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Inductive compactness as a generalization
of semicompactness *

by
J. de Groot and T. Nishiura ** (Amsterdam and Detroit, Mich.)

1. Introduction. All spaces under discussion are separable met-
rizable spaces.

In [14] L. Zippin introduced the notion of a semicompact space.
Namely, a space is semicompact if each point in the space has arbitrarily
small neighborhoods with compact boundaries. Spaces which are semi-
compact are sometimes called rim compact or peripherally compact.
In 1942, J. de Groot proved that a space is semicompact if and only if
it can be compactified by adding a set of dimension no higher than
zero [2]. This result is implicitly contained in H. Freudenthal’s paper [3].
Freudenthal generalizes his results in [4]. For further generalizations,
see K. Morita [10] and P. 8. Aleksandrov and V. I. Ponomarév [1].
The notion of semicompact space and the above characterization of
such spaces suggest some other concepts. One concept is that of an
“inductive compactness” analogous to inductive dimension. Another
concept is the compactification of a space by adding a set of minimal
dimension. Let us formalize these two concepts.

DEFINITION. INDUCTIVE COMPACTNESS. A space X is said to bhave
compactness —1 if X is compact. A space X is said to have compaciness
less than or equal to m (n > 0) if each point of X has arbitrarily small
neighborhoods whose boundaries have compactness less than or equal
to n—1. We use the notation empX <n. A space X is said to have
compactness equal to oo if cmpX < m is false for each integer n.

DErFINITION. A compact space Y is called an n-compactification of
a space X if X is dense in ¥ and dim(Y\X)=n. By the deficiency
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and Dr. G. Day and Mr. A. Ransom. Helpful contributions were also obtained from
Professors J. Isbell and M. E. Rudin.

** The gecond author was partially supported by the National Science Foun-
dation Grants NSF-G24841 and NSF-GP3834.
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of a space X, we mean the least integer » such that X has an #n-com-
pactification. We denote this integer by defX. (Of course, we allow
to be o0.)

Now, we have the following:

MAIN THEOREM. Let % = —1 or 0. Then cmpX < if and only if
deftX < n.

Hence, the main theorem gives an internal necessary and sufficient
condition on a space X so that X can be compactified by adding a set
of dimension at most n, when n=-—1 or 0.

In this paper we investigate the following three questions:

1. Can the above theorem be proved for all # > -—1% That is, does
cmp X give rise to an internal characterization of def X%

2. What properties do emp X and defX possess?

3. What similarities exist between inductive compactness and in-
ductive dimension?

These questions are not answered completely. Special cases of ques-
tion 1 are established in section 2. Since question 1 is not settléd, ques-
tion 2 is of interest and we establish some properties of c¢cmpX and
defX which tend to support an affirmative answer to question 1 in
section 4. Section 3 concerns question 3. Finally, regarding question 1,
we mention that it has been posed in the book by J. Isbell [6] as a re-
search problem.

Throughout the remainder of this paper, we will use A9, 4 and A*

for the interior, closure and boundary of a subset 4 of a space X,
respectively. ,

2. Extension of the main theorem. In this section we give
the status of the extension of the main theorem established for semi-
compact spaces. To this end, we have

T‘]IEOREM. defX = n if and only if cmpX = n provided one of the
following conditions hold:

(a) n<0;

(b) dimX = emp X;

(c) defX <1;

(d) dimX <1;

(e) X is a subset of o two-dimensional manifold;

(f.) X is.an ewtremely disconnected space; i.e., every quasi-component
of X 18 a point.

Part (a) is the main theorem mentioned in the introduction. We will
prove each of the remaining parts separately.
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2.1. Proofs of parts (b), (¢), (d), (e) and (f). Let us first prove
a fundamental inequality.

THEOREM 2.1.1. cmp X < def X < dim X.

Proof. Suppose dimX = n. Then by [5], Theorem V 6, there is
a compact space Y such that dim¥ =n and X is dense in Y. Hence
dim(¥\X) < n. Consequently, defX < dim X.

We prove by induction that defX < n implies empX < 7. The
implication certainly holds for » = —1. Assume the induction proposition
holds for all integers %, —1 <% < m, and let defX <n (—1<n < oo).
Let ¥ be a compactification of X with dim(¥\X)< n. Suppose that
2 eX and U is any neighborhood of # in ¥. Then by [5], B), page 34,
there is a neighborhood V of # in ¥ such that VC U and the boundary
of V in ¥ meets Y\X in a set of dimension <n—1. Therefore the
boundary of V ~ X in X has an m-compactification, m < n—1. By the
induction hypothesis, we conclude that each point of X has arbitrarily
small neighborhoods whose boundaries have inductive compactness less
than or equal to n—1. Hence emp X < n. Thus for all finite n we have
def X < n implies emp X < n. If n = oo then trivially cmp X < co. The
proof of the theorem is now complete.

Remark 2.1.2. One might wonder if each space X has an #-com-
pactification ¥ so that dimX = dim¥ and # = def X. The answer to
this question is in the negative. (See [11] and [6], p. 118.)

TeeoREM 2.1.3. If empX = dim X, then cmp X = def X.

TrroREM 2.1.4. If defX <1 then cmpX = defX.

Proof. If emp X < 0 then by part (a), empX =defX. If empX >1
then 1<cempX <defX <1.

TeEEorEM 2.1.5. If dimX <1 then empX = defX.

THEOREM .2.1.6. If X is a subset of a two-dimensional manifold then
emp X = def X:

Proof. The closure M of X in the manifold is locally compact and
hence. M can be compactified by the addition of at most one point.
Clearly, the dimension of what has been added to X to compactify it
does not exceed one. Hence, by part (c¢), we have emp X = def X.

TeroREM 2.1.7. If X is ewtremely disconnected and 1 < dim X, then
emp X = dim X.

Proof. We prove inductively the following proposition: If X fis
extremely disconnected and dim X =n, then cmpX =n (0> 1).

In [8] A. Lelek has proved that it every quasi-component @ of
a semicompact space X is locally compact and has the dim@ < 0, then
dim X < 0. Consequently, our proposition above is true for m = 1. Sup-
pose that the proposition is true for all integers %, 1 <k < n. Let X be
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an extremely disconnected space with dim.X > n. Then there is a point
zeX and a neighborhood U of # so that every neighborhood V of g
contained in U has dimV* > n~1. Since V* is extremely disconneeted,
we have empV* > n—1. Hence cmpX > n. Thus the induction is com-
pleted.

The theorem is now easily proved.

TrHREOREM 2.1.8. If X is ewiremely disconnected, then cmpX = defX.

Proof. If dim X < 1 then part (¢) implies cmp X = def X. If 1 < dim X
then the preceding theorems implies cmpX = def X.

The proof of the main theorem of section 2 is now complete. For
further examples for which emp X = def X, see succeeding sections.

Remark 2.1.9. The idea of requiring that a point has arbitrarily
small neighborhoods whose boundaries possess a certain property has
been used many times. For example, dimension theory, semicompactness,
regular curves and rational curves ([13], p.82). As we have already
mentioned in the introduction, the notion of semicompact is sometimes
referred to as peripherally compaect or rim compact. The latter two
names are very descriptive. Using the deseriptive word “peripheral’,
we might say instead of dimX < n, peripheral dimension less than or
equal t0 n—1; or instead of regular curve, we might say peripherally
finite curve; or instead of rational curve, we might say peripherally
countable curve. With these examples in mind, we give the following

DEFINITION. The peripheral deficiency of a space X is <n (notation:
p-defX < n) if each point of X has arbitrarily small neighborhoods
whose boundaries have deficiency < n—1.

It is clear that p-def X = 0 if and only if emp X < 0. Theorem 2.1.1
and [5] B), p. 34, imply

TEEOREM 2.1.10. cmp X < p-defX < def X, when def X > 0.
We conjecture that the reverse inequalities hold.

3. Inductive compactness. In this section we examine the
similarities and differences between inductive dimension and inductive
compactness. Most of the remarks, theorems and exarnples are motivated
by known facts about dimension. ‘

3.1. Existence of spaces X with emp X = n. We first consider
the problem of finding spaces whose inductive compactness is n. In [9]

Mazurkiewicz exhibits extremely discormected spaces of every dimension.
Hence, by theorem 2.1.8, we have

THEOREM 3.1.1. There are spaces with inductive compactness n for
every n > —1,

icm°
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We next investigate the values ecmpX taken for subsets X of
Euclidean n-space B". A space X is called fotally imperfect if it contains
no uncountable compact subsets. We first prove

LemMA 3.1.2. If a compact, n-dimensional space X (n < oo) is a union
of two disjoint tolally imperfect sets X, and X,, then emp X, is n or n—1.

Proof. We prove inductively the following proposition: If a com-
pact space X is the union of two disjoint totally imperfect sets X, and X,
and oo > dim X =>n then cmpX; > n—1.

If » <1, then the proposition is obvious. Suppose that the prop-
ogition ig true for all integers %, —1 <k < n, and let X be the union
of two disjoint totally imperfect sets X; and X, with # < dim X < oo.
Since X is compact, by [5] corollary, p. 95, there is a point # ¢ X, and
a neighborhood U of # such that, for any neighborhood V of 2 with
VCU, we have dimV* > n—1. Clearly, V* is compact and V* ~ X,
and V* ~ X, are disjoint totally imperfect sets whose union is V*. Hence
cmp (V* ~ X;) > n— 2. Therefore cmp X, > n—1 (see theorem 3.2.2). The
induction is now complete,

The inequalities 7 = dim X > dim X; > emp X, > n—1 establish the
lemma. ‘

Let 8" = {# ¢ B"*'||z]|=1}. It is known that §" can be written
ag the union of two totally imperfect sets X; and X,. Hence emp X; > n—1.
The following lemma is easily proved. (See theorem 2.1.6.)

LevmA 3.1.3. If X is a subset of an n-dimensional manifold then
defX <n—1.

Consequently, cmpX, = n—1. Since the one-point compactification
of E™ is homeomorphic to 8", we have that B contains a set X so that
cmp X = n—1. Now the following theorem is easily established.

THEOREM 3.1.4. For each k (—1 <k < n—1) there is a subset X of
E* with ecmpX = k. There is no subset X of E" with empX > n.

The examples which have been found so far are quite pathological.
Let us give a few examples which are not so pathological. By the open
ball B in E® we mean the set B = {v e B?|| x| <1}.

ExAMPLE 3.1.5. Suppose that X is the open ball B with an equator
of rational points added on the surface of the ball. Then empX =1
= def X.

ExAMPLE 3.1.6. Suppose that X is the open ball B with an open
“dige” D on the surface and a countable dense set F on the edge of D
Then cmpX = 1= defX. (Note that the space in example 3.1.5 is
a “doubling” of this example about the set F_u D.)

That empX > 1 for either example is easily proved from' theo?em
3.2.1 and example 3.3.1. A relatively complicated construction gives
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a one-compactification for each space. For instance, in example 3.1.6,
one first shows X is homeomorphic to a dense subset Z of Bu Dy ¢
where C is a “Cantor set” on the edge of D. Then it is a matter of form-
ing an upper-semicontinuous decomposition of the closure of Z in B3 go
that the quotient topology on the decomposition yields a one-compacti-
fication. One can easily construct the one-compactification ¥ so that
Y\X is a dense subset of a dendrite. For further examples, see the
examples in the succeeding sections.

3.2. Monotone property. Since every subset of a space of di-
mension —1 is a space of dimension —1, it is easily proved that dimen-
gion is a monotone function. That is, if 4 CX then dimAd < dimX.
It is easy to find spaces with induetive compactness —1 whose subspaces
are not necessarily of inductive compactness —1. Hence a general mono-
tone property is not possible. But it is frue that closed subspaces of
a space with inductive compactness —1 have inductive compactness —1.
Hence we have the following theorem.

TeroREM 3.2.1. If A is a closed subspace of X then cmp A < emp X,

Proof. We prove by induction the following proposition: If A4 is
closed in X and cmpX < n then empA < n. If n=—1 and A is closed
in X then obviously emp.4 < —1. Suppose for all integers &, —1 <% < n,
that the induction proposition is true. Suppose that cmp X < n and 4
is closed in X. Let 2 ¢ 4 and U be any neighborhood in X of #. Then
there is a neighborhood V of # in X so that ecmpV* <n—1 and VC U.
Let B be the boundary in 4 of ¥ ~ 4. Since 4 is closed in X, B is closed
in V* Hence cmpB < n—1. That is cmpAd < n. This concludes the
induction. If n = oo, the proposition is obvious. Thus the theorem is
proved. .

We next prove a theorem which will be useful later. (See [5] A),
P. 27, for the dimension analogue.)

THEOREM 3.2.2. A subspace X' of a space X has inductive compact-
ness <n if and only if every point of X' has arbitrarily small neighborhoods
U in X so that coap(U* A X') <n—1 (n = 0).

Proof. Suppose that cmp X' <n, ¢ X’ and V is a neighborhood
in X of . Then there is a neighborhood W in. X’ of % 8o that the bound-
ary B of W in X' has empB < n—1 and W CV. Since X iy completely
normal, there is a neighborhood U in X of # so that UCV and BD U* A
AnX', U*~ X' and B are closed in X’. Hence emp(U* ~ X') < n—1,
by theorem 3.2.1.

Conversely, suppose that every point of X’ has arbitrarily small
neighborhoods U in X so that cmp(U* A X') < n—1. Let 2 e X’ and V'
be any neighborhood of # in X’. Then there is a neighborhood V in X
80 that V' =V A X'. Hence there is a meighborhood U of # in X 80

icm
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that UCV and emp(U* A X') < n—1. Let U'= U ~ X’. Then U’ CV".
Let B’ be the boundary of U’ in X'. Then B'C U* A X', B’ is closed
in X' and U* A X' is closed in X’'. Hence, by theorem 3.2.1, ecmpB’
< emp(U* ~ X') < n—1. Consequently, empX’<n. The theorem is
now proved.

The next theorem is obvious.

THEOREM 3.2.3. If A is open in X and coap X > 0 then cmp A < emp X.

3.3. Sum theorem. In dimension theory, there are two sum
theorems. Namely,

(A) If X=A UB then dimX < dim A - dim B+1.

(B) If X =\ A: where each Ay is closed in X and dim 4; < n, then
i=1
dim X < n. (See [5].)
We will discuss inductive compactness with these two theorems in mind.
Let us consider theorem (A) first. One might hope to replace di-

mension by inductive compactness. But this cannot be done as the
following example shows.

Examrit 3.3.1. Let D = {z e E?| || < 1}, » be a point in the bound-
ary of D in the plane and X = D u {p}. Then it is easily shown that
emp X = 1 = def X. Clearly, empD =0 and cmp{p} = —1. Hence cmp X
> cmp D+ cmp {p}-+1.

In fact, from theorem 3.2.3, we see that inductive compactness is
not lowered by adding a closed set to a space unless the space is locally
compact. Hence by adding a compact set to a space one cannot lower
inductive compactness by more than one and this can occur only when
the space is locally compact.

From the above discussion we find that the following theorem is
the best sum theorem analogous to theorem (A).

THEOREM 3.3.2. If X = A v B then cmp X < empd+dimB-+1.

Proof. We perform an induction on dimB. If dimB = —1, then
the inequality is valid for all A. Suppose that the inequality is valid
for all X’'= A’ v B’ with dimB' < n. Let X =4 v B and dimB = n.
By [5] B), p. 34, each point # ¢ X has arbitrarily small neighborhood U
50 that dim(U* ~ B) < n—1. Since U* ~ A is closed in 4, theorem 3.2.1
imples cmp(U* ~ 4) < cmpA. Hence emp U* < cup A+ dim B. There-
fore cmp X < emp A--dimB+1, and the induction is completed.

If dimB = co then the inequality is obvious. The theorem is now
proved.

It would be interesting to know what additional conditions on 4
and B will make the analogue of theorem (A) true. For an answer to
this question, see theorem 3.3.4 below.
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Let us next consider theorem (B). Clearly, the inductive compactness
analogue does not hold as a countably infinite space exhibits for # = —1,
Hence one might hope to prove a finite sum theorem. But, this is not
the case as the following example shows.

ExavpLe 3.3.3. Let X be the same as in example 3.3.1. Let
A= {weD|4(20)" = |a—p|=4(2n-+1)7", for some n =1} U {p},
B={2eD|4(@n+1)" =|a—p|= £(2n--2)7", for some n =1} U {p}.

It is easy to show cmp.d == empB =0 and 4 and B are closed. Hence
a finite sum theorem does not hold.

The next theorem gives a positive result. (Note the similarity to
theorem (A).)

THEOREM 3.3.4. If X=A v B and A and B are closed in X, then
crp X < emp A+ emp B-+1.

Proof. The proof is by induction on emp4 and cmpB. If cmpd
= —1= cmp B then the inequality is valid. Suppose that the inequality
is valid if empd =—1 and cmpB <. Let cmpB=mn. If xe¢A\B
then @ has arbitrarily small neighborhoods U such that emp U* = —1
<cmpd+cmpB, since B is closed. If # e B then, by theorem 3.2.2,
there are arbitrarily small neighborhoods U of # so that cmp(U* ~ B)
<n—1. Clearly, emp(U* A A)= —1 = empA. Therefore cmpU*<
< cempd-+cmpB. Hence, if #eX, there are arbitrarily small neigh-
borhoods of # so that cmp U* < emp A+ cmp B. That is, emp X < emp 4+
=+ cmp B+1. Finally, suppose that the inequality is valid for empA’ <n
and cmpB' <m or cmpd’<mn and empB <m and let cmpd =n
and empB = m. If x ¢ A then, by theorem 3.2.2, there are arbitrarily
small neighborhoods U of » such that emp(U* A A) < n—1. Since U*
i closed, emp(U* A B) <'m. Hence cmp U* < cmp A 4-cmp B. By sym-
metry, every point of B has arbitrarily small neighborhoods U such
that cmp U* < emp 4+ emp B. Hence cmp X < emp 4+ cmp B--1. Thus
the induction is completed.

If cmp 4 = co or empB = oo, then the inequality is obvious. Thus
the theorem is proved.

Example 3.3.3 shows that theorem 3.3.4 is best possible. We have
the following obvious corollary.

n
COROLLARY 3.3.5. Let X = U X4, each Xy be closed in X and emyp .y
i=0
= 0. Then empX <. l
In dimension theory, theorems (A) and (B) give rise to the decom-
position theorem. Namely, dim X < # if and only if X is the wunion of
n+1 sets of dimension <0. Corollary 3.3.5 might lead one to believe
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that such a decomposition theorem exists for inductive compactness.
That is, emp X < n if and only if X is the union of n-+1 closed subsets
of inductive compactness < 0. This is not true as the following example
shows.

Exampre 3.3.6. Let @ be the set of rational numbers and B be
the set of real numbers. Then X = @ xR has inductive compactness
one. It X= A v B, where 4 and B are closed, then either cmp 4 or
cmp B is one. Hence a decomposition theorem does not hold.

Next, we find a sufficient condition for the analogue of theorem (B)
to hold. We first give two lemmas, the first of which is obvious.

Lemma 3.8.7. If A and B are separated then cmp(4 v B) =
max{cmp 4, cmp B}.

Lemma 3.3.8. If A is compact and B is closed in X = A v B, then
cmp X = cmp B.

Proof. Since B is closed in X, cmp X > emp B. The reverse inequality
follows from theorem 3.3.4.

Since a finite sum theorem holds for inductive compactness —1,

we take the added condition that the intersection of two distinet sets
in the sum be compact. Then we have

THEOREM 3.3.9. Suppose X = A B where A and B are closed and
A B is compact. If cmp A <n and empB <n then cmp X < n.

Proof. Since 4 and B are closed and cmpd <n and empB <,
we have, by lemma 3.3.7, that cmp(X\A ~B)<n and X\4 ~ B is
open. Let @ ¢ A ~ B and U be a neighborhood of #. Then by theorem 3.2.2,
there is a neighborhood V, of z such that cmp(Vi~ 4)<n—1 and
V,CU. Applying the same theorem again, we find a neighborhood ¥,
of @ such that V,CV, and emp(V} ~ B) <n—1. Let W=7, u (V,\B).
Clearly, W is a neighborhood of # and WC U. It is easily seen that
WeC (VA A4)u(4nB) u(VinB) =X. By lemma 3.3.7, crap[(V} ~
~ 4) v (V¥ n B)] < n—1. Hence, by lemma 3.3.8, we have cmp X’ < n—1.
W* is closed in X’ and hence empW*<n—1. Therefore cmpX < n.
The proof of the theorem is now complete.

The following two lemmas are easily proved.

Lemyma 3.3.10. Let U= {U} be a family of subsets of X such that
emp U < n(n=0)for all UeWand X =J{0°U eW). Then cmp X < n.
Lemyma 3.311. If X = 0 Aq, where each A¢ is locally compact and
1
closed, then X is locally compact.

With the aid of the above two lemmas, theorems 3.2.1, 3.2.3 and
3.3.9, we derive the following slight generalization of theorem 3.3.9.
Fundamenta Mathematicae, T. LVIII ) 14
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‘THEEOREM 3.3.12. Suppose X = U A1 where each Aq is closed and

Ag~ Ay is locally compact, (@ #.§. If ecmpd; <, ’L—-l sy My then
cmp X < n. :

Since locally compact spaces have induective compactness. <0, one
might hope to replace local compactness of the intersection by induetive
compactness < 0. This is not possible as the following ekample shows,

Exavere 3.3.13. Let X, A and B be as in example 3.3.3. There,
cmpA ~B=0 and 4 ~ B is not locally compact.

But we do have

TrroREM 3.3.14. If A and B are closed in -4 v B; ¢cmpd <mn,
empB <n and cmp A ~ B <m then cmpd v B<n+m-+1.

The proof of the above theorem follows easily from.theorems 3.2.2,
3.8.9 and induetion on m. Obviously, theorem 3.3.14 implies theorem 3.3.4.
Finally, let us remark that the finite union in theorems 3.3.12 and 8.3.14
can bé replaced by a union of a locally finite collection. .

3.4. Produet theorem. In dimension theory we have the produect
theorem dimA xB < dim.A+dimB, where 4 or B iy not void. The
inductive compactness analogue of the product theorem is false as wit-
nessed by example 3.3:6. We. give in. this section some positive relatlon-
ships using both dimension and inductive compactness.

First we discuss the effect of the “doubling” process on mducmve
compactness ‘ :

DEFINITION 3.4.1. Let A be 2 nonempty . closed subset of X and E1
be the real line. By the double of X modulo A we mean the subspace
of X xXE* defined as follows:

X, A]={fe, mA)]m;x}u{(w,_d'w A))|w e X},

where d is a metric on X and d(m A) is the usual dlstance ﬁom a, point
o to a set A.

Levma 3.4.2. Let A be a nonemply closed subset of X. Then cme
=cmp[X, 41

Proof. Since X is homeomorphic to the closed subset {(w d(w, 4))|
zeX} of [X,A] we have cmp[X, A]> cmp X, We prove ‘the reverse
inequality by induection.

If ecmmp X = ~1 then clearly emp[X, 4] = —1. Assume for n > —1
that whenever A’ is a nonempty closed subset of X' with cmpX’' < n
we have emp[X', A7 < n (n< co). Let A be a nonempty closed subset
of X' where ecmp X < n. I (%, 7) e [X, A] and 7 # 0 then one can easily
find arbitrarily small neighborhoods. of (%, 7) whose. boundaries have
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inductive compactness <n—1. Consider (#,0) e[X, A]. There are arbi-
tra,nly small neighborhoods U of % in X with cmp U* < n—1. Clearly,
={(z, d(z, A))|x e U} v {{&, —d(=, 4))|e « U} is a neighborhood of (%, 0)
in [X, A] with boundary B= B, u B_, where B, = {, d(z, A))|we (24
and B_={(z,—d(w, A))|ocU*. It A~ U*=0 then B, ~B. = 0.
Since B, and B_ are closed and hence separated, emp B < n—1. If
AAU* %@ then [U* A~ U*] is homeomorphic to B. Hence empR
< n—1. Therefore emp[X, A]J<n. The case %= oo is obvious. The
proof of the lemma is now completed.
‘We are now able to prove
THEOREM 34.3. (1) If n>1 then cnp A xE"* < emp A+ n.
2) If B is a closed subset of B" then cmp A xB < emp 4 +n.
( If B is a compact space then cmp A XB < cmp 4 +2dimB-+1.
(4) If AimB =0 and B is compact then cmp A xB < crap A.
(5) If empA <0 and B is a locally compact space then cmp.d xB
< dim B.

Proof. Part (1) is obvious for n =1 by lemma 3.4.2. By induction
we have (1) for all » > 1. Part (2) follows from (1) since 4 xB is closed
in AXE". Since each compact space of dimension n (n < co) can be
embedded in B***, [5] Theorem V5, we have (3) from (2). Part (4) fol-

lows from induction on cmpd. Finally, part (5) follows from theorem
4.4.1 below.

3.5. Separation properties. In inductive dimension one can
define a dimension in terms of separation properties, [5] p. 84. Namely,
a space has dimension —1 if it is empty. A space has dimension <n if
every pair of disjoint closed sets can be separated by a closed set of
dimension < n—1. We use DimX < » for this definition. It is well
known that dimX = Dim X. (Note: We are dealing only with separable
metrizable spaces.) In this section we will analogously define inductive
compactness using sepa,ratlon properties.

We firgt discuss the case —1 < n < 0. If cmp X < 0, then one mlght
hope that every pair of disjoint closed subsets A and B of X can be
separated by a closed set O where emp U = —1. That is, € is a compact
set such that X\0= X; v X,, X, and X, are disjoint and open and
A CX, and BCX,. That such a separation can be made for all X with
empX < 0 is easily seen to be false by considering the example of an
open dise in the plane. But such a separation can almost be made as
the following theorem illustrates.

THEOREM 3.5.1. If cmpX < 0, 4 and B are disjoint closed subsets
of X then there is a closed locally compact subset O of X which separates
A and B.

14*
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Proof. If empX = —1 then O is easily found. Suppose emp X = 0.
Then defX = 0. Let ¥ be & 0-compactification of X. Then 4 and B
are separated sets in Y. The common part of the closures A and Bin ¥
is a clogsed subset of ¥\X. Call this closed subset D and let Z = ¥Y\D.
I M = Z\X then dimM < 0. By [5] B), p. 34, there is a closed set ¢
which separates 4 and B in Z and O~ M =@. Hence C i8 a closed
locally compact subset of X which separates 4 and B in X. The theorem
is now proved.

Encouraged by the previous theorem, we define a ‘“‘separation com-
pactness”, called CmpX.

‘DEPINITION 3.5.2. A space X has OmpX = 0 if and only if ecmpX

<0. For n>1, a space X has CmpX < n if and only if every closed
subset of X has arbitrarily smfull neighborhoods whose boundaries have
Cmp < n—1.

The nontrivial part of the following theorem is proved essentially
in the same manner as theorem 2.1.1.

THEOREM 3.5.3. For defX >0, cmpX < Cmp X < def X,

Since it is not known whether empX = defX, an intermediate
problem would be to prove some of the above inequalities are equalities.

The corresponding Cmp analogues of theorems 3.2.1, 3.2.2 and 3.3.2
are valid. With the aid of the following two lemmas, one can establish
the Cmyp analogue of theorem 3.3.12.

LeMMA 3.5.4. Suppose that X' is a subspace of X and A and B are
disjoint closed subsets of X. Then there is a closed set O in X which sepa-
rates A and B such that

(i) O ~ X’ i3 locally compact if Cmp X' = 0,

(i) Cmp(C~ X') <CmpX'—1 if Cmp X' > 0.

LeMMA 3.5.5. If A ds locally compact and closed and B 4s closed then
Cmp (4 v B) =CmpB.

The Cmp analogue of theorem 3.3.12 can then be used to prove
the Cmp analogue of theorem 3.3.14, which, of course, implies the Cmp
analogue of theorem 3.3.4. See section 4.5 for similarities between the
definition of Cmp X and the separation properties of defX.

4. The deficiency of a space. In this section we investigate
properties of defX. We will divide our investigation into subsections
which correspond to the subsections of section 3. In general the theorems
concerning cmpX are true for defX. The proofs in many cases are quite
different. The results in this -section, in general, support the vahdwy
of the equality between emp X and defX. -
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4.1. Existence of spaces X with defX — n. The problem of
existence is easily settled by the discussion of section 3.1 and the main
theorem of section 2. We consider here the problem of finding relatively
simple examples for which defX = n.

Let I and J be respectively the closed and open unit intervals in
the real line, I" and J" be their n-fold Cartesian products. Let X,

= (I xI")\({1} xJ™), n > 1. Then we have the following theorem. (See [6],
p. 121.)
THEOREM 4.1.1. defX, =n, n >=1.

Proof. Since the proof for the case n = 2 is typical, we will only
prove this case. It is easily seen that

X =X, =([0,1)x[0,1]x[0,1]) v ({1} x 8,
where 8= {0,1} % [0,1]w[0,1]x {0,1}

is clearly a one sphere. For convenience, let D = X\{1} x8'. By lemma
3.1.3, we have defX < 2. Let ¥ be an n-compactification of X. Suppose
n < 2. Then Y\D = (¥\X) v ({1} x8Y) has dimension equal to one and
D is a dense open set in ¥. Since dim(¥\D) = 1, the identity mapping
f of {1} x8* onto S* can be extended to a mapping g of Y\D onto &, [5]
Theorem V14. Let % be the obvious extension of f on {1} x §* to [0, 1] x 8t
Then k and g give a mapping % of (¥\D) u ([0,1] x8). Since St is an
absolute neighborhood retract, there is a meighborhood U of (Y\D) v
v ([0,1]x8") and a mapping.j of U into §' which extends %. Now,
pL<)1 ([0, p1 xI xI) = D. Consequently, there is p € J 50 that {p} xI xI C U.

Hence § maps {p} xI xI onto S* and is the identity mapping on {p} xS
This, of course, is not possible by [5] A), p. 97. Hence for every n-com-
pactification ¥ of X, we have » > 2. The theorem is now proved.

It iy easily shown that empX; = 1. It can be proved with some
effort that cmpX, = 2. For » > 2, it is not known whether cmp X, = n.

4.2, Monotone property. In this section we show that theorems
3.2.1 and 3.2.3 have their analogues in terms of defX.

THEORBM 4.2.1. If A s o closed subspace of X then defd < defX.

Proof. Let ¥ be an n-compactification of X where n = defX.
Let Z be the closure of A in Y. Since 4 is closed in X, we have Z\A
CY\X. Hence defd < dim(Z\4) < dim(¥\X) = defX.

THEOREM 4.2.2. If A is open in X and defX = 0 then defd < defX.

Proof. Suppose that defd >—1 and let ¥ be an n-compactifi-
cation of X where n = defX. Let U be an open set in ¥ such that
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X AU=A. Since U is locally compact, let Z be the one-point com-
pactification of U. Then -

Z\A = (Z\U) v (O\A) = (Z\U) v (U\X ~ U) = (Z\U) v [(Y\X)~ T],

where Z\U is o one-point set. Hence defd < dim(Z\4) < dim(¥\X)
= def X.

Finally, we prove

THEOREM 4.2.3. If ACX then defd < def X+ dim(X\A)+1.

Proof. Let ¥ be an n-compactification where n = defX. Suppose
that B is the closure of 4 in Y. Then B\4 = [(B\4) ~n (Y\X)] v [(B\4) ~
A (X\A)]. Hence defd <dim(B\4)<dim(Y\X)+ dim (X \4)+41
< def X -+ dim (X \ 4) 4-1.

Remark 4.2.4. The last theorem gives an upper bound for the
deficiency of a subspace in terms of the deficiency of the space and the
dimension of its complement. This theorem can be improved for spaces
which ‘are locally compact. Namely, the deficiency of a: proper subspace
of a locally compact space does not exceed the dimension of its com-
plement. The first two theorems give conditions which insure that the
deficiency of a subspace does mot exceed the deficiency of the space:

4.3. Sum theorems. In section 3.3 two sum theorems are proved.
The closest analogue to theorem 3.3.2 has been proved in section 4.2
as theorem 4.2.3. We devote this section to proving the following anal-
ogue of theorem 3.3.12.

THEOREM 4.3.1. Suppose that X = U A; where each  A; is olosed

in X and A¢ ~ A; is locally compact for ¢ ;& 9 Ifdefdi<nfori=1,.., m,
then defX <.

The theorem will follow from induction if we éstablish the case
m = 2. To prove this theorem we first dlscuss deomt topological sum
of two spaces. :

Suppose that A and B are closed in X = 4 v B. Consider the dls~
joint topological sum A+4B of A and B. That is, A+B=4x{0}v
v Bx{1}. There is a natural projection map P from A-4B onto

= A u B defined by P(z,t) = @. Clearly, P ig continuous and closed.
Hence the topology on X is the quotient topology on X relative to the
map P ([7] theorem 3.8). Also P~*(») is finite for each # e X. We next
prove the following lemma.

Lemma 4.3.2. Suppose that A C X and A is loaally compact and olosed
in X. Then there is an n-compactification ¥ of X such that n = defX
and if B s the closure of A in Y then B\A is empty or a one-point subsei
of Y\X according as A is compact or not.
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Proof. If 4 is compact then A is closed in any "coinpactification
of X. Hence we suppose that 4 is not compact and let Z be an n-com-
pactxﬁeatlon of X where n = defX. Since 4 is closed in X, O\4 C Z\X
where C is the closure of 4 in Z. D= O\4 is a nonempty compact sub-
seb of Z since A is locally compact and not compact. Let ¥ be the space
obtained from Z by identifying the compact set D and giving Y the
quotient topology. Since the decomposition is upper-semicontinuous,
Y is a metrizable compactification of X ([7] theorem 5.20). Further-
more, defX < dim(¥\X) < dim(Z\X) = defX. Hence Y is an n-com-
pactification of X where n= defX¥ and if B is the closure of 4 in ¥
then B\4 is a one-point subset of ¥\X. Thus the lemma is proved.

We now proceed to the proof of theorem 4.3.1. et X =A U B
where A and B are closed and 4 ~ B is locally compact. By lemma 4.3.2
above, there is an n-compactification 4 of 4 such that n — defd and
if (4 is the closure of 0 =4 ~ B in 4 then C,\C is empty or a one-
point subset of A4 according as C is comnpact or not. Similarly, for B,
there is an m- compaetlﬁeamon B such that m = detB and if Oz is the
closure of ¢ in B then Ox\C is empty or a oneé-point subset of B\B
according as C is compact or not. Clearly, C4 and Cp are homeomorphie
in a natural manner. We assume that ¢ is not compact sinece the com-
pact- case is a simple modification of the non-compact case. Since -Gy
and- Cp. are- homeomorphic in a natural manner, let us consider C\C
and Cp\C to be the same one-point set, say {oo}.

-Consider the disjoint topological sum A-+B of 4 and B. A+B has
A+B as a dense subspace. There is a natural projection map P from
A--B onto ‘:ohe Nset fﬂy: ﬁi v B. Each member of the decomposition
{P(@)|we A © B} of A+B is a compact subset of A+B. Let us show
this decomposition is upper-semlconmnuous Suppose that U,+U, is
ah open mneighborhood of P~ (w It o ¢ A\B then UNA ~ B is an open
neighborhood of # in A since ) mB is a compact subset of A. Hence

Pz C P UN\A ~AB)y=(U\L ~ B)-+@.C U,+U,. By symmetry, we
have the case o e B\A4. Suppose. we L AB. Then Ui~ A B, i=1,2,
are Open I neighborhoods of  in A ~B. I£W;is the closure of Uy ~n A ~ B
in £~ B then W¢ is a compact subseb of A~B i=1,2. _Clearly,
W=TU,~nUsnA~B is an opeh neighborhood of » in 4 ~ B, Hence
Vi= WAW is-a compact. subset of 4 ~B and @ ¢ Vi, =1, 2. Conse-
quently, U\V; is an open neighborhood of #in A and U,\V, is an-open
neighborhood of # in B: If o' e U\Vy then P™(z') C (UAVL)+(Ua\Vy)
C U,+U,. Thus ;we conclude that the decomposition is upper-semicon-
tinuous. Consequen‘nly, P gives a closed_continuous mapping from the
compact metrizable: space’ A +B onto X = LB ([7] theorem 3.12).
Therefore, the quotient topology on X relative to the map P is compact
and metrizable ([7] theofem 5.20).. '
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Clearly, P|(A+B) is a continuous mapping from A+ B onto the
subset X = 4 v B with the relative topology induced by X. Let us
show that this relative topology on X is the original metric topology
on X. To this end, we show that P[{(4+B) is a closed mapping from
A 1B. Let F be a set closed in 4+B and B be the closure of F in 4+ 5.
Then P(E)= P(E\F)u P(¥). Since P4 uB)=A+B and E\F
C (A4 B)\(4+B), we have P(E\F) ~ (A w B) = (. Hence

(P|A+B)(F) = P(F) = P(F) ~ (AuB)=P(B)~ (4w B).
Sinece P is closed, we have that (P|4+4B)(F) is closed in A w B. Thus

P|(4+B) is closed.
Finally,

I\X = PUA+B\4+B)] = P{[A+B\[(4 © {co})+ O]} v
w P{[@+BN\G+ (B U {co})]} w P(co+00).

The first two sets in the last union are separated and homeomorphic
to A\(4A U {co}) and B\(B u {co}), respectively. Hence

def X < dim(X\X) = max {dim (4\4), dim(B\B)} = max {def 4, defB}.

That is, if X is the union of two closed sets whose intersection is locally
compact and the deficiency of each set is <n then defX < n. Thus
theorem 4.3.1 iz proved.

It is not known whether the deficiency analogue of theorem 3.3.14
is true.

4.4. Product theorem. The product theorem for deficiency in
this section seems to be the first serious deviation from the close simil-
arity between inductive compactness and deficiency. That is, we get
a stronger inequality for deficiency.

THEOREM 4.4.1. Suppose that B is a locally compact space. Then

(1) #f A s locally compact then defd xB < 0;

(2)-if A is not compact then

def A xB < defA+dimB.

Proof. Part (1): This is obvious since A XB is locally compact.
Part (2): Suppose B #@J. Let X be an mn-compactification of A
where n = defA. Then X xB is locally compact and

0 < dim (X x B\A x B) = dim ((X\4) x B

< dim(X\4)+ dim B = def A 4 dim B.
Hence
def A XxB < def A J+-dimB.

o
=
-1

Inductive compactness

Remark 4.4.2. The deficiency analogue of lemma 3.4.2 holds.

In section 2.1, the notion of peripheral deficiency was introduced.
It is not difficult to show the analogues of theorem 4.2.1, 4.2.2, 4.2.3
and 4.3.1 hold for peripheral deficiency.

For further applications of deficiency, see {12].

4.5. Separation properties. In this section we find that defX
has the same properties that the definition of CmpX possesses. Also,
defX and CmpX have a monotone property and the finite sum theo-
rems in common.

We have

THEOREM 4.5.1. Let A and B be two disjoint closed subsets of X.

(1) If defX < 0 then there is a closed locally compact subset C of X
which separates A and B.

(2) If def X > O then there 18 a closed subset O of X which separates
A and B and defC < defX—1.

Proof. Part (1) follows from theorem 3.5.1, since defX < 0 if and
only if emp X < 0.

To prove part (2), let ¥ be an n-compactification of X where
n = def X. Then by [5] B), p. 34, there is a closed set D in ¥ which
separates 4 and B and dim{D ~ (¥\X)) < n—1. Let 0 = X ~ D. Then
defC <n—1 < def X. Thus the theorem is proved.
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§ 1. Introduction. Let I'= (L, v, n,0,1) denote a distributive
lattice. I' is called Brouwerian (see [4]) if there is an operation a—b
(called pseudo-difference) such thatb

{a—bCo) =[aC(bwe)]. ) .

- We .shall consider in this paper the following three algebraic (struc-

tural) properties of lattices: ) ) ‘
1. The property of being Wallman, which means- that:

. (a ¢ b) = there is @ such that (0 #dCa)(bAd=10).
: v2. .‘The regﬁlarity of I': ‘ . . ‘

(2) (a @ b)=there are ¢ and d such that (¢ d=1)(age)(bnd=0).

) :_ '2...,'1‘.he_ normality of I'. . C L ) 2

(3) ‘(a}\b= 0) = there are ¢ andﬂd such that (cwd=1) (wnc,zo =b~d) .
Remark. It is easy to see that assuming the lattice to be Brou-

werian one can replace the formulas (2) and (3) by the following:

@) . . (agDb)=there is d such that b d =0 and adl—d,.

(8") (@ ~b=0)=there is d such that b~d=0 and an(1—d)=0%
The three above defined properties of T have algebraic aspect (they

have been defined without introducing any topology in I'). Nevertheless,

they origin is topological.. In fact, in order-that the _lafi':t:icev_zx of closed
subsets .of a topological space X. be structurally regular (resp. normal)

it is necessary and sufficient that the space X Dbe Iegula§ (resp. ii_b_rmall)_i
in the usual topological sense. If X is a G.-space, then 2% is structurally

‘Wallman. (the ¢onverse is nob true).
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