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number ¢ such that (1) the square dise {(ml., @) € I?: |w1—~z1‘<29’
|y— 2,| << 20} does not intersect K and (2) the interval {; e I: [~ 2|
< 20} is between x(P) and m(Q). Let §; and §, denote respectively

the strips
{(wy, @) e I?: 3,—2p <y <%H—o, 0 \<"'I"2 < %) ’
{(@, @) e I 20 <my <zt+20, 3 <y <1},

Then K ~ 8; and K ~ 8, are closed subsets of I*— ¢ that do not inter-
sect I" and consequently m,(K ~ §;) and m(IK ~ §,) are both of cardinality
less than ¢ Therefore there are points # and v of I such that 2,—2¢
Su<z—o nto<v<z+20 and u does not belong to m(K A &)
and v does not belong to m(K ~ 8;). However {(u,2:): 0 < @, <2} u
Uy, 7)) w <y <)o {(v, @) 2 < 2y <1} I8 an are which separates
P from @ in I? and does not intersect %, which is a contradiction.
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Locally Hamiltonian and planar graphs
by
Z. Skupiein (Krak6w)

1. Introduction. In this paper we consider finite graphs which
contain no loops and no parallel edges. By a graph we mean an ordered
pair <V, B> where V is a finite non-empty set (the set of wertices) and
E is a set of two-element subsets of V (the set of edges). Thus a graph
is a zero- or one-dimensional simplicial complex and sometimes, when
misunderstandings are improbable we will identify it to its topological
realization. By a circuit we mean a graph whose topological realization
is a simple closed curve. A graph is called planar if it has a homeomor-
phism into the two-sphere S

Two vertices #, y ¢ V are called adjacent (neighbours) in G = <V, B>
i {w,y}eE. A graph H=(U,D) is called a subgraph of a graph
G =V, B>, or Gis said to contain H, if UCV and D C B. A subgraph
H of @ is said to be spanned by a set UCV if H= (U, {e: ¢eB and
¢ C U}>. The subgraph of G = <V, ¥) spanned by a set of vertices ad-
jacent to a vertex @ ¢ V, i.e. by the set {y: {@, 4} € B}, is denoted by G (x).

A graph @ is called Hamiltonian if it has a Hamiltonian circuit,
ie. a circuit whose set of vertices is all the set V. @ is called locally
Hamaltonian if for every @ ¢V the graph G(») exists and is Hamiltonian.
Obviously a 1-skeleton of any triangulation of a closed surface is a con-
nected and locally Hamiltonian graph. @ is called a triangulation graph
if it is the 1-gkeleton of a triangulation.

The main theorem of this paper is the following

TuroreM 1. If a connected and locally Hamiltonian graph G has n
vertices, m edges and m <3n—6 then @ is an S triangulation graph.

Remark 1. Clearly the converse implication is also valid and an S2
triangulation graph with n vertices has 3n—6 edges.

Remark 2. Other easy characterizations of the §% triangulation
graphs exist, e.g. such is every connected locally Hamiltonian and planar
graph or every planar graph with n > 4 vertices and 3n—6 edges (the
last assertion and its generalization to the case of other 2-manifolds
follows immediately from [10], pp. 24 and 61); for other characterization,
see [1].
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Theorem 1 and above Remarks yield the following corollary.

COROLLARY 1. A connected and locally Hamiltonian graph having »
vertices has at Teast 3n—6 edges and more than 3n—6 edges if and only if
it is not planar.

This reminds of the classical theorem of Kuratowski [53] (see also [3)
and [4]) which says that a graph s not planar if and only if it contains
topologically Ky or Ky, (K, is the unique graph with n vertices and (Z)
edges and Ky, is a graph with 9 edges and 6 vertices three of which are
adjacent to each of the remaining three). Now numerous characterizations
of planar graphs exist (see [3], [4], [58], [6], [7], [8], [12] and [13];
see also [2], [9] and [11] for methods for determining whether a given
graph is planar).

Pig. la. The graph K Fig. 1b. The graph- K,

Remark 3. The supposition of Theorem 1 and Corollary 1 that
@ be connected is essential since the graph K;+X,, where K; and K,
are disjoint, is non-planar but satisfies the other conditions.

We will also prove an easier auxiliary theorem.

THEOREM 2. If a locally Hamiltonian graph @ = V, B> has no sub-
graph homeomorphic with Kg then for every z ¢V there is a single Hamal-
tonian circuit in @ (z).

Remark 4. The converse implication is not valid since the trian-
gulation graphs of closed surfaces may contain K. In Fig. 3 is shown
a minimal graph ¥ with property that it contains topologically K; and
has a single Hamiltonian circuit of ¥ (x) for every vertex z of F.

Theorem 2 yields the following

CoROLLARY 2. If the graph @ is an 8 triangulation graph, then the
simplicial complew, whose 1-skeleton is G and whose realization is S2, is
uniquely determined,

©
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2. Further definitions and lemmas. Sometimes we will write
we @ if @ is a vertex of the graph @, and H C @ if H is a subgraph of G-

The degree d(2) = d(z, @) of the vertex ¢ in @ is the number of its
neighbours in G-

L1. Each graph containing exzactly n vertices and m < 3n edges has
a vertew of degree < 5.

Clearly, a graph @ containing n vertices of degree
where

> 6 has m edges

m-—’;ZdaﬂG

reQ

>4 6n =3n.

Therefore lemma L1 holds.
The following lemma is obvious:

L2. If for some @ e @ there ewists o Hamiltonian circuit of G{w) then

Az, @) > 3.

Let LH denote the class of connected and locally Hamiltonian
graphs, and let LH(n, m) be the subset of LH consisting of all graphs
with n vertices and m edges. One can easily prove the following lemmas:

L3. If a vertex » is of degree 3 in a graph G ¢ LH with n > 4 veriices,
then each meighbour of x in G has a degree = 4.

Let 4= 4(8) denote the class of 1-gkeletons of triangulations
of 82 Obviously, by Huler’s formula, the following lemma holds.

14. If Gyed then Gy eLH(n,3n—6)

If @i =y for 4,j=0, ...

for some n = 4.
,n, ©#§ and {4,]} # {0,n} we put

P =y, @y ey Tn] = <{mo; @1y eery Tn}y {{wm @1}, {1, %o}, oo {Tp—1, mn}})

Such a graph P is called a path with ends x, and @, if v, # @, and
is a circuit if @y = @, and n > 3. A path P with ends , and @, is de-
noted also by P[w,, #x] or P[&a, 4,]. The length 1(P) of the path (circuit)
P is the number of its edges. A path P = [y, 2] with I(P)=1 is also
called an edge.

A topological realization @& of an abstract planar graph in the two-
sphere 82 is called a plane graph G. The union of all G’s simplexes is
denoted by |@|. Bach component of the set §2\|G| is said to be a face
of the plane graph @ Two faces D; and D, of @ are adjacent if there
exigts an edge P C @ such that |P|C D,~nD, (.

A sum G+ GH of two graphs G = Vi, B> and Gy= Vg, By is
a graph

G+ G= YViu Vo B v By

It &G =(V, B, then (\o will denote a subgraph -of G spanned

by a set V\{z}.
m a closure of D.
13*
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3. Proof of Theorem 2. Let us assume that, for some « € &, there
exist two distinet Hamiltonian circuits H, and H, of G(x). Now there
exists an edge [t, «] such that [¢, ] C H,; and [t, %] G H,. Hence H, is
divided by ¢ and « into two paths Py and P, both with ends ¢ and «
and both of length >1. Therefore there exists in H; an edge [y, 9,] such
that y, € Py, yp € Py and {1, ¥a} ~ {t, } = @. So G contains topologically
a K (Fig. 2), contrary to the supposition.

Fig. 2. The subgraph of &

Fig. 3. The graph F

The following lemma is obvious (see Corollary 2).

Ls. If, for any x, € Gyed, o Hamiltonian ciroust of Gy(w) contains
an edge [y, 44] then Gy has « face whose boundary is the cireutt (%, ,, @y, ©,].

4. Proof of Theorem 1. Since if ¢ e LH then G hag at least 4
vertices, therefore it suffices to prove that if & ¢« LH(n, m), where n > 4
and m < 3n—6, then G < 4. We proceed by induction with respect to n.
If n=4 it is easily seen that @ =K, e4.

Let us assume that the theorem is valid for n > 4. Let G be any
graph of the class LH(n-+1, m), where m < 3(n+1)—6. Let for any
y ¢ @ the symbol H(y) denote some fixed Hamiltonian circuit of G (y).
For the given ¢ we construct an auxiliary graph @, belonging to the
class LH(n, m,), where m, < 3n—6. For any y ¢ G, the symbol Hy(y)
will denote some Hamiltonian circuit of Gy(y).

Let « denote a vertex of & with minimal degree in . By virtue
of L1 and L2, the inequalities 3 < d(2) <5 hold. We consider three
main cases: d(z) =3, 4 or 5.

Case It d(w)=3. Let 6= G\&. Let ¢, v and w be all the neigh-

bours of # in @. Bach ¢f circuits H (), H (u), H(w) containg, by L3, more -

than 3 vertices. Obviously [w, », 4] C H(f). We can put H,(t) = H({t)\o+
+[w, %]. Analogously we can define Hy(u) and H,(w). We can put H,y(y)
= H (y) for any y such that y € G; and y # t, u, w. Therefore @y e LH(n, my),
where m; = m—38 < 8n—6. By the induction hypothesis @ 4. Since
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[w, u] C Hy(t), any plane graph G, has, by L5, a face with boundary
[t, u,w,?]. So it iy easily seen that @ e4.

Case II: d(x) = 4. The subgraph G(z) of G contains 4 vertices and
4, 5 or 6 edges. We consider two cases:

Case IIa: G(x) has 6 edges. Let @, = G\z. There exists H,(z) for
any Z e Gy; e.g. we can put H,(t) = H(t)\e+[x;, #,] for any neighbour ¢
of # in @, where »;, and », denote the neighbours of # in H(f). Therefore
Gy e LH(n, my), where m; = m—4 < 3n— 6, contrary to induction hypo-

.thesis and L4. Thus case ITa is impossible.

Case IIb: G(x) contains 4 or B edges (see Fig. 4, where intermittent
line represents the eventual 5th edge of G(z)).

~ -

~——

Fig. 4. The graph G(x)+ St(z) (3)

Let Gy = G\o--[t, w]. We can prove that @ <LH(n,m,), where
My = m—3 < 3n— 6. In particular we can put H,(t) = H(¢)\e+[u, w, y].
Now, by the induction hypothesis and L5, we have: Gy ¢ 4 and any plane
graph @, has two adjacent faces with boundaries [t, u, w, f] and [, w, ¥, t],
respectively. Therefore @ €.

Case IIL: d(z) = 5. (#(x) contains 5 vertices and 3, 6, 7, 8, 9 or 10
edges. We consider several cases.

Case ITIa: G(z) has 10 or 9 edges. Let K{ denote a complete graph
with & vertices such that G(z) C Kf. Let Gy = G\o+4K;. One can prove
that @ e LH(n, m;), where my < 3n— 6, contrary to the induction hypo-
thesis and L4. Hence case IITa is impossible.

Case ITTb: @(x) contains 8 edges. Let G(w) C Ki. Let Gy = G\o-+ K.
One can prove similarly as before that @ ¢ LH(n, m,), where m; < 3n— 6.
Therefore G, ¢ 4. On the other hand, since K C Gy, Gy is§ non-planar.
This contradietion proves that the case IITb is impossible.

Case IIIc: Q(x) contains T edges and each vertew of G(x) is of degree
less than 4 in G(») (see Fig. b).

(?) St(x) denotes the closed star of x in G.
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Fig. 5. The graph G(@)+ St(w) Fig. 6. The subgraph of G,

Let Gy= G\o4[u,z]+[u,y]. We can show that Gy eLH(n,my),
where m, < 3n—6. Now G, ¢ 4. On the other hand, graph @, contains
topologically K; (see Fig. 6, where the path P = P[t, w] is a subgraph
of H(w) such that the vertices =, 2, y, % ¢ P), contrary to previous con-
clusion. Thus case IXIe is impossible.

Case ITId: G(x) contains 7 edges and there ewists a vertex of degree 4
in G(z) (see Fig. 7). We consider three further cases.

o

0. QW
A.,

Fig. 7. The graph G(x)- St(w)

Case IIId1: [u, @, y] C H(f). Let Gy= G\w-+[u,y]--[u, 2]. One can
prove t]%a,t Gy ed. One can put Hy(u) = H(u)\w+[t,2, y, w]. From this
aa:}d L5 it foﬂqws that any plane graph @; has three faces Dy, D, and Dy
with boundaries [u,?,2,u], [u,2,y,%] and [u,y,w, w], respectively.

gl s‘u‘nd D, as well as D, and D, are adjacent. Now it is easy to see that
€ 4,
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Case II1d2: [z, #, w] C H(Z). In this case we put Gy = G\w+[2, u]+
+[2, w). Analogously as in TITd1 we can show that G 4.

Case IIId3: [u,z,y] & H(f) and [z, ,w] G H(f). Using the same
method as in IIXdLl or as in ITIA2 one can prove that G e 4.

Remark. One can show that the cases ITId1 and ITId2 are im-
possible.

Case IITe: G(x) has 5 or 6 edges (see Fig. 8, where the intermittent
line represents eventual 6th edge of G(z)). Let 6y = G\w+[u, y]+{u, 2]
or G, = G\w+[w, ]+ [w, z]. Analogously as in the previous cases we
can show that G ed.

Fig. 8. The graph & (x)-+ St(w)

A1l possible cases have been examined. Thus Theorem 1 is proved.

This paper contains the main results of my doctoral dissertation.

In conclugion I wish to express my thanks to Professors J. Gorski
and S. Golgb and specially to J. Mycielski for their kind interest and
many valuable advices. .

Added in proof. The first of the propositions mentioned in Remark
2 is proved in [14].
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Inductive compactness as a generalization
of semicompactness *

by
J. de Groot and T. Nishiura ** (Amsterdam and Detroit, Mich.)

1. Introduction. All spaces under discussion are separable met-
rizable spaces.

In [14] L. Zippin introduced the notion of a semicompact space.
Namely, a space is semicompact if each point in the space has arbitrarily
small neighborhoods with compact boundaries. Spaces which are semi-
compact are sometimes called rim compact or peripherally compact.
In 1942, J. de Groot proved that a space is semicompact if and only if
it can be compactified by adding a set of dimension no higher than
zero [2]. This result is implicitly contained in H. Freudenthal’s paper [3].
Freudenthal generalizes his results in [4]. For further generalizations,
see K. Morita [10] and P. 8. Aleksandrov and V. I. Ponomarév [1].
The notion of semicompact space and the above characterization of
such spaces suggest some other concepts. One concept is that of an
“inductive compactness” analogous to inductive dimension. Another
concept is the compactification of a space by adding a set of minimal
dimension. Let us formalize these two concepts.

DEFINITION. INDUCTIVE COMPACTNESS. A space X is said to bhave
compactness —1 if X is compact. A space X is said to have compaciness
less than or equal to m (n > 0) if each point of X has arbitrarily small
neighborhoods whose boundaries have compactness less than or equal
to n—1. We use the notation empX <n. A space X is said to have
compactness equal to oo if cmpX < m is false for each integer n.

DErFINITION. A compact space Y is called an n-compactification of
a space X if X is dense in ¥ and dim(Y\X)=n. By the deficiency

* Some of the results in this paper were proved in a seminar conducted by J. de
Groot at Purdue University in the Spring of 1960. The authors wish to acknowledge
the participants: Professors M. Henriksen, C. Neugebauer, A. Copeland, Jr., R. McDowell,
and Dr. G. Day and Mr. A. Ransom. Helpful contributions were also obtained from
Professors J. Isbell and M. E. Rudin.

** The gecond author was partially supported by the National Science Foun-
dation Grants NSF-G24841 and NSF-GP3834.


GUEST




