A general theory of structure spaces
by
A. Helme (Oslo)

Structure spaces have been considered for s great number of dif-
ferent algebraic systems such as rings, Banach algebras, semi-rings,
lattices, lattice-ordered groups ete. In a situation like this the problem
of unification naturally poses itself. The purpose of this paper
ig to show that the theory of z-ideals as developed in [1] and [2] appears
as a natural framework for a general theory of structure-spaces. Some
indications in this direction were already given in [1]. We' shall here
pursue the subjeet along more general lines. The present development
is in fact general enough to cover a large number of special cases. On
the other hand a reasonable part of the theory of structure spaces for
special algebraic systems may be generalized to our situation.

In §0 we first give the necessary algebraic background. With ex-
ception of Proposition 0.2 this is contained in [1] and [2], to which we
refer for proofs, more details and special cases. In §1 we turn to the
theory of structure-spaces for commutative semi-groups with an z-sys-
tem. Theorems 1, 2 and 3 concerning Hausdorff structure-spaces are
mainly generalizations of parts of the corresponding theory for rings
in [4]. In § 2 we consider the compactness of structure-spaces. The theory
there follows the same lines as the theory in [3] and [6]. It is easy to
see that if B is a semisimple commutative ring with identity, then
M(R) is disconnected if and only if R is the direct sum of two of its
ideals, B, and R,. If M(R) =F, v F, is a partition of M(R) into disjoint
open-closed proper subsets, R, and R, may be chosen so that M(Ry)
is homeomorphic to i, 4= 1, 2. The argument here makes use of the
additive structure of the ring. In § 3 we show how this may nevertheless
be transterred to our situation, the additivity being taken care of mainly
by the additivity axiom for an #-system on a commutative semigroup,
introduced in [2]. The representation theorem of § 4 is related to Theo-
rem 14 of [10]. Finally, we illustrate by a simple example a rather
interesting procedure: an algebraic problem may be reformulated in
terms of structure-spaces, and solved by simple topological reasoning.

I should like to thank Professor K. B. Aubert for his help during
the preparation of the present paper.
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§ 0. Preliminaries. Let 8 be a commutative semigroup. We shall
say that there is defined an #-sysiem on 8 if to every A C 8 there cor-
responds 4,C S such thab

0.1) AC Aa,
(0.2) ACBy>AsCBay
(0.3) AB,C B,
(0.4) AB,C(4B)z.

(0.4) is referred to as the continuily awiom. A subset 4 in § is said
to be an z-ideal, or shorter an ideal if A = Ag. ]

We may give an equivalent definition of an x-gystem in the follov?z-'
ing way: let 8 be a commutative semigroup, and let X be. a non-e.m‘pty'
family of subsets of S, called w-ideals, such that the following conditions

are satisfied:
(0.8)  The intersection of any non-empty family of x-ideals is an x-ideal.
(0.6) For any aef and any A <X, A:a is an w-ideal containing A.

Let A be any subset of §, and put 4= BOas B. Then the corres-
AEB

pondence A 4, defines an o-system in the sense of (0.1)-(0.4) and the

family of x-ideals is X. . . '

A is said to be a proper x-ideal if 4, + 8, @. A prime m—lde'a.l is
an ideal P satisfying abe Pr=a e P, V be Pz, and a mawimal as.-lq.iea‘l
is a proper ideal not properly contained in any proper idez'nl. A mv,w.bmavl
prime 4deal is defined correspondingly. The families of pl‘lme,.mammal
and minimal ideals in S are denoted by P, M and N respectively. _

An @-system is said to be of finite character if the set-theoretic
union of any chain of z-ideals is an z-ideal.

If § is a commutative semigroup with an z-system, and T is a sub-
semigroup of S, then it is easily verified that the family of all inte?-
sections between an z-ideal in § and T defines an x-system on 7. This
x-system is said to be induced on T from S. (This definition is not the
best one, but will be the relevant definition for our purpose.)

Given a family of o-ideals in 8, {AP};. Pub e AP = ( Y AD),.
1€,

X is a complete lattice under vz and A. w, will be referred to as @ - union.
Furthermore, put Ag oz By = (4B)z. This operation is referred to ag
- multiplication.

The nilpotent radical of an wx-ideal Az, denoted by radAg, is the
set of all elements a in § such that for some n, a* e 4. Az is said to be
half-prime if rad A, = A,. If every a-ideal in § is half-prime, the #-sys-
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tem 18 said to be half-prime. The element ¢ e & is called an r-identity
if (¢)s =28 and e <S2.

An z-ideal 4, is shown to be non-prime if and only if 4:D Byoy s
tor some By and O properly containing 4. This implies that if § has
an «-identity, then MM CP.

A subset M of § which is either empty or closed under multiplication
is referred to as an m-set. We have, for x-systems of finite character:

ProPOSITION 0.1. Given an r-ideal Az in 8. If M is a maximal m-set
contained in CAg, and P, is an ideal mazimal with respect to the property
of containing Ay and being contained in C I , then Py is a minimal prime
ideal over A;. (CA, denotes the complement of 4, in 8.)

COROLLARY 1. Any prime ideal P, over Ay contains a least one min-
imal prime ideal over A,.

COROLLARY 2. For any mazimal m-set M contained in Cd,, CI s
a minimal prime ideal over A,.

For a number of algebraic systems, the following condition turns
out to be of importance:

(0.7) - To every a e 8 there exists an idempotent element |a| such that for
every w-ideal Az in 8, a e Ag<>la| e A,.

For a distributive lattice with the l-system, we may choose a = |a|,
for a lattice ordered group with the c¢-system and the multiplication
aob=lal ~|b], we put |a|=a v 0—a A 0.

At present, we shall only note the following consequence of (0.7)
which will be usefull later (see [7], Theorem 6.5):

PrOPOSITION 0.2, Given an ideal A, = O, in an &-system satisfying
(0.7). Then an ideal Py D Ay is a minimal prime ideal over Az if and only

b

if i satisfies the following condition:

(0.8)  To every idempotent element ¢ in P, there exists b ¢ Py such that
chbeds. '

Proof. If P, satisties (0.8) and 4, C Q. & P, for a prime ideal Qg
choose a e Py, a4 ¢Qs. Then |a|e Py, [a]¢Qs. To |a| there corresponds
by (0.8) b¢P; such that |a|-beAds. Thus |a]eQs, a contradiction.
Conversely, if Py is a minimal prime ideal over 4,, M = CP, is an
m-set, maximal in CA4, by Corollary 2 above. For an idempotent ele-
ment ¢ in Az, put M (¢) = M U {be; b e M}. Obviously M(e) is an m-set
properly containing M, thus M(0) ~ 4; # O and (0.8) is satisfied.

THEOREM 0.1 (Krull-Stone). For an xz-system of finite character,
vad Ay is equal to the intersection of the mimimal prime ideals over Ag.

Let 8 and T be commutative semigroups with z-systems which
we denote respectively by y and 2 We shall say that a multiplicative

Fundamenta Mathematicae, T. LVIII 22
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homomorphism ¢ of § into T'is a (%, 2) - homomorphism if p(A4y) C (¢ {1))“
for all subsets 4 of 8, or, equivalently, if the inverse image of a z-ideal
in 7'is a y-ideal in §. If ¢ is & multiplicative homomorphism of a com-
mutative semigroup § onto a semigroup T, and § has an @-system y,
then the set of all BC T such that ¢~%(B) is a y-ideal in § defines an
x-system y, in 7. This makes ¢ to a (¥, ¥,)-homomorphism.
For a,b 8, put
C 4 =b(4) = (e )= (s, Vs -

This is a congruence relation in 8, which we refer to as @-congruence.
If ¢ denotes the canonical multiplicative homomorphism of § onto 8/4,,
we shall call ¢, the canonical z-system on SjAz.

The z-system on § is said to be additive if for any g-ideals dg, By
in § and ¢ e.Ay wz Bz, there exists b € By such that ¢ =b(4ds).

THEOREM 0.2. An z-system on S is additive if and only if the cano-
nical mapping Asliynp, Az Iz Balp, 8 bijective for any x-ideals Ay
and By in S. ‘

Given any family 3 of z-ideals in 8, we adopt the following
notation: For ACT, putb ki‘l:AQqu, for an «-ideal By in 8, hBs

= {Az€3; B C A5} Furthermore, put k¥ = Og.

§ 1. Structure spaces and their separation propérties.
Let § be » commutative semigroup with an #-system, and let JC X
be a family of proper x-ideals such that

(1) Bon 0;CAs=BsC Az V 02C A,

whenever A eS and B and O are arbitrary intersections of ideals
from . Under this assumption S is said to be a structure-family for S.

For ACS, put A=A if A #03, B =0.

The above definitions are justified by

ProrosrTioN 1. A->A defines a topology on I if and only if I s
a structure-family for 8.

Proof. (1.1) is equivalent to XU BCUAUB for A, BCI. As AC,
P=9 and AwBCU OB are satistied, without assuming (1.1), the
proposition follows.

This topology is referred to as the Zaryski lopology and also as
the Stone topology on I3, the corresponding topological space is called
@ structure-space for 8. It will be denoted by J(S8).

There is an obvious 1-1 correspondence between the subfamilies
of a structure-family and the subspaces of the corresponding structure-
space, in the sense that every sub-family of a structure-family is
a structure-family, and all subspaces are obtained in this way.
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P is a structure-family for S. If § has an z-identity, MC P, and
consequently 9 is a structure-family for §. -

A structure-space is invariant under (y, #)-isomorphisms, and every
closed subset of a structure-space for § is homeomorphic to a structure-
space for a (y, 2)-homomorphic image of S:

ProrOSITION 2. Let S, T be commutative semigroups, with z-systems,
(.Zelnrol,e(l b:I/ ¥, & respectively. Let 3 be a structure-family for S, ¢ a (y, 2)-
‘!:SO‘IILO)‘_’ph‘LS‘m of 8 onto T, and put o(I) = {p(dy); 4y eI} Then ()
8 a structure-family for T, and J(8) is homeomorphic to (qz(S))(T).

For AEQS, put I = {By; ByeJ and By DA,}.

TIwn'S is a closed subset of J(S), and is homeomorphic to (v (3)(8/4,)
where v is the canonical homomorphism of § onto 8/4,. Co
FCI(8) is closed, F =T where Ay = k.

Proof. 1"h_e first part of the proposition follows from the fact that
structure-families and structure-spaces are defined by properties invariant
under (y, 2)-isomorphisms. Clearly, § is closed in 3(8). Put @(By)
= y(By). We hare

nversely, if

(12) By Cy=y(B)Dy(Cy) for every B, 3, 0¥,
(1.3) w(&@@’“’):}{@z p(CF), where (P e for every ke K.

It iollows ab once that w(SSN) is a structure-family for S8/4, and that
D: J(8)—=9(JI)(8/4,) is a homeomorphism. The last part of the proposi-
tion is obvious.

COROLLARY. Assume that M is a structure-family for 8, and let & be
a closed subset of IMM(S). Then the jamily M, of maximal ideals in S/EF,
18 a structure-family for S[kF, and W (S/kF) is homeomorphic to F.

Proof. This follows from Proposition 2 with M = »(F) and
y: §—>8/kF (the canonical homomorphism).

(1.4) &(a) = h{a},

PROPOSITION 3. {U(a)}ges constitutes a basis for the topology on I(8).
Proof. Since $F(a) is closed, U(a) is open. For U open in J(S) and
Az e U, we may find a e § such that a ¢ 4z, a e KCU. Then 4, ¢ U(a) C .

For the study of separation properties of a structure-space J(S),
we introduce, for 4z eJ(S),

For a 8, put

U(a) = C§(a).

(1.5) N(4z) = B.].

Us [N
PloEAs} {Bzel|b ¢ Ba}

By Lemma 1 below this definition coincides with Definition 2.1
of [4] if § is a ring with the usual ideal system.

22%
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LEvmA 1. Let B be a basis for the neighbourhood system of Ag.
Then
= |y K.
(1.6) N(4y) ukEJ%
If the x-system is of finite character, we have
= (2
.7 N(da)= L]

Proof. For two bases B, and B, we get | kU = J kU and the
UeBy UeBy

first part follows from Proposition 3. To prove the second half of the
lemma, we first observe that N(dq)=0 implies uLchs W = @. Tor

a € |z KU we find, by the finite character property, a finite set {a;, ..., an}
UeB .
C | kU such that ae(a, ..., )z Let die kW;, and determine U B
 UeB
such that WC () Ui. Then
]

ae Oxkuig(kﬁ Ue = () U CRU.
=1 fm=

=1
We thus have [ JkUC | kU, and the lemma is proved.
UeB UeB

Obviously & 3 C N(As) C 4z The equalities are reflected in J(S)
as follows ((1.9) generalizes Theorem 2.7 of [4]).
THEOREM 1.
N(dg) = kS <= W = J(8) for every neighbourhood W of As.
If the m-sysiem is of finite character, we get
(1.9) N(dz) = A, for every As e J(8)<=F(0) is open for every a < 8.

Proof. Clearly, N(4s) = kIJ<=>kU=1kJ for every neighbourhood
U of Az, and (1.8) follows. Assume that the z-system of § is of finite
character, and that N (4s) = A, for every A, e J(8). Then, for 4, F(a),
a € %, for some neighbourhood U, of A, (Lemma 1). Thus 4 € U, CF(a)
and F(a) iz open. Consverely, assume that F(a) is open for every a e f§,
and let 4y e 3(8). For a e 4z, we get a e kF(a) C N (4s) and 4z C N (4z).
Obviously N (4ds) C Az and (1.9) is proved.

COROLLARY. Let 8 be a commutative semigroup with an x-system of
finite character, satisfying (0.7). Assume also that kX = Oy % @. Then the
structure-space of the minimal prime ideals, N(8), s a totally disconnected
Hausdorff space.

Proof. Let Py e N(S). Then for every a ¢ P, there exists by Pro-
position 0.2, b e P; such that |a|be O;. For every QueM, b¢Qu=|al
eQz=>a €Qz, and a e KU(D) C N(Pz). We conclude Py = N (Pz). As R(S)
is Ty, the proof is complete.

(1.8)

icm
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‘The connection between the Hausdorff-property of 3(8) and alge-
braic properties of § is of the same kind as in the case where & is 2 ring

with the d-system. The following theorem is & generalization of Theo-
rem 3.1 of [4].

THEOREM 2. (A), (B), (C) and (D) are equivalont.

(A)  J(8) is a Hausdorff-space.

(B) For Az, B, different elements of S(S), there emists a ¢ Az, b ¢ By
such that for every OzeI(8), a eCyV b eCs.

(C)  TFor Az, B, different elements of 3(8), N(Az) _¢_ B;.

(D) For every Az e 3(8), N(A4s) is contained in exactly one ideal from 3,

If IC M and the x-system is of finite character, (A) is also equiv-
alent to

(B)  For Az, B, different ideals from 3, and a ¢ 8, there exists b € N(Ay)

such that a =b(Byg).

If every proper ideal in 8 is contained in an ideal from S, (A) is also
equivalent to

(F) For Ay, By different ideals of I, N(Az) wg N(Bs)=S.

Proof. Throughout the proof, let A,, B, denote ideals from .
We first verify (A)=-(B)=(0)=(D)=(A). By Proposition 3, (A)=(B).
Assume (B). Let A, 7 By, and let a, b satisty (B). Then b ki (a) C N (4;).
As b e Bz, (0) follows. Obviously (C)= (D). Assume (D). Then, for 4,
# By, Lemma 1, (1.6) gives tha;tut_é jals $ B; where B is the neighbour-

hood-system of A,. Choose ae | ) kU, a¢ By. Then 4 ek, for some
UeB

Wy € B. Now Bz eU(a) and clearly U, ~ U(a) = @. Thus (A) follows.

Now, assume that the z-system is of finite character, and let I C M.
If (A) is satisfied, and 45 5 By, then for a ¢ § we get two possibilities:
for a € By, choose b e N(A4dz) ~ By. This is possible, for by Theorem 1,
N(Az) #O. Then (a, Bz)z = (b, Bz)z= B and a = b(Bz). On the other
hand, if @ ¢ Bz, (C) implies the existence of b such that b € N (4z), b ¢ Bs.
Here (@, Bz)s = (b, Bz)a= 8, and a = b (B;). Assume (E). Let 4; +# Bs
and choose a ¢ Bz. For b given by (B), B: e U(d) and b e N(4s). By
Lemma 1 (1.7), b € kU, for some neighbourhood U, of 4,. As W, ~ U(D)
=@, (A) follows.

To prove the last part of the theorem, assume that every proper
ideal in § is contained in an ideal from J. If+J(8) is a Hausdorff-space
and Az # Bz, (D) implies that N(A4s) vz N (Bz) = 8. If (F) is satisfied,
and for some A, # Bz N(Az) C Bz, we find B:= §, in contradiction
to the definition of a structure-family.
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A 2. Assume that the x-system is of finite character and that
X CP. Then N(Az) is half prime for every Az el

Proof. Let a erad N (4,), ie., ar € N(Az). For some neighbourhood
U, of Az, ar e kU, by Lemma 1. For every By e, a® ¢ Bz, and since
By e®P, we have a eB;. Thus ae 1, C N (4z).

The following is a generalization of Corollary 3.8 of [4].

THEOREM 3. Assume that the w-system is of finite character. Then
the following statements are equivalent:

(A) B(S) is o Hausdorff-space.
(B) PB(S) is totally disconmected.
(Y} For every AgzeP, N(As)= Az

Proof. We verify (C)=(B)=(4)=(C). (C)=(B) follows from Theo-
rem 1 (B), (B)=(A) is obvious. Assume (A). By the Krull-Stone theo-
rem, Lemma 2 gives

N(Az) ="

{PzeP|Pz IN(42) ?
Tf N (4z) # As, then for some Py # Agy Pz D N(4o), contradicting (A).

§2. Compactness. We now turn to the compactness of structure-
spaces, and make the following observation:

PROPOSITION 4. {U(a)}acr 48 an open covering of I(8) if and only if
RQ;A, for every Aze3. -

THaROREM 4. I(8) is compact if and only if every subset R of 8 with
the property R g: Ay for every Ag e, contains a finite subset N with the
property N & Ay jor every Az e3.

Proof. The theorem follows from Proposition 3 and Proposition 4.

THREOREM 3. If the z-system is of finite character, JI(S) is compact
if and only if every ideal R, which satisfies R gt_ Ay for every Aye3,
contains a finitely generated ideal Ny such that Ny g Az for every Age.

Proof. The necessity of the condition follows from Theorem 4.
Assume the condition. Let R C 8 satisfy R g: A for every Ay e J. Then
also R _¢_ A, for every A;e3J and by the condition we find a finitely
generated ideal N, C R, such that N, $ Az for every Az eJ. By the
finite character property we find for every a e N an F, C I such that
a ¢ (Fa)z, Fy finite for every a ¢ N. As N is finite, I = L‘JJ\:F“ ig finite,

ae
and N, C Fz. Clearly ¥, i Az for every Ay e, thus also T _¢_ Az for
every Ax¢3J, and as F C R, J(8) is compact by Theorem 4.

CoROLLARY. If the x-system is of finite character, and if every proper
ideal in 8 is contained in an ideal from J, then J(8) is compact if and
only if 8 is finitely generated. ‘ '
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Proof. Under the assumptions of the corollary, N, g Az for every
Az €3, it and only if N,=§.

The compactness of J(8) thus amounts to a finiteness condition
on 8. On the other hand, we may take a somewhat different point of view:

A proper subset ¥ of § is said to be an f-set for J if for every finite
subset N of ¥ there exists an A, Y such that N C 4, (see [5]). By Zorn's
Lemma we find that every j-set for 3 in § is contained in a maximal
f-set for J in S.

THEOREM 6. J(S) is compact if and only if every maximal f-set for I
18 a member of J.

Proof. Assume that J(S) is compact, and let W be a maximal
f-set. We contend that W e3J. As every 4, ¢J is an f-set, it is suffi-
cient to find A ¢J with 4, D W. Assume that 4, _¢_ W for every A;e3J.
By Theorem 4 we find a finite subset ¥ of W with ¥ i Az for every
Az €3, a contradiction. Conversely, assume that every maximal f-set
is an element of J. If J(S) were not compact, we could find an f-set B
for 3 with R ¢ 4z, in contradiction to the assumption.

§ 3. Disconnected M(S). Let R be a commutative ring with
identity. If R is semisimple, then MM(R) is disconnected if and only if
R is the direct sum of two of its proper ideals R, and R,. If M(R)
= @, v, is a partition of M(R) into disjoint open-closed proper subsets,
we may determine R, and R, so that M(R;) is homeomorphic to Fq,
i==1,2. (See for instance [6].)

We observe that if R is the direct sum of the ideals R, and R,, then
R =R, uiR,, R, ~n R,= {0} and every d-ideal A of R; is a d-ideal of R.
In view of this the following theorem generalizes the above-mentioned
theorem for rings.

THEOREM 7. Let S be a commutative semigroup with an x-system
of finite character and x-identity. Then IM(S) is disconnected if and only if
there ewist ideals A, By in 8, different from § and kM, such that Ay vy By
=8, As By = kM.

If the x-system is additive, and if kI = kX = 0y, then for every
partition of M(S) into disjoint open-closed proper subsets W and B, we
may determine Ay and By such that M(Az) is homeomorphic to A and
M (Bs) homeomorphic to B, where A and By are equipped with the z-sys-
tems induced from 8.

Proof. Let M(S) = A uB-be a partition of M(S) into proper,
disjoint open-closed subsets and put 4;= kB, By = kY. Then Az~ B:
= k9. Furthermore, A, ws Bz = 8, for if A, v, B, were a proper ideal,
it would be contained in some maximal ideal M. (This is proved in
the usnal way by the existence of an x-identity.) Then Mz;e W B,
a contradiction. Clearly 4, and B, are different from S and EIN.
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Conversely, assume the existence of 4z and B, satisfying the con-
dition of the theorem. Put % = hBz, B = hAz. Clearly, % and B are
closed. Since M CP and Az By= ki, we have "l[ U B = M(S).
Furthermore Az u:B,; = § implies A ~B =0, and the firgt part of the

rem is proved. ]
e Il?ina,llypa,ssume the condition of the last part of the th.eorem. D‘ef-me
A, and B, as above, 4= kB, B = kU, where AvB is a parm’tm‘n
of M(8) into proper, disjoint open-closed sul.)s‘ets. By symmetry it is
sufficient to prove that M(4z) is homeomorphic 1?0 A We denm:.e .the
x-system induced on A from 8 by @y, and prove first that Az/0, is iso-
morphic to §/B,. Denote the canonical mapping of A, onto A4/0; by 2
of § onto §/B; by v; and denote the canonical -system of 8/By by T,
of A4/0, by T,. Now define

i AglOp—S/Ba

by B(p(s) = w(s) for seAs. By definition A0z = Aq/Az 1‘313, »S’/B',c
= Ay g Bs/By, and p is bijective by Theorem 0.2. Clearly % is multi-
plicative, and every Z-ideal in 4;/0, may be written in the form ¢(Cyy),
where Oy, is some #,-ideal in 4, i.e., an -ideal contained in 4.. Now
17)(:;)(011)) = y(0z, s Ag), showing that the image by ¥ of. every Z,-ideal
in AgO; is an Z-ideal in 8/B,. Conversely, every Z-ideal in S/B; may be
written as 9(Ds), where Dz D B;. Now

¥ (p(Dx) = {@(s); s €Az and y(s) ep(Ds)}
= {p(s); s edy and s €D} =p(4dz~ Dy)
showing that % is an isomorphism. This shows in particular that 4./0,
has an ©-identity, so that the maximal ideals is a structure-family of
Az[O,. Furthermore,
(3.1) M(4/0;) is homeomorphic to M(8/By).

By (1.2) and (1.3) the family of maximal ideals in 4, is a strueture-
family, and
(3.2) M(A4z) is homeomorphic to M(A+/0,) .
Finally, the.corollary of Proposition 2 gives

IM(S/Bz) is homeomorphic to A .

(3.1), (3.2) and (3.3) implies that M(4;) is homeomorphic to A,
and the theorem is proved.

(3.3)

§ 4. A representation theorem. The I-system of a distributive
lattice L is a half prime z-system of finite character, when I is con-
sidered as a semi-group under A. This z-system has the property that
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every finitely generated ideal is a principal ideal. We shall now prove
& theorem closely related to a converse of this statement. In fact, let S
be a commutative semigroup with a half-prime z-system of finite char-
acter, where every finitely generated ideal is a principal ideal. Denote
the canonical z-system of 8/0, by Z. Then we have:

THEOREM 8. There emists a family L of open sets in P(S) such that
8 is a lattice under ~ and U, and such that 8/0, is (z, 1)-isomorphic to L,
where 8 is considered as a semigroup under ~.

Proof. Put &= {U(s); seS}. For s;,8, ¢S there exists se S such
that (8)z = (81, $)s. Then
(4.1) U(sy) v U(sy) = U(s),
since P (8) consists of prime ideals,
(4.2) U (1) ~ W (sy) = U(s;8,)
and £ is a lattice under ~ and w. For & e 8/0,, put ¢(3) = U(s). Now,
§ =25 if and only if (s;, Os)¢ = (85, Oz)s. The w-system is half prime,
s0 this is equivalent to k{F(s,) = k§F(s,), which is again equivalent to
F (1) = F(s). To sum up, § = 5,<=U(s;) = U(s,). This shows that ¢ is
well defined and injective. Clearly g is surjective; that ¢ is multiplicative
follows by (4.2), and it remains to be shown that ¢ establishes a 1-1
correspondence between the ideals in §/0; and 2. To every Z-ideal A
in 8/0y there corresponds an z-ideal By in § such that A = p(Bs),
where y i3 the canonical mapping of § onto 8/0,. Now ¢(4;) = {U(s);
$e€Bg}l. For sef, s;eBg, we find U(s) ~ U(s,) = U(s;s) ep(4;). For
81y 85 € Bz we find s € § such that (s)z = (84, Sy)z, and U(s) v U(s,) = U(s)
€p(4;), since we clearly have s e B;. Thus p(4:) is an I-ideal. Con-
vergely, every l-ideal in £ may be written in the form {l[(a); aed}
for some 4 C 8. As ¢7'({U(a); @ € As}) = p(As), the proof is complete
if we show that 4.= 4. It is sufficient to show that for any finite sub-
set ¥ of 4, N; C A. To see this, we observe that if N;= (s)s, then
LJJVII(a) = U(s), and as {U(a); a e A} is an I-ideal, U(s) e {U(a); a c A},
ae.

sed and for every le($)z, we have sePz=1eP; for every prime
ideal P,. Thus (f) C U (s), and again since {U(a); a € A} is an I-ideal,
we conclude that ¢ e d. To sum up, Nz C 4, and the proof is complete.

§5. A characteristic property for Boolean algebras. Finally
we give an application of the previous theory to a simple algebraic
problem. Let L be a distributive lattice with the I-system.

THEOREM 9. P(L) is compact if and only if L has a greatest element.

Proof. Since the I-system is half-prime of finite character, and
every finitely generated ideal is a principal ideal, the theorem follows
from the corollary of Theorem 5.
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TamorEM 10. Let L be a distributive lattice with o great_est ‘olemam '[
and @ least element 0. Then L is a Boolean algebra if and only if P(L) is
Hausdorff.

Proof. If I is a Boolean algebra, then for any a e L, U(a) = §(Ca),
and B(I) is Hausdorif by Theorem 1 and Theorem 3 (C). Gonverselylv,
assume that P (L) is Hausdorff and let a # 0, I. Let P; ¢ §(a). For every
Qlei}(a) there exists an element d such that @;e U(d) anyd‘ P”‘u(:l).
These 1(d) form an open covering of the compact set §(a) (Theorem 9),
and we can find dy, da, ..., dn such that

(5'1) %(a)gu(dl)U...Uu(dn):u(i\lldi)‘

Now put b= \17 d;. By Theorem 3 (C) and Theorem 1, §(b) is open,
and P eF(b)- 1611 the other hand W(a) is closed and therefore compact.
Thus the sets §(b) form an open covering of the compact set U(a), and
we can find by, ..., b such that

(5.2) W(@) CF(by) O F (be) e U () = (A i)

i=

m 1 - BIT (3
Now, for every Pie$, a A (ii\l bs) e P1, and since kP = {0} we have

LAY =1
i=

m m o L
a A (7\ b;) = 0. On the other hand, a v (ii\1 bi) = A (a Vv by is contained

mn .
in no proper prime ideal. In fact, if ii\l (a Vv bs) € Py, then for some‘ 1gy
@ V biy € P1, consequently a € Pz and by € P, ie., Pred(a) and P; ¢ W(b;),

mn m . )
which is impossible. This gives that a Vv (i/=\1b¢) = I, and L\l by 18 a com-
plement of a.

CoROLLARY (Nachbin). 4 distributive lattice with 0 a,m'l I is. a Boolean
algebra if and only if every proper prime ideal is a mawimal ideal.

Proof. For a distributive lattice we always have It C EB: It B(L)
is Hausdorff, we therefore conclude M = P. On the other hand, if M = 21.3,
then clearly MM = N =P, and by the corollary of Theorem 1, P(L) is
Hausdorff. i
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