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Two theorems on the generation of systems of functions
by
Karl Menger and H. Ian Whitlock (Chicago) *

This paper deals with two basic questions about multiplace func-
tions (“functions of several variables”) defined on a finite set N
= {1, ..., m}. How many functions can k functions generate by com-
position, and how many functions are needed to generate by compo-
sition all p-place functions?

The essential feature of the paper is its algebraic approach to the
subject matter in contrast to the traditional treatment of functions in
logic (*). Consider e.g. the functions over N,. By composition, the two
basic logical functions, negation and disjunction, do not generate more
than eight functions, namely, the four 1-place funetions, four of the
sixteen 2-place functions and none of the higherplace functions (see
Example 2). All that Sheffer’s stroke (herein denoted by a frontal A)
generates are four of the 2-place functions. The traditional statement
that A (z,y) also generates e.g. the 1-place negation #(x) is based on
the fact that n(x) = 4(x, x). But in so saying one substitutes x for ¥;
and similarly one substitutes 4 (y,z) for y in saying that A(x,y) ge-
nerates 4 (x, A(y, z)). Substitution of an expression for a variable, how-
ever, is not the composition of functions. Nor is it possible to obtain
any 1-place of 3-place function from 4 by compositions.

From our strietly algebraic point of view, we prove that the max-
imum number of functions that k functions can generate depends
upon k but (except for trivial limitations) is independent of the place-
numbers of the functions (Corollary 2 of Theorem I). At least p func-
tions are mnecessary (Corollary 3 of Theorem I), and p properly chosen
functions are sufficient (Theorem II), to generate all p-place functions
for p > 1 with one important exception: the 2-place functions over N,.
Thus while three functions are needed to generate all the 2-place func-

* Theorem I and its Corollaries are due to the first author, Theorem II is the
work of the second.

(*} Another algebraic approach to the study of multiplace functions is the Mar-
czewski abstract algebra which, however, stresses the domains of the functions rather
than their composition.
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tions of the 2-valued logic, only two functions are necessary for all
other finite-valued logics; and three functions are sufficient to generate
all 3-place functions of the 2-valued as well as of all other finite-
valued logics.

Let S be a set, and p a natural number. By a p-place function
over S we mean (%) a mapping of S” (the set of all ordered p-tuples of
elements of 8) into S. In other words, a p-place function over 8 is a set
of pairs (T,s) containing, for each ordered p-tuple T of elements of §
exactly one pair where s is an element of 8. If the p-place function is
denoted by F, and (T, s) belongs to F, then we write, as is customary,
§ = F(T). The set of all elements of S that are second members of pairs
(T, s) belonging to F is called the range of F—briefly, ranF.

If F is a p-place function over 8, and Fy, ..., Fy are q-place func-
tions over S for some natural number q, then F(Fy, ..., Fp) will denote
the g-place function consisting of the pairs (U, F(Fy(U), ..., Fy(T)))
for all elements U of S¢. This q-place function is said to be the result
of the composition of F with Fy,...,Fp or of the application of F to
Py, ..., Fp or of the substitution of F, ..., ¥y, into F. (Even in the case
p = 1, substitution of a function F, into F hag of course nothing what-
ever to do with the substitution of ¥, for F in the sense of replacing
F by F, or y by x). Clearly,

ranF(Fy, ..., Fp) Cranl.

The main property of the operation just defined is what we have called
superassoctativity ():

(-F(-FJ.! ey FD))(GU ey GQ) = F( 1(G1a S} Gq); ---:Fn(au sy Gq))

for any p-place function ¥, any q-place functions Fi, ..., Fp, and any
functions @, ..., &y of one and the same place-number—all of them
over S.

If G is a set of functions over 8 (not necessarily of the same place-
number), then the smallest set of functions containing G (as a subset)
that is closed under substitution will be called the set gemerated by G
and denoted by ©G. Thus SG is the sgmallest set including 1) G as
a subset, and 2) the function F(#,, ...,Fp) if the p-place function ¥

() Cf. H. I. Whitloek [7]. It will be noted that we herein adhere to the typo-
graphical convention introduced by the senior author of this paper: All references
to functions are in italic type (e.g., F, 4, I, O, n, deg, Mazx); all references to numbers
and to elements of the domains and ranges of functions are in lower case roman type
(e.g., », 8 X, y); sets of numbers or subsets of domains and ranges are denoted by
capital letters in roman type (e.g., 8, T); sets of functions in bold face (e.g., G, F).

(?) Cf. K. Menger [3] and the bibliography in that paper.
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and the functions F,,..,F, having one and the same place-number
belong to the. set. Clearly, each function in ©G must have the same
place-number as one of the functions in G. A set of functions will be
called homogeneous if all its elements have the same place-number.
If G is homogeneous, then so is GG.

ExamerE 1. If 8§ = {0, 1}, consider the homogeneous set G = {4, I}
where I is the first 2-place selector assuming the value I (x,y)=x for
every pair (x,y) in S%, and 4 is incompatibility, for which 4(0,0)
=4(0,1)=A4(1,0)=1 and A(1,1)=0. The set S{I, A} consists of
the eight functions I, 4,4'=A4(4,4), I' = A(I,I), C= A(I, 4),
0'=A4(0,0), I=4(4,4') and "= 0= A(1, 1). Here, C is the im-
plication, for which 0€(0,0)= ((0,1)= C(1,1)=1 and C(1,0)=0;
1 is the constant 2-place function of value 1, for which I(x,y)=1 for
every (x,y) in 8% and F'(x,y) = 1—F(x, y) for each (x,y) in 32, where
F=A4,1I,0,1 The function 4’, for which 4'(x,y) = Min(x,y) is the
conjunction; and 0 is the other constant function.

Examrre 2. If 8 = {0,1}, consider the nonhomogeneous set {n, B},
where. n is the 1-place function for which n(x) =1—x for x=0,1,
and B is the disjunction, for which B(x,y) = Maz(x,y). Setting nB
= B’ and nn =4 one readily verifies that

Sim}={n,i}, GB}={B}, ©B ={B,B,1,0,
and &{n,B}={n,j,0,%,B,B,1,0}.
Here, 0 = B'(n, §) = 0(n, n) and 4 = B’(0, 0) = no are the constant 1- place
functions over 8, and j is the identity function over {0, 1}, for which
i(x)=x for x=0,1.

REMARK 1. For every p-place function F in SG— G, there is, for some
natural number q, @ q-place function, G, in G, and p-place functions
Fyy .oy Py in SG such that F = G(Fy, ..., Fy).

If G is given we first associate, with some elements F of GG, a nat-
ural number, called the degree of F relative to G. We get deg(F, G) =1
if and only if F belongs to G. If the elements of degree <n are defined,
let 7 be a p-place function such that deg(F, G) is not <n. We set
deg(F, G) = n-+1 if there exist 1) a function in G, say a q-place func-
tion @, and 2) p-place functions Fy, .., Fq of degree <n such that
F=@G(Fy, .., Fy).

Parenthetically we remark that deg(F, G) expresses a relation be-
tween F and the set G (and not a property of F, nor even a relation
between F and ©G). Relative to G = {I, 4} in Example 1, I and 4
have the degree 1; I’y A’, and C, the degree 2; (" and I, the degree 3;
and 0 has the degree 4. Relative to {I, 4, I}, the degree of I is 1, and
that of 0 is 2. Relative to {C, A} the degree of Iis 2, and that of 0 is 3,
gince C(0, 0) = Tand A(1,1)=.0. SetS{I, 4} = G{I, A, I} = &{4, C}.
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The subsequent proof of Remark 1 pertains to one and the same
set G of functions over the same S, whence deg(F, G) will be abbreviated
to degF. The set F, of all functions in &G that have a finite degree
relative to G is a subset of &G which 1) contains the subset G, and
2) is closed under substitution. We prove that, more precisely,

deg P (Fy, ..., Fy) < deg F+ Maw(degFs, ..., deg Fy)

for any p-place function F and any p-tuple of functions Fy,..,F,
having one and the same place-number. Indeed, this inequality clearly
holds if degF = 1. Assume its validity for all ' of a degree <n, and
suppose that degK = n-+1. By the definition of degree, there exist
a function in G, say a q-place function @&, and functions Hy, .., H,
in ©G whose degrees are <n such that K = G(H,, ..., Hq). By the
superassociative law,

K(Hyy...) Fp) = (G(Hly ) HC!))(FU '--71’19)
= G(Hy(Fy, oy Fo)y ooy HolFyy s Fp)

Since, by the inductive assumption, the inequality holds for each of
the functions Hy(#,, ..., Fp), it holds for K(F, ..., Fy).

By definition, SG is the smallest set with properties 1) and 2).
Hence F= GG. In other words, each function &G has a finite degree
relative to G. This clearly entails Remark 1.

CoROLLARY. If F belongs to GG, then ranF Cran@ for some function
@ in G. (This function G need not have the same place-number as F.)

REMARK 2. If T and T’ are two elements of 8° such that G (T) = G(T')
for each p-place function G belonging to the set G, then F(T) = F(T') for
each p-place function F belonging to SG.

In view of Remark 1, the proof by induction is straight forward.

If G is a homogeneous set of, say p-place, functions, then by a sub-
stitutive base—briefly, a base—of G we mean a subset B of S with
the following properties: 1) for each T in 8P, there exists an element T’
in B such that G(T)= G(T') for all ¢ in G; 2) if T/ and T" are two
elements of B, then G(T') % G(T"') for at least one function G in G.
In other words, a base of G is a minimal subset of S* with property 1).
By Remark 2, a base of a homogeneous set & is also a base of GG.

Thus the set of all p-place functions with one and the same base B
is closed with respect to substitution into (i.e. left-side composition with)
functions as well as with respect to the application to (i.e. right-side com-
position with) functions having the base B.

It F is a constant p-place function over 8, then any single element
ot 8” constitutes a base of . Now let 8 be {0, 1}. The base of each non-
constant p-place function ¥ consists of exactly two elements of S°: one
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for which F assumes the value 0, and for which F' assumes the value 1.
Any base of the function 4 in Example 1 necessarily contains (1,1)
and any one of the three other pairs. A base of {4, F} consists of (1,1)
and one or two of the other pairs, for any F. Any one other pair in con-
junction with (1,1) constitutes a base of {4, I}. The bases of {4, C}
are {(1,1),(1,0),(0, 0)} and {(1,1),(1,0), (0, 1)}.

One furthermore readily proves

REMARK 3. Let E be the set {I,1',J,J', E, B’} where J is the second
2-place selector, for which J(x,y)=7y and B(x,y) =1 or 0 according as
X=1y or X #Yy. 4 pair of 2-place functions {F, G} over {0, 1} has a base
including all four pairs if and only if F and @ belong to E without con-
stituting one of the pairs {I,I'}, {J,J", {E, E".

If (Gy, ..., G%) is an ordered k-tuple of p-place functions, then by
the range of the k-tuple—briefly, ran (¢4, ..., Gx)—we mean the subset
of §* consisting of all k-tuples (s, ..., ) for which there exists an ele-
ment T of 8® such that s;= G(T) (i=1, ..., k). Clearly, ran{G, ..., Gx)
is a subset of the Cartesian product, ran@, = ... x ranGy. For example,

I’&Il(A, C) - {(0;1)7 (17 0), (1)1)}7
ran(4, ¢,1)={(0,1,1), (1, 0,1),(1,1,1)},
ran(4, G’ I)= {(1,1, 0)’ (1,0,1),(0,1,1)}.

REMARK 4. Any base of a homogeneous ordered set G, is in a one-to-
one correspondence with ranG. The power of any such set G = {Gy, ..., Gy}
does mot exceed the product of the powers of ranGy, ..., ran Gy.

What is the maximum pumber of functions that a set G of k fune-
tions over one and the same set S can generate? What is the minimum
number of p-place functions generating all p-place functions over 8%

First consider the case where G = {F}. Let B be abase of F and let
r be the number of elements in ran¥ and the pumber of elements in B.
The values of any function H generated by F determine H, whence GF
includes at most r* functions, regardless of the place-number of F.

Next consider the case where G = {F,, F,} and F, and F, have the
same place-number, say p. Let r; and r, be the numbers of elements
in their ranges. According to the Corollary of Remark 1, the range of
each function in G {Fy, F,} is a subset of either ranF, or ranF,. Accord-
ing to Remark 2, a base of {F,,F,} is also a base of G{FI,FZ} If b is
the number of elements in such a base, then at most P and % functions
are generated whose ranges are CranF, and CranF,, respectively.
If r,, is the number of elements in the intersection of ranF, and ra,an,
then the maximum number of functions in &{F;, F,} is P +rf,—1'1f,
regardless of the place number p. By induction, one readily sees that,
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if 13,5 is the number of elements in the intersection of ranfy, ...,

ranFy, then the maximum number of functions in G{Fy, ..., Iy} is
3 hi
1
2( 1) 1‘11' oy
B=1 iy,

Suppose now that #y, ..., Fy are all the p-place functions in G and
that G also contains functions Gyqa, ..., Gy having the range numbers
Tiy1y -.ry By DUt place-numbers sp. The range of a function in GG ig
a subset of one of the t functions in G. According to Remark 2, all
p-place functions in GG have the same bage as {Fy, ..., Fx}. The total
number of functions with those b base elements whose ranges are sub-
sets of one of the t ranges of the functions in G is a sum like the one
above, the only difference being that the summation of h ranges from 1
to t instead of from 1 to k. We can express this result in

TaEOREM I. If G 45 a set of t functions, Fy, ..., Fy, having s different
place-numbers, i, ..., Px, lot b be the number of base elements of the set
of all px-place functions in G; and, for any b such that 1 <h <t and any
set of h functions Fy, oy By Teb by, denote the number of elements
in the intersection of ran®y, ..., ranFy. Then the number of py-place
functions in SG does not exceed

t
a‘k=2 Z( 1h+lbk

Be=1iy,endy Ty ?
where one summation extends over oll sets {iy, ..., in} of he of the numbers
1, .., and the other summation extends over the numbers b from 1 to t.

The number of functions in GG does not exceed 2 Q.
K=1

It should be noted that the place-mumbers vy, ..., ps themselves do
not enter indo the upper bounds given above for the numbers of fumctions
generated. An' obvious limitation for the number of p-place functions
that can be generated is of course the number of all p-place functions.
This number is less than the given upper bound when there are too
many generators.

In Example 2, we have t =g = 2; Pr==1, by=2; py==2, by=2;
Iy =Ty =Ty, = 2, Hence, according to Theorem I, the number of fanc-
tions in &{n, B} is at most (224 22— 92)4 (22422 22), It actually is 8.

COROLLARY 1. If G is & homogeneous set of k funciions with b base
elements, and the ranges of the functions in G, whwh oomam Tyy ey Tic
elements, are disjoint, then GG includes at most 7+ .. 1P functions.

We now come to the most lmportant special cases of Theorem I.
They concern the sets 8 = Ny = {1, ..., m} for some natural number m.
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The range of each function contains at most m elements. The base of
any homogeneous set of k functions contains at most m¥ elements. Hence

COROLLA_RY 2. A homogeneous set of k functions over Nm generates
at most m™* functions, regardless of their place-number. If G is a set of
functions over Nm having s different place-numbers, Dy, ..., Ps, and 4f ks

S
is the number of ps-place functions in G, then &G includes at most D, mm*
i=1
functions.
COROLLARY 3. A set G generating all p-place functions over Ny in-
cludes at least p functions.

We now turn to the questions whether there actually exist sets
of k functions over Ny, that generate m™* functions, and whether p funec-
tions are sufficient to generate all p-place functions over Np.

Obviously, the lower bound, p, stipulated in Corollary 3 is unsharp
in three simple cases:

a) m =1 and p > 1. There is only one single p- pla,ce function over
Nm for each p.

b) m>1 and p = 1. No single function generates the fu]l semi-
group of 1-place functions over Np. Two or three functions are needed
(cf. Piccard [4]) to generate those mm™ functions according as m = 2
or m > 2.

¢) p=m= 2. Three functions are needed (cf. Menger [2]) to gen-
erate all 2-place functions over N,. If one considers S = {0, 1} instead
of N,, then from Remark 3 one readily concludes: Unless the pair of
2-place functions {F, G} is a subset of the set E, it has a base of at
most three elements and, therefore, cannot generate more than eight
functions. If {F, G} is a subset of E, then S{F, ¢} CGSE, and GE is
easily seen to consist of eight elements: the six functions in E and the
constant functions I and 0. All sixteen 2-place functions over S are
indeed generated by some triples of functions, e.g., by {4,71,J}.

Except for these cases, however, the lower bound, p, stipulated
in Corollary 3 will now be proved to be sharp.

In the proof, we shall make extensive use of the selectors. For any
two mnatural numbers, m and p, there are p such p-place functions
over Np. Where m is kept fixed, the k-th p-place selector over Nm will
be denoted by I and is defined for 1<k <p by

I®(x,, .., Xp) =%k for any Xy, ..,Xpin Nm.

In some cases, we shall continue to write I and J for I{ and I over Nm,
respectively. The single 1-place selector I{® is the identity function j
over Nm. It has the fundamental property that any function F (of any


GUEST


icm

236 K. Menger and H. Ian Whitloek

number of places) remains unchanged upon substitution into j; that is
to say, jF = F for any F.

It (Fy, ..., Fx) is an ordered k-tuple of k-place funcions over Ny,
then, according to Remark 4, ran(#,, .., Fi) and any base of the set
F = {F}, ..., Fi} consist of equally many elements of NE. If the (unique)
bage of F includes all k™ elements of NX, then the set F will be called
perfect. If F is perfect, then ran (¥, ..., Fy) (as well as the range of F
in any order) is a permutation of the base of F. For any k-place function
H, we set H(F,, ..., Fx) = H(F,, ..., Fx)* and define

(Fyy ooy Fi)™ = (By(Fyy ooy Fr)'y oy BBy ey F)T)

Clearly, k™ iterations of the permutation of the k™ elements yield the
identical permutation; that is to say,

(Fyy ooy P = (I, .., I

Since each component of each (#y, ..., Fi)" belongs to GF we thus have
LeMMA 1. If F is a perfect set of k-place functions over Na, then
GF includes all k-place selectors, I (1 <i<k).
Exawprr 3. Consider the triple (F, I, I,) of 3-place functions
over N,, where

F(151y1)=F(1)2’2)=F(271’1)=-F’(25251)227
F(2,2,2)=F(1,2,1) = F(2,1,2) = F(1,1,2) = 1
Lix,y,2)=x, Ifx,y,z)=7y for each (x,y,z2) in NJ.

The set {¥, I,, I,} is easily seen to be perfect. (F, I,, I,) produces a cy-
clical permutation of the triples

(1,1,1),(2,1,1), (2,2,1), (2,2,9), (1,2,2), (2,1,2), (1,2,1), (1,1, 2).

Hence (F, I, 1)) = (I, I, I,), where Iy(x,y,7z)=z. It follows that I,
belongs to GF. Indeed, I, = I(F, I, I,)’ = L(F, I, I)* = F(F, I, L,).

A classical theorem in Boolean algebra asserts that each ‘“function
of p variables x,, ..., xp”” over {0, 1} can be represented in two (so-called
normal) forms: as a sum of products and as a product of sums. The first
half states, more precisely, that each F (X4 +.ry Xp), except the function
assuming only the value 0, is, for some number k, where 1<k < 2,
the sum of k products of the form Y1 ... ¥n, Where, for each i =1, ..., p,
one has yi = X; or y;= 1—x;. This theorem can be expressed in terms
of the functions n, 4’, and B, mentioned in Examples 1 and 2, and the
p-Place selectors I{™, which we shall denote, briefly, by I,, ..., Iy. It is
convenient to. set n'= 1, n® = nn = j. Hence n*F = nF or =F accord-
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ing as k=1 or 2. If (i, ..., i) is an ordered p-tuple of numbers belonging
to {1, 2}, then we define a p-place function

Piyip = A’(...(A’(A'(a‘bill, y L), L), ., niPIp)) .

Bach such function corresponds to one of the products v,'...-yvp and
obviously belongs to &{n, 4", I, ..., Ip}.

The classical theorem asserts that, for any p-place function ¥ over
{0,1} there exist k ordered p-tuples (im, ..., 1np) Where 1 <h <k, for
some k (1 <k < 2P such that
, P

F= B( (B (B(Piy...iyys Piypooiyy)s P 1,:1,.;..&,“,)) .
Hence I Dbelongs to S{n, 4", B, I, ..., I,}.

Post [5] generalized the theorem just mentioned to the set GZ, of
all p-place functions over Np. We assume Ny to be ordered according
to 1 <2 < ...<m, and define

A'x, y) = Min(z,y), B(x,y)= Maz(x,y), n(x)=x+1

for 1<x<m—1and n(m)=1.

We set nk+! = an* for 1 <k < m—1. Clearly, »» = j, where jF = F for
each F over Ny. The functions Py, . ; are defined as in the classical
theorem, but for all ordered p-tuples (i, ..., i) of numbers 1, ..., m.
Any p-place function F over Nm, except the constant p-place function
of value 1, can be expressed, just as in the classical case, in terms of B
and k functions Pihl""’ihp (1 <i<k) for some k such that 1 <<k < mP.

‘We now prove

LeMMA 2. Let p, v, and m be natural numbers >1. Then the set Sk
of all p-place functions over Nn is a subset of

S* =GNt 41, BY IV, . I
where N¥, A¥, and By are r-place functions defined as follows:
Ni=al®,  Ar=A4'0P 18, B*=RBIMIP).

Let F be a function belonging to &h. According to Post’s Theorem,
F belongs to &= &{n, 4", B, I, .., Iy}, where I; is an abbreviation
for IP. We prove that F. belongs to G* by induction on the degree of F
relative to the set S. If degF = 1 then, being a p-place function, F is
one of the selectors I; and therefore belongs to &*. Only if p = 2, also
degA’ = deg B = 1; but in this case A'= A}I,, I, I, ..., I;) and
B= B}I,, I,, 1,, ..., I,). For p > 2, assume that all p-place functions
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of a degree <n relative to & belong to &* and let F be a p-place func-
tion of degree n-1. Clearly, F is either nK or A'(K,L) or B(K, L) for
two functions K and L of a degree <n. But

nK = N¥K, K, .., K), A'(K,L)=ANK,L,..,I),
B(K,L) = BXK,L, .., L).

In any case, F thus belongs to G*.
An immediate congequence iy

LemMA 3. For any two natural numbers, p and v, if G{Fy, ey B}
= GL, then ShLC Gy, ..., Py, I, ..., I}

The set S{F, I, I,} in Example 3 containg, as has been shown, all
three 3-place selectors. As one readily verifies, Ny = F(Iy, I,, I) and,
if one sets K =F (I, I,,I,) and L= N§(I,, L,, I,), M = Ni(I,,1I,, I,),
then 4; = N3(K, K, K) and By = F(L, M, M). Thus also N¥, 4%, and B}
belong to G{F,I,, I}. From Lemma 2 it follows that this set is ;.
‘We thus have established the case p =3 of

Lemma 4. For each p > 2, there ewist p functions generating S5 .
Assume p > 3, and consider

G= {F(Ilr-zzyla):ju Isy IM ey IP};

where I; is an abbreviation of I{. As one easily verifies, G is perfect.
Hence, by Lemma 1, GG includes all p-place selectors (also Ij). We fur-
ther show that €G includes N3, Af, and Bj. Setting F* = F(1,, I,, I,)
one can verify that Np = F¥I, I, ..., I). Setting K = #%(I,, I,, ..., I,)
L=NXI, I, ..,I,) and M= N}¥I,,1I,,..,1,), one furthermore veri-
fies that

Af=NYK,K,K,..,K) and Bi=IFXL,M,.., M).

By Lemma 2, &} C SG, which completes the proof of Lemma 4.
ExaMpLE 4. Consider the 2-place function ¥ over N, defined by

Martin [1] has proved that this function F in conjunction with I and J
generates all 3* 2-place functions over N;. If we define G by G(x,y)
=F(y, x) for each (x,y) in Nj, then the set {F, @} iy easily seen to be
perfect and, therefore, by Lemma 1, includes I and J. It follows ‘that
S, Q=
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ExampLE 5. For any m > 3, consider the 2-place function F de-
fined by
F(i,i)=i+4+1 for
F1,2)=F(1,4) =2,

F(ny):X

I<i<m—1, Fm,m)=1,
F(2,3)=F(2,4) =1,
for all other pairs (x,y) in N%,.

Set F = F, and F(Fg, Fyx) = Fyy1, and define 1-place functions gx
over Nm for 1<k <m by setting gu(i) = Fu(i, 1) for 1 <i<m. Since
¢:(i) =i+1 (mod. m) it is clear that these m functions gx are the m
cyclical permutations of (1,2,..,m). From the definition of F, one
further sees that ¢ = #(gm, g,) is the transposition interchanging 1 and 2,
and that &= F(gm, g») has the values k(1) = h(2) =1 and h(k) =k for
3 <k <m. It is well known that g,, ¢, and h generate all mm functions
in Gn. Since the functions 7' = F(Fm,F;) and H = F(Fn, F;) belong
to S{F} and

Fi, ) =g), Tdi)=1(), H{Ei)=hr{) for
it is clear that, for each function  in &}, the set S{F} contains a func-
tion U such that T(j, j) = u; that is to say, Ui, i) = u(i), for 1 <i < m.
Hence &{F} includes m™ mutually different functions.

We now define G by setting G(x, x) = F(x, x),

G(1,2)=3, G(2,3)=2, and

G(x,y)=7y for all other (x,y) in NZ,.
It is easy to verify that the set {#, G} is perfect. Hence S {F', G} includes
the 2-place selectors, I and J.

Stupecki [6] proved, for every natural number m > 2, an important
theorem which may be formulated as follows. If H is any 2-place func-
tion over Ny which, for no f in &}, is equal to either fI or fJ, then

GuCS{g,t, b, H,I,J}.
In Example 5, G{F, ¢} includes I and J and U for every w in S,.
By mductlon on the degree of 2 - place functions relative to {g,, ¢, b, ¥, I, J}
one sees that S{F, ¢} = &5,

We abbreviate I to I; and define, for each p > 2,
Fy = (L, I), Gl):G(IuIz):

where F' and ¢ are the functions studied in Example 5 if m > 3, and
the functions in Example 4 if m = 3. In any case, the set

G = {Fy, Gp, Iy, ..., Ip}
is readily seen to be perfect, whence S{Fy, Gy, I, ...,
p-place functions. Now set

G={F, G I,.., 1.

1<igm,

Ip} includes all
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By an induective proof similar to that of Lemma 2, we see that the
p-place functions in S6G and in ©G* are the same. Hence SG = gn

We thus have the first half of

TueoreM II. If m > 1 then, ewcepl for the case m =] =29 {,
bounds given in Corollaries 3 and 2 of Theorem I are sharp; that is to say,
there are p functions generating all p-place functions oww Nm; and there
ewists a homogeneous sel of k functions gemerating ™ functions. More
specifically, there exists a homogeneous set of p functions including p—9
selectors and genevating Gn; and there oxisis a homogeneous sel of k fune-
tions including k— 2 selectors and yenerating ™ functions.

In order to obtain a homogeneous set of k functions generating the
maximum number of functions, for any place-number p > k, consider
a homogeneous set F of k functions, Fy, ..., i, generating &Y. (F may
Dbe so chosen as to include k— 2 selectors.) 1*01' =k, set BV p PP, 10

and (D} (D)
) ),
G = {FP, ..., ;"L

The number of functions in GF and in &G is the same. Thus the k func-
tions in G generate m™* functions.

Addition in the proofs. Tn Remark 1, a function I in ¢ i not necegsarily
obtainable by substituting functions belonging to &G into a funetion belonging to G.
Cf. [2] p. 291 for an example of two functions F' and @ in the 3-valued logic such that
F(X,Y)=G(X,Y)~ @G+ T for each X, ¥ in {F, (}.
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