») is a real-valued function of a real variable.

We shall consider equation (1) in an interval [a, ). The functions
f(@), g(®) and F(x) will be subjected to the following conditions:

(i) The function f(x) is continuous and sirictly imereasing in [a, b),
a<fl@) <@ in (a,b), f(a) =a.
(i) The function g(x) is continuous in [a,d), g(x) # 0 in [a, b).

(i) The function B (x) is continuous in [a,d).

A theory of continuous solutions of equation (1) has been developed
in [6] under the condition that |g(a)| # 1. The case |g(a)| =1 was left
a8 an indeterminate one. In the present paper we are going to investigate the
behaviour of continuous solutions of equation (1)in this indeterminate case.

The case where g(x) =1 or g{w)=—1 has already been treated
more in detail [1], [2], [7], [8].

It is a characteristic feature of functional equations of type (1) that
in general their solution depends on an arbitrary function (cf. e.g. [5]).
However, the expression ‘“solution depends on an arbitrary function”
is not quite clear and therefore it will be given here a precise meaning.

DEFINITION. We say that equation (1) has in an interval I a con-
tinuous solution depending on an arbirary function, if there exists an
interval J C I such that every continuous function on J can be extended
(not necessarily uniquely) to a continuous solution of equation (1) in I,
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