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Monotone relations which preserve arcs and acyclicity
by
Jane M. Day* (Gainesville, Florida)

This paper is dedicaled
to Professor 4. D. Wallace
on the occasion of his siztieth birthday,
August 21, 1965.

1. Introduction. A relation from X to Y is a multifunction
from X to ¥: precisely, R is a relation from X to Y iff RCX X Y
and the first projection of R is all of X, The following are some long-
known theorems [9] about monotone functions: if f: X—¥ is a non-
constant continuous monotone function and if ¥ is Hausdorff, then
X an arc (simple closed curve, dendrite, unicoherent space) implies f(X)
an arc (simple closed curve, dendrite, unicoherent space). In this paper
we pregent similar theorems about monotone relations.

2. Definitions and preliminaries. Let RC X X Y; if ACX,
AR will denote {y e ¥|(a,y) ¢ R for some a ¢ 4], and AR will be called
the image of A under R; it BC Y, RB will denote {xeX|(x,b)eR for
some beB}, and RB will be called the inverse image of B under B.
We will use [] to denote the empty set, A* to denote the closure of 4,
and A\B to denote {a e Ala¢B}).

» A relation R from X to Y is defined to be monotone iff Ry is con-
nected for each 4 ¢ ¥ and noninclusive iff Ry ¢ By’ whenever y + ¥’ € XR.
This latter condition is fairly restrictive and seems to be useful only
when X has some order characterization. It generalizes the fact that
for a function f: X%, F¥) ~f*(y') =[] whenever y sty’. So far,

the only equivalence we have found for noninclusivity is the following
gimple one.

* This work is largely from the author’s dissertation, which was completed at
the University of Florida in April, 1964. The author wishes to thank her chairman,
Professor W. L. Strother, for his excellent guidance, Professor A. D. Wallace for many
suggestions, and the National Science Foundation for its support. (Part of this work
was done with support from a N.8.F. Cooperative Fellowship, and part with support
from N.8.F. Contracts GP 2080 and GP 3623.)
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Levma A. If R is a relation from X to Y, R is noninclusive iff
(X\Ry)R = XR\y for each y < X.

Proof. Tet R be noninclusive; if y e ¥ and ¥’ ¢ XR\y, then Ry’ ~
A (X\Ry) # [] 50 y' « (X\Ry) B. It is always true that (X\Ry) B C XR\y,
hence we have equality. Comversely, suppose the condition holds and
y =4 in XR; then y e XR\y' = (X\Ry'}RE implies Ry ~ (X\Ry’) + [],
8o Ry ¢ Ry'. _

We will use the following lemma, which colleets two well-known
results. e

LEymmA B. Let R be a relation from X to ¥ which is U.S.C. (for
each U open in" ¥, {zeX| 2RCTU is open in X}). Then

(i) If xR is connected for each » ¢ X and P is connected in X, PR ig
conmected; .

(ii) If @R 4s compact for each ® ¢ X and P is compact in X, PR is
compact. ‘

Proof. (i) iy Theorem 3.9 in [8], and (ii) appears as Theorem 3.2
in [5] and on page 110 of [1}

By continuuwm we mean a nonnull compact connected Hausdorff
space. In all that follows, X and Y will denote nonnull Hausdorff spaces
and R will be a monotone U.S.C. relation from X to X with the property
that ©R s a continuum for each ® e X and XR is not a point.

3. Arec, pseudocircle and tree theorems. By arc we mean
a continuum with exactly two noncutpoints; thus an arc need not be
metric as we define it, but if it is, it is of course a homeomorph of the
unit interval. ‘ ‘

THEEOREM 1. Let X be an arc and let B be noninclusive. Then XR i8
an are and further, if X 18 metric, XR s meiric. )

Proof. XR is a nondegenerate continuum by Lemma B and hypo-'

thesis, and it is well known that such & continuum has at least two
noncutpoints. To prove that XR has exactly two, let 0 and 1 denote
the noncutpoints of X; we will prove that OR and 1R are single points
and that every other point of XR is a cutpoint.

Define a cutpoint order on X as follows: for w,a' e X let o <o
iff @ =0, x =a' or &.separates 0 and o'. o <’ will mean that o <o’
and @ 5 o', This is a linear order and since X is an are, the topology
induced by it is the given topology of X ([3], Theorem 2-25). For
a,beX, (a,b), [a,b), (a,b) and [a,d] are defined in the usual way:
je., (a,b] ={reX| a<®<b}, ete.

To see that OR is a single point, suppose y vy’ COR; then 0 e Ry ~ Ry’
and since B is monotone and X is linearly ordered, either Ry C Ry
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or Ry'CRy. R is noninclusive, 80 y =¥’; thus OR is a point and
similarly, 1R is a point.

Next let y e XR\(0OR v 1R). Since {y} is closed and R is TU.S.C.,
Ry is closed; R is monotone and 0 and 1 are not in Ry, so Ry =[p, q]
C(0,1). Let P =[0,p] and @ =[g,1], and note that since E is non-
inclusive, PRuU QR = XR. By Lemma B, PR and QR are compact,
and Y is Hausdorff so they are closed. Neither PR nor QR is a point,
and PR~ QR =y: since if ¥’ e PR~ QR, then Ry nP#[] <« Ry’ ~nQ
and Ry’ is connected so Ry’ D Ry. This implies ¥ = ¢’ since K is non-
inclusive, 50 we have shown that ¥ is a cutpoint of XR which completes
the proof that XR is an are.

Now suppose that X is also metric. We will define a trace for E
(2 continuous function #: X—XR such that i(x) exR for each « eX)
which iz onto; since X is a compact metric space and XR is. Hausdorff,
this will imply that ¢(X) = XR is metric (Theorem 3-23, [3]).

Since XR is an are, its topology is the same as the order topology
gotten by defining y <y’ in XR iff y =0R, y =y’ or y separates 0E
and y’. Define ¢: X->XR by #(X) = inf xR, which is well defined since
2R is compact and linearly ordered. Note that ¢(0) = OF and ¢(1) =1E
50 t(X) containg the noncutpoints of X.

To prove that t is continuous, note that {[0R,y) and (y, 1R]}
y € (OR,1R)} is a subbasis for XR and, since B is U.8.0.,, t*((y, 1R])
= {w e X| inf 2R ¢ (y, 1R]} = {# ¢ X| «R C (y, 1E]} is cleazly open. To see
that t'([OR,y)) is open requires more work. Let y, <[0E,y); find g,
such that y, < 91 <y. Let Ry, =[po, @] and Ry =[py, @) ¢ # ¢ since
R is noninclusive, and Ry, ~ (g,1] = [J since ((ql, 1} R is a connected
get which contains 1R but not %, hence not y,. Therefore ¢,< ¢;, s0 We
have t(ys) C Ry, C[0, ¢,) which is open in X; further, [0, ¢,) C ¢ ([0R, y)):
for clearly ([0,7,)RC[OR,y) and if e[p,, ), then Y, esRA[OR,y),
50 t(») e [OR, y). This completes the proof that ¢ is continuous, so we
can conclude that ¢(X) = XR, since #(X) is connected and contains the
noncutpoints of XE. -

CoROLLARY. If X s an arc and f: XX is a nonconsiant continuous
monotone function, then f(X) is an arc.

Let us define X to be a pseudocircle iff X is a nondegenerate con-
tinuum such that the omission of any two distinet points separates it. One
can use Lemma 11.19 of [10] to show that this is equivalent to either
of the following: X is a nondegenerate continuum such that for.any
two. distinet points a, b e X (for two distinet points a,b e X), X is the
union of ares I and J, each having a and b as noncutpoints and having
no other points in common. A metric pseudocircle is of course a simple
closed curve.
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TeEoREM 2. Let X be a pseudocircle; lét B be moninclusive, and let
there exist a 7 b in X such that aR and bR are distinct points. Then XR
is o pseudocircle and if X is metric, XE is also.

Proof. Let T and J be arcs such that X =Ivd and Ind =aub.
Tt is simple to see that R’ = B~ (IXX) satisfies all hypotheses of Theo-
rem 1, so that IR’ = IR is an are. Similarly, JR is an are, and IE~JR
— aR U bR since R is monotone, which completes the proof that X is
a pseudocircle.

If X is metric, then by Theorem 1, IR and JE are metric, hence
XR is also.

CorotnArY. If X is a pseudocircle and f: X—Y 4s a nonconsiant
continuous monotone function, then f(X) 4s a pseudocircle.

A tree is a mnondegenerate continuum in which each two distinct
points are separated by a third point, and a branch point of a tree is
a point whose complement has at least three components. We note that
a metric tree is a dendrite [9] and a tree is locally connected [8]. The
other properties of trees which we will use are all known and avre either
immediate from the definition or are eorollaries to the following lemma.
A space is called hereditarily wnicoherent iff the intersection of each two
closed connected sets is connected.

Lemva C. If X 48 a tree, then

() X is hereditarily unicoherent, and

(i) if @ b in X, there is & unique minimal subcontinuum O(a, b)
joining @ and b, and C(a,Dd) is an are.

Proof. (i) Suppose that X is not hereditarily unicoherent: then .

there are H and K, subcontinua of X, such that H ~ K = B v F, where
E and F are separated. Since B u F CH, there is 2 minimal subconti-
nuum O in H which joins B and F; then it can be shown that O\(E v F)

is comnected, and if ¢eC~H and fe OnF, evfu [O\(EvF)] is con-

nected. There is some « ¢ X which separates e and f since X is a tree,
50 clearly @ ¢ O\(¥ v F). However, ¢ f CEKC X\» and K i3 connected,
which is a contradiction. Therefore H ~ K must be connected.

(ii) Since X is a continuum, there iy a minimal subcontinuum O(a, b)
joining @ and b; C(a,b) is unique since X is hereditarily unicoherent.
~ To see that C(a,b) has only @ and b as noneutpoints, let @ e O(a, b\

(@ b) and suppose that  does not separate a and b. Since X iy locally
connected, components of X\x are open and locally connected, and there
iz a component J of X\w such that a v b CJ. Bach point of J has a con-
_nected neighborhood with closure in J, 8o there is a finite chain of con-
nected open sets, Vy, ..., Vu, such that ¢ e Vy, beVy, Vin Viga # [ and

n
K == ¢U1V? CJ. Then K iz a continuum containing & and b, but C(a, b)
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¢ K, which is a contradiction. Therefore # must separate ¢ and b
in X and hence in C(a, b), and the noncutpoints of CU(a,b) are just
and b.

THEOREM 3. Let X be a tree; let B be noninclusive, and for each b e B
= {w| # is a branch point of X}, let bR be a point. Then XR is o tree,
and if also X is metric and B is L.8.C. (RU is open for each U open in Y),
then XR is metric.

Proof. XR is a nondegenerate continuum by Lemma B and hypo-
thesis. To prove that XRE is a tree, let y, # 4, in XR; we will find 4,
in XR which separates y, and ¥,.

Oase 1: Ry, ~ Ry, =[]. Since Ry, and Ry, are disjoint continua
in the tree X, there is an ¢ X which separates Ry, and Ry,. Let
4, € %, B and note that Ry, separates Ry \Ry, and Ry,\Ry,, and neither
of these sets is empty since R is noninclusive. Therefore X\Ry, = Py v Py,
separated sets such that y, ¢ PyR and y, € Po R, and XRB\y,=P,R v P,R.
Next we will show that P, R and P,R are separated. Suppose y € (PLR)* ~
~ P,R; by Lemma B, (P,R*) C P{R, s0 y ¢ PIE ~ PR, which is to say
that Ry ~ P} 5 [] # Ry ~ P,. If there is any b e B ~ Ry,, then b sep-
arates P, and P, and Ry is connected, so beRy. Then b e Ry n Ry,
and bR is a point, 80 bR =y = y,; however, y ¢ P,E and y,¢ P> E, which
is a contradiction. Hence Ry, ~ B must be empty, so we can say that
Ry, is a point or an arc. But then Ry, C Ry, which implies ¥ = ¥, since
R is noninclusive, and again we have a contradietion. Therefore (PyR)* n
~P,R =[], and dually, PR~ (P;R)}* =[], so PR and P,R are
separated.

Case 2: Ry ~ Ry, # [1. Since R is single-valued on B, By, n Ry, ~
~ B =1]]; since a tree is hereditarily unicoherent, Ry, ~ Ry, is con-
nected, so Ry; ~ Ry, is a point or an arc. Let %y € Ry, ~ Ry, and let
Yo € T R\(#;  ¥s), Which is nonnull since %R i3 connected. Since R is
monotone, noninclusive and single-valued on B, one can show that
Ry, C Ry, v Ry, hence Ry,CRy, Ry, and Ry~ (By\Ry:) # [ # By~
~ (Rys\Ry,). Thus we again have X\Ry,=Piv P,, separated sets
such that y, e PR and y,e PR, and XR\y,=FPEv P,R. It now
follows just as in Case 1 that P;R and PR are separated, and this com-
pletes the proof that XR is a tree.

Now suppose further that X is metric and B is L.8.C. Let 2%B
={4 CXR| A = A* 5[]}, and for UC XE, let 2U = {4 ¢ 2%B| AC U}
and 2p = {A €2%B| A ~ U # [J}. We will let 2%F have the finite, -or
neighborhood topology ([4], [5)), ie., the topology generated by {2V and
2g| U open in XR}. Define ¢: X-»2%R by g¢(z) = @R; since B is US.C.
and L.8.C., ¢ is continuous, and if # = {4 C XR| A is a nonnull con-
tinuum}, ¢(X) C #£C 2%E
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In [8], Ward defines a partial order for a tree which satisfies the
hypotheses of Capel and Strother’s theorem in [2]; by that theorem,
there is a continuous function f: £#—XR such that f(4)e A for each
A e The composite function fg: X—>XR i3 continuous, so fg(X) is
o connected metric space; if we can prove that fg(X) contains all the
noncutpoints of XR, then fg(X) = XE and our proof will be complete.
YTet y be a noncutpoint of XR; since R i single-valued on B and R is
L.8.0., B is single-valued on B* Ify = bR for some b e B*, then fg(b) =y
g0 4 €fg(X). If y ¢ (B*)R, then there ig a component J of X\B* such
that y e JR; X is locally connected, so J is open in X, hence J is

nondegenerate. Then a corollary to Lemma Cris that J* is an arc, and

it is not difficult to see that J*, ¥ and R’ =R n (J*X X) satisfy the
hypotheses of Theorem 1, so (TR’ = (J*)R is an arc. Also, by the
proof of Theorem 1, if a and b are the noncutpoints of J*, aR and bR .are
the noncutpoints of (J*)E. By suprosition, y does not cut XR so y cannot
cut (J*)B; hence either y = o or y = bR, and in either case, ¥ efg(X).

CoRrOLLARY. If X is a tree and [: XY is a nonconstant CcontinuUous
monotone function, then f(X) is a tree.

4. Unicoherence and acyclicity. It seems that noninclusivity
ig irrelevant to the preserving of unicoherence or acyclicity with a re-
lation, and that the key condition needed is point unicoherence or point
acyclicity, respectively. In [6], Wallace used point acyelicity to prove
an acyclicity theorem which is restated in relation theory terminology
in [7]. The following theorem is very similar to the theorem in [7]; we
restrict X so that its subcontinua are well behaved and conclude that
their images are, whereas there conditions are placed on all the closed
subsets of a space and one concludes that their images are acyeclic.
We omit proof of the following theorem, for after one .observes that
A A B is a continwum, for overlapping subcontinua A and B of a he-
redifarily unicoherent space X, and that (4 ~ B)E = AR~ BE when
R is monotone on a hereditarily uniecherent space X, the proof is just
like the proof given for the main result in [6]. ‘

H™(Y; @) represents the n-dimensional Alexander-Kolmogoroff-
Wallace cohomology groups of a space ¥, with an arbitrary but fixed
coefficient group @. A continuum Y is wnicoherent iff A ~ B iy con-
nected for any two closed connected subsets A and B whoge tunion
is ¥, and is acyclic itf H™(Y; G) = {0} for all n >>1 and each G. As is
well known, a continuum ¥ is unicoherent if HYY; ) = {0} for each @.
Recall the standing hypotheses on R made in Section 1.

THEOREM 4. Let X be hereditarily unicoherent and have the property
that each of its nondegenerate subconiinua is decomposable (is the union
of two proper subcontinua).
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(i) If H «xR; @) = {0} for each G and each » e X, then HY(KR; @)
= {0} for each G and hence KR is unicoherent, for each subcontinuum
K of X.

(ii) If oR s acyclic for each x € X, then KR s acyclic for each sa‘tb~
continuum K of X.

Certainly a tree satisfies the hypotheses on X, as does a non-loeally
connected space such as the sin(1/s) curve together with the are to
which it converges.
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