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Introduction. The class of n-dimensional diagonal algebras de-
fined here (section I) is a generalization of a certain class of semigroups
considered by Liapin, and the representation theorem for diagonal
algebras (section IT) is a generalization of the representation theorem
for those semigroups. Besides, the paper contains theorems character-
izing diagonal algebras in a different manner, and also theorems con-
cerning independence (in the sense of Marczewski, see [4]), which in
diagonal algebras presents itself particularly clearly (section ITI). The
results of this paper were announced in [6].

Diagonal algebras turn to be extremal in a problem of estimation
of the number of independent elements in algebras with a noncommu-
tative binary operation and appear also in an investigation of sets of
algebraic operations (¢f. [7], [9] and [10]).

In diagonal algebras the condition of exchange of independent sets
formulated by Marczewski is also fulfilled (see, e.g. [8]).

I. Definitions and the simplest properties. Let us consider
an algebra D = (v; d) with a unique fundamental operation d(m, ..., x)
satisfying the following postulates:

L d(z,..,0) =2,

IL Q@3 vory @)y (a5, ooy ), ory (AL, ..,y ap)) = di@d, 28, ..\ 7).

This algebra will be called an n-dimensional diagonal algebra.

If the operation d(=,...,2s) depends on each variable, then the
n-dimensional diagonal algebra will be called proper.

The axioms I and IT imply the following simple properties:

(i) Bach algebraic operation e A™ (see [6]) in the n-dimensional
diagonal algebra is of the form:
Q) f@ry ery Bm) =A@y, oy ) (A <dp<m for p=1,..,0).
In fact, from I it follows that

(m)

67 @y, ooy Tm) = A(Tyy oy B3)

hence, from IT and the definition of algebraic operations we obtain (i).
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(i) In an n-dimensional diagonal algebra (containing at least two
dlements) there are mo algebraic constants.
In fact, if any algebraic operation is constant, then, on account
of (1), we have
d(wil, aeey (l:‘fﬂ) =¢,

and further, on account of I, # =c. The algebra would therefore be
one-element, contrary to our assumption.

We say that element a of an n-dimensional diagonal algebra is
collinear in the pth direction (1 <p < n) with element b of that di-
agonal algebra; we shall denote this by

a=pb if a=A(@y ey Gy b,y @y ey @)

p—1
(ill) If ap=pbd, then

gy ooes Op) = By wrvy Bpry by Aps1y crey En) -

This property shows that in operation d the pth argunment may be
replaced by any element collinear with it in the pth direction.
In fact, we have

Ay oy Gn) = @[y oory g1y Ay ooy Bpy by gy eery Bp)y Bpory ooy )
p—1
= (@, vy Gp-15 by Gpi1y eery On) -

We apply postulate IT.
(iv) If @(agy .os @n) = d(by, ..., bn), then

ap =pbp  for

Indeed, by I, IT we have

p=1,..,n.

ap = A(@p, ..., ap) = d(ay, ..., ap, d(ay, ..
P-1
=d(ap, ..., ap, @(byy .oy Da), Opy e, Gg)
p~1

<y @), Gy ey “P)

=A(Apy veey p, by, apy .oy ap) .
(V) If a=d(ay, ..., an), then ‘
a=pap, for op=1,..,n.
To prove it let us remark that
a=da,..,a)=d(a,.., a),
and apply (iv).
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(vi) In an n-dimensional proper diagonal algebra each algebraic
operation of form (1) depends on each of the variables on the right side of (1).

In fact, as the operation d(w,...,#:) depends on each variable,
there exist elements ay, ..., @y, b such that
(2) A(ayy wovy Gn) # A0y, oy Gpogy by Gppgy oony @)

It the operation d(2y, ..., @1,) does not depend on @,, then in place of
that variable we can put first element a,, and then—element b, leaving
without change the remaining arguments. Then we obtain the equation

A Bayy ooy Bigyy Opy Bigayy ey Tig) = (a5 oy Bigyy By Tipay ory 21,
from which in view of (iv) we have

ap=pbh.

Further, by (iii) we can write

Ay vy @) =A@y ooy By, by gty oony Gn) 4
which contradiets (2).

(vil) A subset J of an n-dimensional proper diagonal algebra is de-
pendent if and only if there ewist two different elements a and b in J col-
linear in some direction.

Indeed, for a one-dimensional diagonal algebra the eondition is ful-
filled, because then the diagonal algebra i trivial, i.e. the operation 4 is
trivial, each subset J is independent, and obviously a = d(b) cannot
hold for a # b. Let us assume that » > 1. Then the proof of sufficiency .
follows from the definition of eollinearity and (vi).

In fact, if

a=d(a,..,a,b,a,..
i

and a, b ed (a #b), then J is depend since

s @),

BFA(Ey ey By Y, Ty eny B)
p-1
The necessity of the conditions follows from (i) and (iv).
Property (vii) implies immediately
(viil) A subset I of an n-dimensional proper diagonal algebra is inde-
pendent if and only if each pair of ils elements constitutes an independ-
ent set.

(ix) If © 48 proper and
(yy oy in) = (Ly ooy 1)

A(@yy oeey Tn) = ATy ooy Tay) -

A<yy<n for j=1,2,..,n),
then
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Tn fact, from the assumption it follows that there exist p, for which
Do 7 ip. I
A(Lyy veey Tn) = A(D1yy +ovy Bi)
then, on account of (iv), we always have
B, =, Dy, -
For example, let iy < p,. On account of (iii) we have
A(@yy wvey Tn) = By ooy Biyay By Bigrry -y Ppo—1s Btpgs Doty ooy @n) ,

but the last form contradicts the assumption that the operation d de-
pends on each variable, because it does not depend on variable @p,.
II. Representation Theorem and corollaries.
LevMA 1. Each of the relations =, i8 a congruence.
Proof. Reflectivity follows from formula I. Further, if a =5b, then
a=d(a,..,a,b,a,..,a),
i.e. on account of I
dla,..,a,b,a,..,a)=da, .., a).
I
p—1
Applying (iv) to the last formulae we obtain b =pa, i.e. relation =, is
symmetrical. The transitivity of relation =j easily follows from II.
Further, if a; =,b; (j =1, ..., n), then

Ay ooy tn) = @y oey Gpory gy Bpiay oey Ba)
= d(a'n vy Op1y @(byy ooy Ba)y Bppay oy an)

by (iii) and II; hence, d(ay, ..., an) =p d(by, ..., bn), q.e.d.

Lemma 1 permits the introduction of the concept of a coset in the
n-dimensional diagonal algebra, just as in a group, viz.:

Set Wi of all elements collinear with o in the pth direction
(p=1,..,n) will be called the coset in the pth direction determined
by element a. ) '

The set of all cosets in the pth direction will be denoted by W*.

Obviously, in view of Lemma 1, two cosets in the pth direction
are either disjoint or identical.

Let Ay, ..., Ay be arbitrary non-empty sets. We define the algebra

Pty = (41X ... X Ag; a2y, ...,‘w,,)) ,

the unique fundamental operation d*(s,...,@,) of this algebra being
defined as follows:

(8)  @NKELy sG>y K0Ty ey GRY, ooy <OT, oy ABD) = (], ..,y )
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It is easy to see that the algebra Py, dy 18 an n-dimensional di-
agonal algebra, ie. it satisfies the axioms I and IL

Let D be an arbitrary n-dimensional diagonal algebra, and W7 the
set of its cosets in the pth direction (p=1,..,n).

THEOREM 1. The n-dimensional diagonal algebra € is isomorphie to
the algebra Ppa,  wn.

The proof of this theorem will be preceded by one lemma.

LeMMa 2. Buvery intersection of the form

(4) Way oo n W,
containg exactly one element.

Proof. Indeed, this intersection contains a = d(a,, .

.., @y) because,
ag follows from (v),

a=pap (p=1,..,n).

However, if the elements a and b belong to intersection (4), then
a =, b for each p, and so in view of axiom I and (1ii)

a=d(a,..,a)=d(b,..,b)=5h.

Proof of Theorem 1. Now by Lemma 2 the map g(a) ={Wh,..., Wad
is an isomorphism of D onto Py, w» since by (v) we have

P(A(01) 5 82)) = < Witar.oamy oy Witar, oramy
= <W¢11u'-~1 Wery = d‘(‘P("’l)r"; ‘P("’n)) .

Remark. Theorem 1 may be proved also with the aid of a theorem
of Birkhoff (see [1] chapter VI, Theorem 4, p. 87).

CoROLLARY. The isomorphism type of an n-dimensional diagonal
algebra is determined by an n-tuple ay, ..., an 0f cardinal numbers, where
ap 18 the power of the set of cosets in the p-th direction. The n-dimensional
diagonal -algebra is proper if and only if ap>1 for p=1, ..., n.

The first part of the corollary follows immediately from Theorem 1.
If in an n-dimensional proper diagonal algebra we had ap = 1 for some p,
there would exist in that diagonal algebra only one coset in the pth
direction. Hence, every two elements would be collinear in the pth di-
rection. In the operation d(w, ..., #,) in view of (iii) it would be possible
to put any element in place of variable #, without changing the value
of the operation, and so the function d(#, ..., ) would not be depend-
ent on variable #p, in contradiction to the assumption. The converse
implication is obvious.

To denote what is the isomorphism type of the diagonal algebra,
a corresponding n-tuple will be written as a lower index of the letter D.
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Tor example Day,, is a 3-dimensional diagonal algebra having two cosets
in the first direction, three cosets in the second direction and four cosets
in the third direction.

THEOREM 2. Bvery two mawimal independent sels of a given n-di-
menstonal jn'oper diagonal algebra have the same power. Bvery two minimal
sets of generators of an n-dimensional diagonal algebra have the same power.

Proof. Let I be a maximal independent set of an n-dimensional
proper diagonal algebra. In view of (vii) the set I cannot contain two
different elements of the same coset in the pth direction. So

[I| <min(oy, ...y o).
As the set I is maximal, it must contain one element from each coset
on p, direction for some p,. Hence
[I] z min(ag, -, an) .
*The last two formulae give
(3) [T =min (ay, ..., o).
The first part of the theorem is thus proved.
Let @ be a minimal set of generators of an n-dimensional diagonal

algebra. As it is a set of generators, it must contain at least one element
of each coset in each direction. Hence,

|G| = max(ay, ., on) .
As @ is a minimal set of generators, it contains at most one element
of each coset. Hence,

|G <max(ay, ..., an).
The last two formulae give
(6) 6] =
Formula (6) proves the second part of the theorem.

Let A be an arbitrary algebra. We shall denote by o (), «(A) and
y(A), respectively, the cardinal number of %, the cardinal number of
a maximal independent subset of U and the cardinal number of a min-
imal set of generators of .

From Theorem 1 (and from formulae (5) and (6)) we immediately
obtain the following theorem:

max ( al, ey On)

THEOREM 3.
(7 a(Dayyyay) = @1 oo * g
(8) U Day,...,ap) = min(ay, ..y an),
(9 ?(bm,---,nn) =1aX (@1, vy Up)

where formula (8) refers to the n-dimensional proper diagonal algebra.
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THEOREM 4. An n-dimensional diagonal algebra D, ., where a> 1,
has a basis.

Proof. In view of Theorem 1 it is enough to prove it for the algebra
P4,...4, where |[A| = a. Obviously, the basis of this algebra is the set
{<a,..,a>: aed), g.ed.

THEOREM 5. The subalgebra generated by a subset A of an n-dimen-
sional diagonal algebra is the set of all elements a, where

1
aeWorn..nWay Gy ..,ped.

It follows immediately from Theorem 1.

THEOREM 6. Transformation ¢ of an n-dimensional diagonal algebra D
into an n-dimensional diagonal algebra D’ is a homomorphism if and only
if it transforms each coset in the p-th divection of the first algebra into
a cosel in p-th direction for p =1, ...,n of the second algebra.

Proof. In fact, if @ and b are the elements of the same coset in the
pth direction of the diagonal algebra D and ¢ is a homomorphism,
we have

a=d(a,..,a,b,a,..,a),
p-1

pla) = ‘P(d(a’} vy @y by ay a))

= d(p(a), p(a), ...

Conversely, if ¢ transforms cosets in the same direction into cosets in
the same direction, then on account of (v) we have

yo(a), @(b), ?’(“))---19’(“))7 ie. ¢(a)=pp(d).

A(Byy ey On) =pap,

‘P(d(a'n ey an)) =gp(ap)

for each p. Sinee also

d(‘?(%): P(as), ey ‘F‘(“n)) =p¢(ap),

we must have in view of Lemma 2

d(‘P(a‘l)y (@), ..y ‘P(aﬂ)) = ‘T'(d(al.’
i.e. ¢ is a homomorphism, q.e.d.
THEOREM 7. The direct product of the diagonal algebra D,,,..., and
of the diagonal algebra D, ..5, 8 @ diagonal algebra Dep.p,,..,p-cq
To prove it, let us first consider the diagonal algebra D,..a,
We pick out exactly one element from each coset in the pth direction.
The set of those elements is denoted by R,. We do the same in the
algebra Dp,,..s and we obtain the set R,. An algebra which is the
direct product of these two diagonal algebras is of course itself a diag-

y an)) )
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onal algebra and contains as many cosets in the pth direction as there
are pairs in the direct product of the sets B, and R,, L.e. ap* f,. In fact,
each pair <a,bd, where a ¢ R;, b ¢ R,, determines some coset in the pth
direction of the direct produect of the two diagonal algebras. It is easy
to see that different pairs determine different cosets and thus all the
cosets are obtained.

Remark. Theorem 7 wag obtained in collaboration with J. My-
cielski. The next two theorems were found by J. Mycielski.

THEOREM 8. The free product in the class of diagonal algebras of
Bisod, o0d PBa,,...5,, where din Bi=0 for i =1, .., n, is isomorphic
‘to %AluBl,..A,AnuB,,-

Proof. This immediately follows from Theorem 6. A topological
algebra is a general algebra in the set of which a Hausdorff topology
is given such that the fundamental operations are continuous.

THEOREM 9. For any topological spaces Ay, ..., Ay the diagonal algebra
By, .., 4, With the product topology in its set Ay X ... XAy is a topological
algebra.

Proof. The continuity of the fundamental operation of Pu,,.. 4, i8

. obvious. :

CoROLLARY. Any diagonal algebra admits some compact topology and
is a compact algebra in the sense of [5].

Remark. BE. 8. Liapin (see [3], p. 108) considers a semi-group
characterized by the equations

L. z-z=u,
IV. (z-y) 2 =2-(y2),
V.o y-z2=u-z,

this system of equations being, as is easy to verify, equivalent to Axioms I
and IT for n = 2. This semi-group is then a particular case of an =-di-
mensional diagonal algebra, namely, the 2-dimensional diagonal algebra.

This operation was also considered by O. C. Chang, B. Jénsson
and A. Tarski, who used it for investigating decompositions of relational
structures; see [2].

III. Some characterizations of n-dimensional proper diag-
onal algebras. It appears that the property expressed in (i) is char-
acteristic for an #-dimensional proper diagonal algebra.

The following theorem is true:

THEOREM 10. If g(®, ..., %) 48 an algebraic operation of algebra A
depending on each variable, and each algebraic operation fe.A™ of this
algebra is of the form

(0)  f(@y s Bm) =g(Bayy ey 2y,) A <ip<m for p=1,..,n),
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then the algebra U is an n-dimensional proper diagonal algebra.

Proof. It follows from the assumption that the operation ¢ is idem-
potent, i.e.

(11) g(@, .y d) =u.
In fact, the trivial operation e(z) =  also satisties (10), and so (11)
must hold. Secondly, in the algebra % there are no constants, because

any constant ¢ may be considered as a function of one variable, and
thus we would have

c=c¢() =g(x, .., 1) =x,

which is possible only in a one-element algebra.
Let us consider the operation

(12) g(g(m}, "-:-733»);
In view of (10)

s gy ey w:)) .

(13) Ga@E, oy D), ey glaly oy ) = gl ., &)

A<ipsn, 1<jp<n).
We must prove that the operation ¢ fulfils axiom II, i.e. that in (13)s
ip=p and jo,=1p for p=1,...,n. We shall show that in each case
formula (13) gives a contradiction of the supposition that the operation g

depends on each argument. Let us write the variables placed on the
left side of formula (13) in a square matrix:

2
ot 2% ... ot
o 28 .. oAb

09}
on i ...

1. If on the right side of formula (13) we had iy =14, and jp,=j¢
for p £ ¢, where 1 <p <n, 1 <g<n, Le. if the variables were not all
different, then identifying the variables acecording to the formula
(14) wi=a; (i=1,.,n0, j=1,..,n0),

i.e. identifying variables belonging to the same line of table (I) and
applying formula (11), we would obtain

(15) G(@yy oy Tn) = g(Byy oy Br)

where again i, = %, for p # ¢. This contradicts the assumption that g
depends on each variable.
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9. If two variables from the right side of formula (13) were in the
same line of matrix (1), i.e. if 4, = 47 for p # ¢, then by applying formula
(14) we would obtain formula (15), and again we would have a contra-
diction. .

3. If two variables on the right side of formula (13) appear in the
same column of matrix I, i.e. if jp = j, for some p # ¢, we pub
(16) d=o (i=1,0,0, j=1,.,n)
and we get
(a7) g(@
where on the right side of the last formula jp = jq f(?r p # ¢, which
contradicts the assumption that g depends on each variable.

4. If for some p on the right side of (13) ¢p # p then, -alpplying: (14)
we obtain (15), and in this case (15) would mean that in fun({tmn q
a permutation is possible moving the pth variable. Applying t_hls per-
mutation to the function g(ap, ..., #y) in the pth place, where j=p in
the brackets on the left side of (13) we get

Y dl) =gty a7,

(18)  g{g(@d, ey @)y ooy G ey BT, Gl ey )y g0 ey 2B,
ey G wony a’m) =g(@y, .., @) -

Let ws now identify the variables according to the formula

(i=1,..,p—1, p+1,..,8).

Applying formula (11) to the left side of (18), we obtain

o =a) =o'

gat, ..., ") = g(a?, ..., &7 o, 27PN L 7).

This formula contradicts our assumption that g depends on each variable
because on the right side we have only n—1 variables in view of ip # p
= jp, and fy, ..., j» is a permutation of the sequence 1, ..., n.

Roughly this argumentation may be presented as follows: Knowing
that no two variables from the right side of (13) can appear in the same
line or in the same column of table (I), we permute the pth line of
table (I) so that two such variables can be placed in one column. Next
we identify the variables in the same columns bringing the problem
to case 3.

5. If on the right side of (13) we have jp # p for some p, then by
identifying the variables from table (I) according to (16) and apply-
ing (11) we come to the conclusion that in function g some non-trivial
permutation is allowed (formula 17). Further the argumentation is as
in case 4.
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We have therefore proved that in formula (13) for each P we must
have ¢p = §p, = p, which means that function g satisfies also axiom II,
q.e.d.

We shall now prove for the 2-dimensional diagonal algebra a stronger
theorem than Theorem 10, namely

THEOREM 11. If g(=,y) is an algebraic operation of W depending on
two variables, and cach algebraic operation f e A™ (m < 4) of this alyebra
is of the form

(19) [ (@ ey Tm) = g (w1, my)  (A<t<m; k=1,2),
then the operation g satisfies amioms 1II-V of the 2-dimensional diagonal
algebra (see Remark, Section IT).

Proof. For shortness we shall write the operation gz, y) as a multi-
plication, ie. in the form @ © y, and we shall call it a diagonal multi-
plication. In view of the supposition we must have z © x, and so Axiom
IIT is fulfilled. This theorem will be proved if we show that the formulae

(20) (#0Y) Or=202 z0O0H0O02)=20s,

are fulfilled because this set is equivalent to the set of Axioms IV and V.
Therefore, on account of (19) each of the operations (z © y¥) © 2 and
2z O (x © 2) must be identically equal to one of the following nine func-
tions: 4,9,2, 2 QY, 02,y 02y Oz 208, 2 Oy. We shall show
that the only possible combination are formulae (20). Namely, we shall
prove that in all the other cases the diagonal multiplication would not
depend on each variable. In the six lemmas given below by multipli-
cation we shall mean an arbitrary idempotent operation of two variables
and we shall denote it by a dot. We shall also say that the multiplication
ig trivial if it is identically equal to a trivial operation.

LeMMA 3. The multiplication satisfying the identities

(- y)z=y=z o (y2=zxz
is trivial.
Indeed, taking advantage successively of the two identities given
in the Lemma, we have
y=@y) y=@y) @y =zy.
Luaia 4. The multiplication satisfying the identities
(z-y)e=a2, o (y2)=2y
s Wivial.
We have
o=y e=(0y) (@y) =uy.
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LeMMA 5. The multiplication satisfying the identities
(@y) 2=y o d)=0oy
is trivial.
‘We have
vy=y o y=y o yo)=ya,
ie. the multiplication is commutative. Hence,
wr=(yo)e=(ay) r=y2,
ie.
Tr=yY-s.
Putting in the last formula y = 2 and applying idempotence, we have
rrr=2z.
LeEMMA 6. The multiplication satisfying one of the identities

(@-y)e=uw1y,
(v-y)-2=9y2,
@ (y-2) =92,
e (y-2) =2y

is trivial.

For a proof, it is enough to put y = in the first two formulae,
and y = 2z in the remaining ones and to apply the idempotence of multi-
plication.

LEMMA 7. The multiplication satisfying one of the identities

(@y)2=2a,

(2y)z=2y,
(Y 2) =20,
o (y-2)=y-o

is trivial.
We shall prove it for the first formula. The proofs for the remain-
ing ones are similar. Let us put ¥ = « in the first formula of Lemma 8.
‘We have
T r=20,

ie. the multiplication is commutative. Hence,
(@-y) 2=y a)e,
and since the first of the formulae of Lemma 7 is an identity, we have

o) s=2y,

icm°
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ie.
Brw=zy.

Let us put z=y in the last form. We get
yo=y-y=y.

LemumA 8. The multiplication satisfying one of the identities

s trivial.

Identifying the corresponding variables we shall easily obtain the
proof of the Lemma in each case.
In view of Lemmas 3-8 the proof of the Theorem 11 is finished.

Probably in Theorem 10 the suppositions may be weakened so to
make Theorem 11 its particular case.
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