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1. Summary and notation. The theory of recursive equivalence
types is an effective analogue of the theory of cardinal numbers. It
originated with Dekker [1] and has been developed at least by Dekker,
Myhill, and the author ([2], [3], [4], [6], [7], [8], [9], [10], [11], [12],
[13], [14]). Let ¥ = {0,1,2,...} be the natural numbers. If «,C 7,
call a recursively equivalent to f if there exists a 1-1 partial recursive
function p whose domain contains a, and which is such that p(a) = 8.
The equivalence class <{a) of a under recursive equivalence is. called
a recursive equivalence type (RET). The set of RET’s is denoted by Q.
With each n in F is associated the RET of all n-element subsets of E.
If n is identified with this associated RET, then E becomes a subset
of Q. For a,3C H, define a @ f=[20| v ea] v [22+1| 2ef] and a® B
=[2"3"| wea and y €f]. Define addition and multiplication in 2 by
{ay+<{f>=1<Ka@® By <(a)X{p>=<a® B>. The set A of isols consists
of all those #x €2 such that 41 % #. Then EC ACQ. The arithmetic
of A is fairly well understood ([2], [3], [4], [6], [7), [8], [12], [13]).
A fundamental tool for the analysis of 4 was the notion of a re-
cursive combinatorial function f: x»EF—+F and its induced normal
funection fo: x*Q-—+Q. This was introduced by Myhill [8] as follows. Any
function f: x*E-~E has a uniquely determined expansion f (@, ..., @n) =
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3 6(0yy +en s in) (ﬁ) ("””) Here ¢: x"E->E*, where B*= {0, 1, 42, ...

n,
is the rational integers; and (9:) is the number of 4 element subsets of an o

element set. An j: x*E—F is called combinatorial it all ¢(tx, ..., i) > 0.
Let T(E) be the class of all subset of B, let Trin(H) be the class of all finite
subsets of B. Let j: (X "Frmn(H)) X B—F be a fully effective 1-1 onto map,
For any set A, if ae x"4, write a; for the ith coordinate of a. For
a, B € x*F (), write a < f if as C i for all i. Write <a) for ({or), ..., {an}).
Then Myhill’s normal funetion fo: X"2--Q is defined as follows. First
define g?: X*Tyu(H) >Tmn(H) by

(1.1) o) =[i(a,z)| 0 <@w<o(la)d)] for aex"Tu(H).
Then define ¢: x*9(E)—~>T(H) by

1.2 = “(8) , x*§(B).
(12) ACE NSNS L

Finally, define fo: x»Q2-+2 by

(1.3) falle)) = {p(a)y, aex"T(H).

When f is recursive combinatorial—i.e., both recursive and combi-
natorial—this normal funetion is well-behaved and very useful for in-
vestigating 4. Among the recursive combinatorial functions are z-y,
2y, (x--1)Y, 2!, p(2y, ..., @) = @¢, and constant functions with values in E.

As Myhill observed [10], recursive combinatorial functions degener-
ate rather badly on 2—4 and are for that reason less useful to inves-
tigate Q. The principal contribution of the present paper is the intro-
duction and development of a formal generalization of the notion of
combinatorial function which is designed for analysis of 2— 4. This is
the notion of a combinatorial series. A combinatorial series is a formal
Series f== 2 ¢(iy, ey n) (:i) ("’.") where

In,
¢: X"H—H o {8}.

Thus the generalization amounts to allowing %, a8 a value for the
coefficients as well as values in E. Corresponding to each such series f
is a normal function fo: X2~ given by (1.1), (1.2), (1.3). The only
change is to allow ¢(<a)) the value &,.

There will be two principal propositions, of which all other results
are coroliaries. The first concerns identities. A basic fact about recursive
combinatorial functions is that they are closed under composition and
any identity between them true in F yields an identity in 2 between
corresponding normal functions. There are two obstacles to extending
this result to combinatorial series. One obstacle is that combinatorial
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series are purely formal, and are not given as maps. How is formal com-
position t? be dt'afmed“{ That is, 17 (tyy «uey Un)y Gty ooy Uk)y vy Gty 5 ooy i)
are combinatorial series, then what series should the formal composition
F(gy - gn) = 7 (g(tgs e %), oy Gl ooy z)) Dot This is amswered in § 2
so as to extend the notion for combinatorial functions. The second ob-
gtacle concerns recursiveness of the series. A combinatorial function f:

XvH—>Hy, f=2 ¢(41y .0y in) (z‘) (w."), is recursive if and only if e:

1, A,
x*H —F is recursive. It is natural to call a combinatorial series

D 6(iyy ey in) (‘Z) (';)
recursiwe if in the natural sense ¢: X"E->Ewu {8} is recursive. (More
precisely, let h: B {8} —F be defined by k() =10, h(x)=2-+1 for
zeH. Then ¢: X"E—>Ewu {8} is called recursive if h(c): X*E—>FE is
recursive in the usual sense.) A counterexample in § 3 shows that such
recursive series are not closed under composition. This obstacle is by-
passed by considering a wider class of series than the recursive series
defined ag follows. Call ¢: X*E—~Eu {8} an R4t function (or a limil
of a monotone inoreasing recursive sequence of recursive funciions) if there
exists a recursive sequence of recursive functions f,: X™E-F such that
for all ¢ e X" B (1) folf) < f1(8) < ... (2) e(d) is the least upper bound in
B u{s,) of the values of fy(d), fu(i),... Call a combinatorial geries

F=2 (i, -y in) (’;i) (w:) an R4+ series if 6: XnH—~B {8} is an B %

1
function. Then R4 series obviously include recursive series and we have
ProrosITIoN I (§3). The R combinatorial series are closed under
composition. If F(ry ooy Bn)y G{Byy voey V) s oy PHDyy ey 06) are R4 combi-
natorial series, then for ©e X¥Q

fﬂ(g}l(w)’ ey gg(m)) = (f° (6% s gﬂ))g(m) .

Consequently any formal identity between Bt series yields an identity in Q
between corresponding normal functions.

The second principal proposition concerns inequalities. It is used
to produce RET’s satisfying specified systems of equations and inequa-
tions. It can be used to classify the possible algebraie relations between
RET’s. This will not be carried out here since it depends on more of
the theory of addition of RET’s than it is convenient to produce here.
However, in §5 an application is given to prove the following result
of Myhill [10]. If 4 @, the idemmultiplicity of A is the least m =1
such that A™ = 24™ (or is oo if no such finite m exists). The idem-
potence of A is the least n =1 such that A" = A™* (or is oo if no such
7 exists). The result is that for any m, » with 1 <m < n < oo, there
exist A e Q— A of idemmultiplicity m, idlempotence #.

8*
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The inequality theorem is as follows. Say that almost all # in Q
have property P if there exists an # in B such that P holds for all
2eR—{0,1,...,n}. Also for z,y € 2, write # < y if there exists a z in Q
with #+2z=y.

Proposrrion IT (§ 4). Let f(u) = 3 o(d) (2‘) and g(u) =3 d(i)(:.‘) be
R4 combinatorial series. Then the following three conditions are equivalent.

(1) falz) < golz) for almost all z in Q.

(if) For some k e B, there exists a rvecursive R+t series h(u) such that
fu+k)+h(u) = g(u+ k).

(iii) For some k e B there exists an Rt function e¢: B—E such that
for all ie B

o(0) (o) oG+ 1))+ eli+B) (F) + i)
= d() (75)+d(¢+1) (71”}+ +d(E+F) (2) .

Moreover, there are ¢ isols z such that for any pair of R 4 series iy g
violating (iii), fo(x) < go(®).

This proposition and (11.3) of [12] coincide when applied to re-
cursive combinatorial functions of one variable. Proposition IT can be
generalized to functions of several variables. The main content is that
" algebraic properties of values of f, are correlated with arithmetical prop-
erties of the coefficients e(4). i

Proposition IT can be applied (§ 4) to show that Proposition I fails
with the weaker hypothesis that the series have coefficient functions
¢(%y; ..., in) which are merely limits of recursive sequences of recursive
functions rather than monotone limits.

Finally, Proposition I allows the resolution (§ 6) of some problems
about the isolic integers raised in [13]. Adopt the terminology of [13].
Suppose that ¢ is a quantified conjunction of atomic formulas. Suppose
that ¢ is true in E* and in B* ¢ has Skolem functions in both two

number quantifier forms in the Kleene-Mogtowski hierarchy. The main
result is that then ¢ is true in A*.

2. Combinatorial series and operators. A generalization of
combinatorial operators ([8], [12]) suitable for combinatorial series is
needed. Construe X*$(E) as a boolean algebra by defining for a,p
eX¥(B), i=1,..,% (aVphi=au Biy (aABhi= o i, (a—B)
= a{— ﬁt.

A precombinatorial operator is a P XETun(B)— T (H) such that (2.1)
and (2.2) hold for o, § ¢ X*Tyn(B).

(2.1) e#f implies y(a)np(f)=0
{where @ denotes the null set).
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(2.2) <ad>= <{B> implies that y(a) and (B) have the same number of
elements. (N.B. y(a) may be infinite.)
A combinatorial operator is & : X*T(B)~F (F) such that there exists
a precombinatorial operator y: Xty (B)—>T(B) satistying (2.3) below
for all a e X*¥T(E).

2.3 (a) = .

@3) ple) ﬁSa,ﬁeLXJ"ﬂ‘un(E)W(ﬂ)

Then v is uniquely determined by ¢ since by (2.3) and (2.1), v(8)

=¢(B)— | o(f) for all §e X Tun(E). It is thus legitimate to write v
B'<B

as ¢% and we have
(2.4) #{a) = @(a)— ﬂL<J @(B) dor ae X Fum(B).

For # € 9( X*E), define @, as the a ¢ X*Tgu (B) such that z « p*(a). By (2.2}
and (2.1) each combinatorial operator ¢: X*F(H)—T (B) yields a function
¢: XEH—>F v {8} given for i e X¥F by ¢(i) = cardinality of ¢*(a) when-
ever <ay=4. We call > (i, ..., %) (":i) (2:) the combinatorial series
o# induced by ¢. Note that by (1.1), (1.2), (1.3), every combinatorial
geries i3 induced by at least one combinatorial operator.

THEOREM 2.1. Combinatorial operators are closed under composition.
That s, if @: X*S(H)—>T(H), v;: X¥T(B)=>T(H), ..., pn: X"EI‘(E)»‘J‘(E")
are combinatorial operators, then @o (Py, ..., Pu): X¥T(H) - F(B) ¢s
also a combinatorial operator. (Here we put (po(wy, ..., wﬂ))(al, ey OF)
= ‘7’("/’1(0‘17 veey G)y eevy Yu(Gyy eony a;,)) .) Further, suppose ¢": X".S’(E)—»ﬂ‘(E),
yi: XEG(H) ~ (B), ...y yn: X¥T(B) >F(E) are combinatorial opemltorg
such that ¢* =¥, @IF =off, .., ¥ =o. Then (9"0 (9, ..., yn))
= (po 91y s wal)

Proof. Define §: X*¥Gu(H)>E for o e X*¥Fu(H) by
(2.8) @ e06(a)if and only if: (i) ®, exists; (ii) uy, exists for all u € (z)s,

n
i=1,..,n; () a= i\£1 us\éw)‘

It will eventually be shown that 8 is precombinatorial (Lemma 2.3),
that 6 yields a combinatorial operator which is ¢ o (v, ¥ ,_1,0,.) (Lemma. 2.4),
and that the coefficient function for (e (11, ...,w,,)) is detu@ed by
the coefficient functions for <p#, o L wf (Lemma 2.4). This will prove
the theorem. .

For aeX*F(H), let I(a) consist of all Be x"_ﬂ‘(E) with 8 < a. Call
a 2n-tuple (Fy, ...y Fny f1y ey fn) admissible for a if:

@6 O Py, PaCI(a) (i) s is a funetion with domain Fi;
(ili) for B eFe, O = 14(B) Cyi(B); (iv) a=‘\=/1 ﬁ}{k B-
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LEMMA 2.2. @ € 0(a) if and only if there exists an (Fy, ..., Fu, f1, ey fn)
admissible for o such that

» E‘Pe(ﬁgxfl(ﬁ)’ m,psLEJ‘,. fﬂ(ﬁ))

Proof. Suppose @ € 0(a). Define F; to be the set of u, such that
we (@, §=1,..,n. For BeFy, define fif)= () ~vi(B). We prove
that (Fyy .oy Fny f1y ooy fo) is admissible for a. Note that (2.6) (ii) is
clear, while (2.5) (iii) implies (2.6) (i), (iv). As for (2.6) (iii), suppose
peF;. By definition f=wu, for some e (%), 50 w eyf(p). Thus
% ¢ (Tp)s ~ PUB) = f4(B). Therefore @ 5 fi(B) C yi(B). Last, we show that
wezp‘(ﬂgﬁfl(ﬂ),...,ﬁyﬂf,,(ﬂ)). As above, for ue(®,)i we have uefi(B)

where f = u,. Thus (z,); C HL% f4(B). The converse inclusion is evident,
€Lt
so my=( U 18, -, Lg f»(B)), and the desired conclusion follows.
BeF, BeFn

Conversely, let (Fy,...,Fn, f1,...,fn) be admissible for a with ze
(p‘(ﬂ‘[‘% fl(ﬂ)""’,,y, #2(B)) - Then @, exists by definition, verifying (2.5) (i).

Certainly also 2, < (ﬁ‘e\fj1 18, ---,ﬁg fn(p)). Thus (%)tQﬂLg fdB). It u e
. . . » 5
(@), this implies that w efi(8) for a B eFy. By (2.6) (iil), /«(8)C v¥(B),
80 Uy, exists and u,, < B. Thus (2.5) (ii) holds. Further, by (2.6) (iv), 8 < q,
n
80 %y, < a. Thus \V V u, <a To get the converse inequality, ob-

=l u.c(a:w)‘

serve that by (2.6) (iv) it suffices to show that for B e#;, we have
»
B<V 'V uy,.By (2.6) (iii), f«(f) is non-empty. Let u ef(8). By (2.6) (iii),

i—luc(z,,)‘
% epi(B), so0 Uy, = B.
LEMMA 2.3. 6 is a precombinatorial operator.
Proof. To verify (2.1), simply note that « ¢ 6(a) implies that a is
n

determined by =, since a=V ue\(éw)‘ Uy, Thus @ e6(a) ~ 6(8) implies
a=f8. To Verl:fy (2.2), suppose that a,a’ e X ¥Fn(B) and <ad = <a’d.
Then there exist 1-1 onto pi: ai—~af, 4=1, ...,k Let p: I(a)->I(a")
l?e the 1-1 onto. map such that for g eI(a), pf= (pfy, -.., P& Br). For
t=1,..,7n, define a 1-1 onto g ﬂg)wﬁ(ﬁ)jltlj(,;p‘}(ﬂ’) such that if
B'=pp, then alyi(p) = pi(p). (Such maps g exist si
her . S ¢ exist gince = ('
and y; satisfies (2.1) and (2.2).) B=
Ther:e is a 1-1 correspondence between admissible 2n-tuples for a
and admissible 2n - tuples for o’ given by

(Fyy ---’melym:fn)""’(lﬂ{: "'7F;Hﬂ7 yﬂb);
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wheve Fi=[pp| fFi] and fif)=afjdp) for feP and § = pp.
Then since ¢; is 1-1 onto, fi(B) has the same number of elements
as ﬂ‘(ﬁl)f Due to (2.1), for fixed ¢ and distinet g;, f, we have that fs(B;)
is disjoint from fi(f,). Thus MLBJ fi(f) has the same number of elements
. i
as U fi(B'). Therefore (2.2) for ¢* yields that ¢ \J fi(B), -, U Fu(B))
i . BeFy BeFn
and ¢*{ U fi(6"), s U 1a(8")) have the same number of elements. Further,
Befy peFy
if (Fyy ey Fuy fry ooy fu) and (Gyy ooy Guy Gay -ooy n) are admissible for «,

we claim that ‘Pe(ﬁgl F(B)y s ,5&'1;',, fﬂ(ﬁ)) and ‘Pe(ﬂg.(); i)y vy 5‘26! gn(ﬂ))

are digjoint. Otherwise, there is an 2 in both these sets. Then ()
=,3L1)~ fi(B). Since fi(f) C v¥B) and (2.1) holds for ¢, it follows that
€y

fi(B) = (@g)s ~ ¥i(B). Then Fi=[f] (wp)i ~yi(p) # O] Since the same
argument applies with Gy replacing F; and g; replacing f;, we conclude
that

(‘Fl’ sty F”) fl) AAAS fn) = (G17 ey Gﬂ’ iy oy gﬂ) .

Taking a union over all 2n-tuples admissible for a in one case and for o’
in the other shows that

b(a) = L.J‘)"E(ﬂg;‘1 f1lB)s ey BELFJ fﬂ(lg))

and

8(a) = U U B, s U FB)
p'eFy p'eFn

have the same number of elements.

LEMMA 2.4, The combinatorial operator induced by the precombinatorial
operator 0 45 @o (P, .-y Pu)- Moreover, the - coefficient fumction for
(o (s ooy zpn))# is determined by the coefficient functions for B AT Y.

Proof. xe (p(%( A)y veey w,,(a)) iy equivalent to the assertion that
@, exists and that (2,)iCyia) for i=1,..;n. In turn this is equivalent
to the assertion that x, exists and that for v e (@), Uy, exists and w,, < a.

n

¥ =Y\ V u,, this means that §<a. Applying the definition of 6,

g=1 us(zm)‘
it is clear that @ e@(pi(a), ..., yn(a)) is equivalent to the existence
of a (finite) p such that @ ¢ 6(8) and § < a. Thus g induces @ o (Pyy .- 5 ¥n)
according to (2.3). Finally, note that for ae X¥Jyn(H), the proof of
Temma 2.3 calculates the cardinality of 6(a) from the cardinalities
of various (p‘(ﬁU fl(ﬁl),...,ﬂEL}J fa(p)), the latter depending only on

€1 n #
&, vF, .., i, Thus (p(p(e), ..., ya(a)]* depends only on o, o, oy Ui

From Theorem 2.1 it follows that there is an operation on combi-
natorial series induced by composition of combinatorial operators. It is
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appropriate to characterize the induced operation on series directly.
Define the sum and scaler multiple of combinatorial series as follows. Let

f= 3 0liry ey in) (”Z) (’;.:),
g= 3 Ay eeyin) (”:i) (’;") ,

let @ e B U {8%}. Then

120 A, Nerode

jtg= Z (0(7;1, vees tn) ATy ey @7‘)) (2) (q:v:) !

of = ch(zl, . (u) (1::)

(ALl operations on coefficients are in the sense of cardinal arithmetic
in B {8} throughout.) Let 0 be the series which is the identity with
respect to addition—i.e., which has an identically zero coefficient funetion.

Since combinatorial series f with finite coefficients are in a 1-1 cor-
respondence with combinatorial functions f~ of natural numbers, and
combinatorial functions of natural numbers are clogsed under compo-
sition, there is an operation on combinatorial series with finite coeffi-
cients which corresponds to composition of functions. As temporary
notation, if f(vy, ..., ¥n)y (Vyy cvy Vi) s oory gDy, .oy V) ave combinatorial
series with finite coefficients, let f * (g1, ..., gn) denote the combinatorial
series h (with finite coefficients) such that for (my, ..., @) XEE,
K {my, oy o) = f—(gl—(ml) ey WE)g ey G (Wyy eeny mk)) LIt

F= Noli, -y it) (’Z) (;’:);

is a combinatorial series, define combinatorial series

Bo= 3 dliy, ., ix) (’z) (";:), Fr=Ye(is, .,

as follows. For o(dy, ..., %) = 8, let d(iy, ..., &) = 0 and e(iy, ..., i) = 1.
For ¢(dy; ..., k) < 8, let A(iyy ey ) = 6(iy, o ) and (¢, .. 7“?) =0.
It follows immediately that F = F,+%,Fr, and obviously F,, Fg
have finife coefficients. Next suppose given a combinatorial series

F =3 0(iy, o, ir) (il) (v") with finite coefficients. Define a combina-

%
torial series with finite coefficients

() - (2

Foo(vy, ..

+3 Vky Vkt1y ooy Vop) =

Ny .y i) (Zi) (“;::)
as follows. Let d(iy, ..., 45;) have as values only 0, 1, and let d (i, ...

if and only if there exists a ¢(jy, ..., jx) > 0 auch that: (1) 4, < jy, .

vy U < iy
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with some inequality striet; (i) 4+ (xe <7y, -
tpes =0, We have &t =7jp, t=1,..,k

The formal composition of combinatorial series can be defined as
follows using these definitions.

DEFINITION. Suppose that F (v, ..., vu)y G (05, ey V0),
are combinatorial series. Then Fo (G, ...,

«y b+ tox < Jx; (iil) whenever

, & ('01) i3 Tk}
@) is the combmatorml series

Fow (@ry ey @) 80((Fodo) # (G2, ooy O, Gy e, OR)
+ 0 FR® (G oy @)+ So((Fr)o) (G, ey G2, Gy ooy GR)
(2.7 Suppose that ', &, ..., G" have finite coefficients. Then Fo (G, ..., @)

=Fx (G, .., G").

Proof. =@, F.=F, Go=0, Fa=0, (Fr)w = 0.
From now on, write o uniformly, dropping =*.

Suppose that F has fz'mte coeffwzents Then Fo(@,.., @

=F°(G§7 - G”)+30Fm( Ty G, Gr, -y OF)-

Proof. Apply Fr=0, (Fr)w= 0, and (2.7) above. We require
lemmas connecting combinatorial operators ¢ and combinatorial series ¢*
induced by ¢. The first three are obvious

(2.9)

(2.8)

Let o, yp: XET(B)—>T(E) be combinatorial operators. Define ¢ @ p:
x*%(B) T () by (9@ v) (a) = p(a) Dp(a) for ae X*T(H). Then
e @y is a combinatorial operator and ¢ @y induces ik -y,
Let p: X T (H)—T(E) be a combinatorial operator. Let X be an o
element subset of B. Define p: X*$(H) T (E) by p(a) = XQ (p(a)
for a e XS (B). Then v is a combinatorial operator and vF =z

(2.10)

Let yp: XkT(E)~>F(H) be a combinatorial operator. Define com-
binatorial opemtors sz, vy XEF(B)—>T(B) by requiring _ for
a eXFTun(B): (i) If 9°(e) is finite, then va(a) =3 and s (a) =v"(a).
(ii) If *(a) is infinite, yh(a) = {w} (where @ is the least member
of v¥(a)) and vi(a)=D. Then ve,yr aré combinatorial operators

and (v¥)r = (pa)¥, (¥¥)e = (p)*
Levma 2.5. Let ¢: XS (H)—~T(H) be a combinatorial operator with
gt = 3 ¢(5y, o.ry in) (”i) (’;"n). Lot y: X8 (B)—~0(B) be defined by

, 0@ (B® ) -

(2.11)

P(ogy ey Opn) == ‘P(%@(E@ %+1)7¢2@(E® Onta)y oo

Then v s a combinatorial operator and
yH = gt $o(¢%)oo

(By convention g# is here regarded as 2 geries in 2y, ..y Vo)
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Proof. If yC B, let p,(y) consist of all ¥ ¢ B such that there exists
an 2 el with {£}® {y} ¢ y. Use Lemmas 2.2 and 2.4 or an easy direct
argument to show that for finite ay, ..., den; 9%(a; ... 02n) I8 a disjoing
union of all @¥a; @ ¥y ey an @ yu) such that yy, .., yn are finite, and
sueh that y: C B ® anis and py(ys) = onqs for t=1, ..., n. Of course if
@yt I8 empty, the one and only choice for y; is @.

However if an,4¢ is non-empty and has in4; elements and § > Tntty
it is an elementary exercise that there are infinitely many y: C F ® ay.,

such that y; has j elements and py(ys) = dn4s. This observation- will be
applied to evaluate v = > d(iy, ..., 2n) (2) (f::) Suppose that 4, ..., 4s,
are given. Choose ¢; C B of cardinality 4, {=1, ..., 2n.

Case 1. There is & ¢(fy, ..., fa) > 0 such that: (i) 4, <y, -, tn < fn,
with some inequality strict; (i) 4,4 dn41 < fuy ory ta+fen << jn; (iil) when-
ever ipi;=0, then 4;=74; for t=1,...,n. Then certainly for some ¢
among 1, ..., n, we have in; % 0. The remark above assures that there
exist infinitely many distinet (y,...,ys) with y: of cardinality j—is,
t=1,..,n and

Py @D 1y ooy an® yn) Cy¥(ary ooy Oan) .

Since each @%(a;® 71y ..., an® yn) has ¢(jyy «ory ju) > 0 elements and for
distinet (g, ...y ¥n)y (%1, oy ¥n) We have @%@ yi,-.e; 0n @ yu) and
9 ® iy ..., on® yn) are disjoint, obviously ye(ay, ..., asy) is infinite.
Therefore in this case d(4;, ..., fon) = 8-

Case II. Suppose that ¢(ji,...,Jn)>0 is such that: (i) 4 tns
<y ey bation<jn; () 4pys=0 implies =4, t=1,..,n. Then
=11 eey In = jn.

In this case the only choice of yy, .,y IS yy= .= =9,
80 y¥{ay, .., 0m) I8 ¢y @D, ..., an ® D). By (2.2) for ¢, the set
(0, DD, ..., an @ D) has the same number of elements as @¥ag,y vy an).
Therefore d(éy ..., Gn) = ¢(4y, ..., %n). Apply this calculation and the
definition of (¢#)e to get the conclusion.

Levua 2.6. Let ¢: X*F(B)>9(B), y: XtS(H)—>T(H),.., ym
X*§(H)-> T (E) be combinatorial operators. Let =T, pir= G Suppose
that ¢¥ has finite coefficients. Then

(e s PNFE=F(G, ..., 61)+ 0 Ful@, ..., 67, Gy ey GF).
Proof. Let ¢ be chosen as for Lemma 2.5. Let ¢: X §(H)—~T(H)
be a combinatorial operator with (# = 7. Apply (2.9), (2.10), Lemma 2.5
to get that

v = gt o) = (p(ar, e, ) D TR L(ay, .., ).
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Then the last assertion of Theorem 2.1 yields
(2'12) (TP(W%, "'7'4’?7'7’%?: "',1/’??))#

= [‘P("Pi) s U@ (E® é’(wi, ey "P:l"‘;”ih ) 'PT;E))]#
Now apply (2.9), (2.10), (2.11) to get that o™ = 6= G+ 5,6
= (1,;’;(—9 (F® wR))#. Then an application of the last assertion of Theo-
rem 2.1 yields
@13) (W' s ¥)F =[P @ (B k), ..., ' @ (Be vi) .

A look at 1330.6 definition of u in the proof of Lemma 2.5 reveals
P(es s Yoy YRy s ¥R) 18 (i @ (E® k), ., 90 ® (B @ 9h). Combine
(2.12) and (2.13) and this observation to get

(@ s ¥ = o, ety Y1) D (B® L, ooy o, vy ey w3

The right side can be rewritten using (2.9), (2.10) as
(‘P("/‘%; ey W?))#'f‘ RD(C(V)&! ey "P:L} "Per ey "I’,Z"'l))#'

But ¢ =F, @) =@, ..., ol)F = &, wh)* = 6k, ..., 0B F = G,
# = Fy, all are series with finite coefficients, i.e., represent combinatorial
functions on E. Composition for these series corresponds to composition
of functions. Applying a known result for combinatorial functions [12]
we get that ‘
(P}, -y ) F = ¥ (1), ..., @)

Sy oy ¥ Yy ooy YR = CHWI, oy 0V, (0B, s (WR)F)
Apply (2.11) to get the conclusion of the lemma.
THEOREM 2.2. Let ¢: X*T(E)->T(E), v X*§(E)>5(@E), ..,
ym: XXF(B) > (H) be combinatorial operators. Then
(0 ooy pm)) ¥ = g o (1, o, )
Proof. Due to (2.11), g = (q:, DE q:R))#. Thus the last assertion
of Theorem 2.1 and (2.9), (2.10) yield
(P s 9 = (Bt oy ) OB @ @t ooy v
= (gl oo ) F - olpml ey )
If ¢% = P, p** = ¢, then an application of Lemma 2.6 and also
{2.11) yields immediately
P, ey Y = [Fao (G2, oeey @) L8P0 (G s oy G, Gy ooy BRI+
- R[Fro (G, oy G+ 8 Frec (G2, ..., G, G, ..., GR)].
The right-hand side is by definition Fe (6, ..., G7), Le. itis o (Pt ..., pni).

and
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From now on write fe (g% ..., %) as f(g% ..., ¢") when no confusion
is possible.

3. Partial recursive combinatorial operators and R4 com~
binatorial functions. Let Gr: X#*T1(H)—~F be one of the usual fully
effective 1-1 onto maps. A combinatorial operator ¢: X*¢(H)-¢(E)
is called partial recursive if
(3.1) The map on ¢(X*H) to B given by »—>®(w,) is partial recursive.

Levmma 3.1. I} ¢: X%S(H) »>T(H), v X*T(E) >F(H), .., yn:
X T (B)—5 (E) are partial recursive combinatorial operators, then ¢ (v*, ..., yn)
is also o partial recursive combinatorial operator.

Proof. Theorem 2.1 implies that { = ¢ (¥4 ..., p*) is a combinatorial
operator. We describe how to recursively enumerate all pairs (», Gr(z)).

Eiffectively enumerate all {2, Gn(2,)) and all (u, Gr(upa)), ..., (4, G(wyn))-
This is possible due to (3.1) for g, 9%, ..., . If at any stage an (v, Ga(z,))
has been generated such that for all i=1,..,% and all we(z,),

n
(u, Gr(u,i)) has been generated, then list (o, @;c(i\/1 M}ﬂ{) wg)) a8 an
A o
(a:, (5k(a7;)). Then (2.5) assures that all and only the correct pairs are
listed.

It is easy to see that for a combinatorial operator @, ¢ is partial
recursive in the sense of (3.1) if and only if ¢ is a partial recursive
functional. From that point of view the immediately preceding argument
can be omitted since partial recursive functionals are clogsed under
composition.

Since the next few theorems concern R 4 funetions, some remarks
on these functions are in order. It is an easy exercise that the character-
istic function of a subset « of B, 1 on « and 0 on F—gq, is the limit
of a monotone increasing recursive sequence of recursive functions if
and only if o is recursively enumerable. Similarly, the characteristic
function of « is the limit of a monotone decreasing recursive sequence
of recursive functions if and only if o is the complement of a recursively
enumerable set. Thus the characteristic functions in R+t are exactly
the characteristic functions of recursively enumerable sets, while the
characteristic function of the complement of a recursively enumerable
but not recursive set is always outside R+{. (A function of the latter
type can be expressed in both two number quantifier forms in the
Kleene-Mostowski hierarchy.) A useful characterization of membership
in Rt is
(8.2) o XFH->E U {8} is Rt if and only if there ewists a recursively

enumerable family {Biiextm of recursively enmumerable sets such
that for all 4, B¢ has ¢(i) elements.

icm°
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Proof. Suppose that j,: X*E-F is 2 monotone 4 recursive sequenee
of recursive functions such that ¢(é) = lim f.(3) for all e Xx*E. Define
n

the recursively enumerable family {B}:extz by letting f; consist of all
n e B such that for some §, fi(¢) > n. Obviously () = lim £(i) implies
i

pi has ¢(4) elements. Conversely, suppose that {Bi}iex*g is given. Then
the f¢ can be enumerated in stages so that at stage n only a finite number
of elements of a finite number of the §; have been enumerated. Let 8% be
the set of elements of f; enumerated by the nth step. Let fa() be the
number of elements of f7.

THEOREM 3.2. A combinatorial series f is R+ if and only if = ¥
for at least one partial recursive combinatorial operator o.

Proof. Let f= 3 o(4, ,zk)(zi)('::) Suppose that ¢ is R4,
TUse (8.2) to produce a family {fi}iextz with B; having ¢(4) elements for
all i e« X*H. Use notation as in (1.1), define ¢*: X% Fun(E)—>T(E) by

o%a) =[j(a,n)| nePu] for ae XETu(E).

Then ¢¢ is precombinatorial and induces a combinatorial operator g.
Obviously ¢%(a) has the same number of elements as By, i-€.; ¢(4y, -.ry 1),
80 ¢% = f. p is partial recursive since the assumption that {fi}iex¢z is
a recursively enumerable family entails that all (j(a,n), Gx(a)) can be
recursively enumerated for n e ey and a e X¥Ppua(E); this is precisely
the set of (#, Gr(w,)). Conversely, suppose that g: X*§(E)->F(H) is
partial recursive combinatorial. Choose a recursively enumerable‘famﬂy
[Gr(a(9))},oxrg Such that for all 4, a(5) eX*Tun(H) and <a(i)> = 4. Then
(8.1) for ¢ implies that {tp‘(a(i))} sexty 18 & recursively enumerable family
of recursively enumerable sets. Of course by (1.1) ¢#(a(s)) has o(i) ele-
ments. Thus (3.2) implies that ¢ is R+.

CoROLLARY. The R+ combinatorial series are closed under formal
composition.

The R+ series of course include the recursive series, but fhe re-
cursive series are not themselves closed under formal composition. For
an example, first choose a recursive relation R C EXZE such that
(i) B ~ (B x {0}) = @; (ii) the set S of all # such that for some Y, (m,g{) eR
is recursively enumerable and not recursive. Make the obvious nota,tlol}al
conventions and substitute the constant series s, for u, in the series

(m:‘) (";’) to get the series i%,; ((«; %R(';.“)) (’:‘) Since (‘;") =8, for j >0,
Z)ljl):ln for each e there is a § with (4,4) ¢R, we conclude that

(tfu) =1, for 4e€S. Thus the resulting series is i% R (’:."), which
Gher \7
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is not recursive even though the constant series &, and the series
A

(f,})‘éR(‘)(?g) are both recursive.

THEOREM 3.3. Let f = D, 6(4y, .., iz) (::) (1:';) be an R 1 combinatorial
series. Then f induces a well-defined map fo: X¥Q->Q such that for » e XkQ,
fal@) = {p(a)), where a e X*T(H) is such that {ay>= » and ¢ is a partial
recursive combinatorial operator such that oif = f.

Proof. It must be shown that fo(z) is independent of the choice
of a and . Suppose {(a) = {f> = x. Suppose ¢¥ = ¥ = f. Suppose that
o i contained in domain p¢, ps is 1-1 partial recursive, Pilag) = B.
Let A consist of all y € X¥Fp(H) such that ys is a subset of the domain
of ps for i=1,..,n. Let B consist of all (py(y1), ..., pr(ys)) such that
7e A. Leb p: A-B be the 1-1 onto map such that py = (D1¥1y ooey DEVE).
Since p,, ..., pr are partial recursive, certainly [®x(y)| v € A] is recursively
enumerable. Thus by (3.1) ¢%(y) can be recursively enumerated without
.repetiﬁons uniformly in Gx(y) for y € A. For the same reason [®x(y")] ¢’ € B)
is recursively enumerable and u¢(y’) can be recursively enumerated
without repetitions uniformly in Gx(y’) for y’ « B. But since the piare 1-1,
for y € 4, we have <y> = {py). Thus by (2.2) and the fact that gH = i,
.certa,inly ¢(y) and v4(py) have the same number of elements (finite or
?.nﬁnite). Map the nth element of ¢¢(y) onto the nth element of pe(py)
in the enmmerations without repetition chosen above, for all ye A.
By (2._1) and (2.2) for ¢ and y, we conclude that this yields a 1-1 partial
recursive g with domain LEJA %), range U v¥(y') such that for each
v €4, ¢(y) is mapped 1-1 onto p(py). i
) But ¢(a) is a union of ¢¢(y)’s and y(B) is the union of the correspond-
ing y*(py)’s, 50 ¢ maps ¢(a) 1-1 onto y(8). Thus {p(a)> = <p(8)>.

(?OB.DLLARY. Let f(yy vy On)y G015 wony VB, -ov, GO0, ey Ux) be Rt
combinatorial series. Then

fﬂ(g})(mla cey Bk ey gg("”l; weey mk)) = (f“ (4%, caey gn))g(m“ ey Tk)
Proof. Letig: X"HS ()~ (), y': X»BF (B)—~G (B),...,ypn: X BT (H)—
—§(H) ) be partial recursive combinatorial operators with g =7j,
ik =G p™# = g». By Lemma 3.1, @YY ..., p") is a partial recursive
combinatorial operator. Further, Theorem 2.2 assures that ((p(yﬂ, ey 1/)")}#

= g¥ o (P, ..., (e, Let o,= <>, ..., a5 = {ax). By Theorem 3.3 and
the remarks just made

(f" (/R g”))g(ﬁly vy W) = @Y, ..., yn) (ary ooy i) )
=<y (Wl(ala ey QE)y oy Yoy, weey ak))>
= fal<¥Hary ey @)D, oy <y ...y ax))

= fﬂ(gé(wu oy BE), R gg(mly vy ”k)) .
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‘]i‘inally, Proposition I (§1) follows immediately from this Corollary
and the fact that the extension of the projection pi: X*E—E, iy, ..., 2x)
= @i, is the projection piy: XEQ -0, pi (@, ..., m) = o (f. [12], § 10).

4. Inequalities. Proposition IT (§ 1) will be proved by application
of the next six lemmas. The category method of [12], § 7 will be em-
ployed.

Levma 4.1, Let f(u)= D e(3) (";), g(w) =D, d(3) (':) be R+ combina-
torial series. Then (i), (i) below are equivalent.

(i) There ewists a ke E and there ewists an Rt series h(u) such that
flut+k)+h(uw) =g(utk) is a (formal) identity.
(i) There ewists a k< B and an R4t junction e: B-~>E such that for

all i, 6(5)+c(s) (’5)+ e 4 0(i+E) (i) = d(s) (§)+ e LA T) (2)
Proof. Assume that (i) holds. Write h(u) = J e(i) (":) The combi-

natorial identity , y
() = G 6+ -+ () )

yields without difficulty that

a1 = D (afg) + oo e G)) 1)

The identity f(w-+%)+h(u)=g(u+%) yields (i) when corresponding
coefficients of (Z’) are compared. The converse is similar.

LeMMa 4.2. Suppose that f(u), g(u) are R 1 combinatorial series and:
that there is a % and an R4 combinatorial series h(u) such that f(w+k)+
+h(u)=g(u-+k) is a formal identity. Then fo(@)< go(w) for almost
all © Q.

Proof. Due to Proposition I, fo(z+ %)+ helw) = golz+%) for all
# € Q. Therefore foly) < gofy) for any ye2—{0,1, wey E—1}, since any
such y is of the form x+%. o

Topologize ¥ (&) as follows. Suppose that 4,0, are disjoint finite:
subsets of H. Let U(d,,0,) consist of all subsets of F which include 6y
and are disjoint from &,. Choose a base for open sets in G‘(E). conkisting-
of all T(8,, 8,) for 6, 8, disjoint finite subsets of H. Then (%) is a Cantor
space (a homeomorph of the Cantor set).

LEMMA 4.3. The set Xg of all a eF(H) such that {ad = a1 is of

the first category.
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Limynia 4.4, Tet f(u) = 3 ¢(d) (”j), gluy=Xd (“:) be Rt combinatorial
series. Suppose that X is the set of all o <T(H) such that for some y eQ,
Fal{ad)+y = ga({ad). Then X is of the first calegory unless there emists
a neighborhood U = U(dy, 8,), o 1-1 partial recursive fumction p, and
partial recursive combinatorial operators ¢, p with g =1 and y¥= g
satisfying (4.1) below.

(41)  For any finite 6 in U, there exists a f T (E) such that ¢(8) ® g
is o subset of the domain of p and p(p(d) ® f) = w(d).

Proof. Suppose that no such U, p, ¢, p exist. It must be then shown
that X is of the first category. There are only a countable number of
P, ¢, . Therefore it suffices to show that for each choice of p; g, v, the
following set X (p) is nowhere dense: X (p) is the set of all a T (H) such
that there exists a e (H) with ¢(a) @ § a subset of the domain of p
and p(p(a) ® ) =p(a).

Given a neighborhood U = U (dy, &), we produce a non-empty sub-
mneighborhood V of U disjoint from X(p). According to the negation
of (4.1) there must be a finite 6 € U such that for no 8% (E) do we
have that ¢(3) @ f is a subset of the domain of p and p(p(8) @ ) = p(9).

If there is no 6* 2 6, ' € U, for which there exists a * with ¢ (&) @
2 subset of the domain of p and p(p(#)@ fY) = (), then certainly
V =U{(4 ) will do. Otherwise, there is a smallest 6'D 6 with this
property. It iy easily seen that this & is then the smallest » 26
such that: (1) If @« B and g, is defined and 2°C», then (p(22)), <
{2) It #e¢E and @, is defined and #,<», and p~z), is even, then
{1/2p7 =), <.

By choice of 4, certainly 61_';) 0. Therefore there is an e & —4.

‘The minimality of 6! assures that V = U(4, 8, v {#}) will do.

Lma 4.5. Let f(u) = Y e(s) (”:), gw) = Y dg) ("j) be R4 combina-
dorial series. Suppose that fo(z) < go(x) for almost all x € Q. Then there
ewists a k and an R+t combinatorial series h(u) such that fu+E)+h(u)
=g(u-+k) is a formal identity.

Proof. The proof proceeds through Lemma 4.4. Suppose that no
<hoice of U, ¢, y, p satisfies (4.1). Then Lemmas 4.4 and 4.3 imply that
X v Xg is of the first category. The Baire category theorem assures
that there is an infinite o e P(H)— (X U Xg).

Thus @y== {a) ¢ A—E. The definition of X assures that fal@) £ golay).
Thus fo(®) < go(#) does mnot hold for almost all z €f, contrary to
Thypothesis.

Therefore there is a choice of U = U (b1, 83, py, p, p satisfying (4.1).
Let g: B->H be a1-1 recursive function with range a subset of H— (8, v 4,)
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Then (@) =6, v g(a) is a recursive combinatorial operator {: F(H)—
—§(E). Also ¥ = u+k, where % is the cardinality of ,. Define g, 9y
$(B)~>T(H) by gi(e) =¢(l(a)), pi(a)=p((a)). Then g,y are partial
recursive combinatorial operators such that ¢fF = fla+k), o = gla+ k).
Applying (4.1) it follows that for all finite a, there exists a p with
¢(a)@ § a subset of the domain of p and p(¢,(a)® ) = y(a). Without
difficulty, § is defined uniquely by a.

Define v°: Fun(E)>T(H) by requiring that =¢(a) consist of all
@ el for which: (1) p(2x41) is defined; (2) (p(22+1))y, is defined;
(3) (p (2 +1))¢1 = a. Then ¢ has one of the two properties of a precombi-
natorial operators, namely for a # o' certainly v¢(a) is disjoint from =¢{a’).
(However, 7¢ does not necessarily have the other property of precombi-
natorial operators; it may well be that (o) = <a’) but 7¢(a) and v*(a’)
have different numbers of elements.) For finite a, let 7(a) =pﬁmgﬁ 7¢(B).

15 fca

The point of introducing z(e) is that =(a) is the unique g referred
to before. That is, it is easily seen that for finite a e (), ¢(a)@ 7(a)
ig a subset of the domain of p and p(pya) @7 (a)) =py(a).

The fact that p is partial recursive and (3.1) for v, can be applied
to show that 7%(a) can be recursively emmmerated without repetitions
uniformly in ®,(a) for o eTun(E).

If ¢(n) is the number of elements in *([2 ¢ B| » < «]), then it follows
that e(n) is R4{ by (3.2). Further, a simple induction shows that for
@ ¢9m(B), p(#i(a) ® ~'(a) = vil(a). Therefore if f(u-+k)= 3 o(i) (}) and
glutk) = Y d') (2‘), we have ¢'(4)+e(i) = d'(4). If h{u)= Y e(s) (’;“),
this means that f(u+k)+h(u)=g(u-+k).

LeMMA 4.6. There ewist ¢ isols @ such that fo() < go(w) whenever
7, 9 are R4 combinatorial series for which every choice of k& and an R4
combinatorial series h(u) yields f(u-+k)-+h(u) = glu+k).

Proof. Call the set X produced in Lemma 4.4 X(f, g) to indicate
dependence on f, g. Let ¥ be the union of all X(f, g) for (f, g) ranging
over the countably many pairs mentioned in Lemma 4.6. Then any a
in §(B)— (Y v Xg) yields a suitable # = (a). Since Y v Xz is of the
first category, there are ¢ a's. Since each 2 contains only a countable
number of o’s, there are ca's.

TEBOREM 4.2. Lot f(u)=J & (‘;), gluy= Y & (':) be B4 combinatorial
series. Then the following conditions are equivalent.
(i) faltw) = galz) for almost all © Q.

(ii) There ewists a k such that f(u+k)= g(u+k).
Fundamenta Mathematicae, T. LVIII
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(iil) There emists a k such that for all 1,

e¢(§)+ o.~+1(7{)+ et Oi+1(7£) = d;(§)+ di+1(7;) 4o +df+k(;z) .

Moreover, there are ¢ isols » such that fo(w) # ga(x) whenever f, g are R 4
series which fail to satisfy (iii).

Proof. Assume that (i) holds. Apply Proposition II. For some
%y ko e B and some R4 combinatorial series hy(u), hy(u), we have
Flo+ &) + hy(v) = g(u + &) and g(u + ko) + ha(w) = f(w + K). Let
k= max(ky, ko). Then f(u+k)+hfw+E—k)) = glu+k), gutk) -+
+ hofu 4+ (B — k) = f(w + %). It follows immediately that j(u + k)
= g(u-+k) upon examination of coefficients. Next, assume that (ii)
holds. Apply Proposition I to get fo(z) = ga(z) for any z ¢ 2—{0,1, ...,
k—1}. As for (iii), the same argument applies as applied in the proof
of Lemma 4.1 to show that (iil) is equivalent to (ii). The last part follows
from the last part of Proposition IT similarly.

An example will show that Proposition I fails when applied to
a glightly wider class of series than Rt series. An identity between
combinatorial functions will be exhibited (with the combinatorial func-
tions expressible in both two number quantifier forms) which fails in Q.

Let S be a recursively enumerable but not recursive set. Let M
be the set of all s e# such that = is not a perfect square. Let
T = [2%| ¢ € S} M. Then T is recursively enumerable but not recursive.
Further, the fact that the difference of successive squares (w-1)2— 22
= 2¢4-1 is monotone increasing and unbounded has the consequence
that for any %, there is an 4, such that for ¢ > 4y, if ¢ ¢ E— M, then
i+leM, . ..,i+keM.

Let ¢: E—F be the characteristic function of T, let d be the char-

acteristic function of B—T. Let f(u)= 20(@)(1?), glu) =3 d(i)(’:), let
7(#), g(z) denote the corresponding combinatorial functions. The identity
2"=f(®) 4+ g(») holds in F (or equivalently, the formal identity
2" = f(u)+g(») holds in combinatorial series). Suppose that this identity
Yielded an identity in Q. A4 fortiori, 2° > fo(x) for all & € 2. Hence Pro-
position IT implies that for some %, 2"**= f(u+%)+h(u) for an R}
series h(u). Obviously %(w) must have finite coefficients, so this yields
an identity 2°** = f(w+%)+h(x) in combinatorial functions in F. But

also 27" = f(a+k)+g(@+k), so g@-+k) = h(z). Let hix) =2e(¢)(j)
with ¢ an R+ function. As has been remarked, an 4, can be chosen so

that for ¢ >4, and ¢ e ¥—M, we have i+1 eM,..,i+%e M. Thus for
tel—M and i>14,

() = d()+ A+ 1) ([} + ..+ 2+ B)}) = (o).
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By choice ¢ is R1, so there exists a monotone inereasing recursive
sequence of recursive functions e, such that lim én = ¢. Define a monotone
n

increasing recursive sequence of recursive functions gn as follows.

(1) gn(s) = d(s) for i <4,

(2) gn(i) = ea(%) for i >4y and i e B—I.

(3) guli) =10 for ¢ =4, and 7 e M.

Then for i< 4y, obviously limgn(i) = d(i). For i=14, if te B—M
certainly limga(s) = limen(i) = e(i) = d(4). For i iy, if 4 eM, then
Hmgn(f) = 0 = d(¢). Thus d is R4. This is impossible since d is the
characteristic function of the complement of a recursively enumerable
but not recursive set.

5. Applications to 2— A. Throughont this section f{u) = 3 o(4) (':)
will be an R4 combinatorial series.

THEOREM B.1. fo(®@) = fo(x)+1 for almost all ¢ Q if and only if
some Cg 18 Ro.

Proof. By Theorem 4.2 and Proposition I, the hypothesis fo(a)
= fo(@)+1 for almost all # implies that for some %,

0(0) {g) + @) (§) 4 +0® [ = (1+¢0) )+ o) )+ +otm) )

Thus each side is 8, and one of ¢(0), .., ¢(k) is ®,. The converse is
similar. :

This shows that any combinatorial series with an %, coefficient
(i.e., which does not correspond to a combinatorial function) has almost
all values in 2— 4. This is what is meant by saying that combinatorial
series are slanted toward £2— 4.

THEOREM b.2. The following conditions are equivalent.
(i) falz) = 2falx) for almost all » Q.

(il) There ewists a & such that if f(u-+k) = D, d(5) (‘;), then all dy Trave
values 0 or K.

(iii) There ewists & % such that for all 4, if one of ¢iy ..., Cirx 18 NON-
zero, then one of ¢(f), ..., c(i+k) 48 No.

Proof. Apply Proposition I and Theorem 4.2 to see that (ii) is
equivalent to the assertion that there exists a % such that for all 4,
G(i)(g)-(-u-—l—c(i—{- k) (’;) has value 0 or S, ie., to the assertion that if
one of ¢(i), ..., o(i+%) is non-zero, then one of this list is 8. Thus (ii)
and (iii) are equivalent. Now assume that (i) holds and apply Propo-

9#
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sition I and Theorem 4.2 to obtain a % such that f(w--k) = 2f(u-+%).
I futk) = Zd(i)(':), this means that d(i)=2d(i) for all 4, ie.,
all e; are 0 or xy. Thus (ii) holds. Conversely, suppose that (ii) holds.
Then 2f(u + k)=, 2d(3) (“) = f(u +%), so Proposition I assures that

2fa(®-k) = fo(w-+%) for all @ « Q. This shows that (i) holds.

Call f non-constant if some ¢(¢) > 0 with 4> 0.

THEOREM 5.3. Suppose that [ is non-constant. Then the following are
equivalent. (1) fal a;) (fal m)) for almost oll x € 2. (i) There is a k such

that flu-+%k) = Z so(’;). (itiy There 4s a % such that for all i, one of
=0
¢(1)y very 6(i+F) 18 8.
Proof. Suppose that (ii) holds. By Theorem 4.2, this means that
for all 4, o(a;)(f)‘)+...+e(i+k)(’,j)= $o—i.e., one of 6(), ..., c(i+k) is 8.

Conversely if (ili) holds, Theorem 4.2 implies f(u—i—k)=‘2,1 N.,(:'); 50
=1

(ii) holds. Now assume that (i) holds. Then Proposition I and Theorem 4.2
imply that there is a % for which 7(u—+k)= (f(u+k)?> Since f is non-
constant, there is an 4,> 0 with ¢(4;) > 0. Let g(u)= f(u~k+4-}1)
= e('i)(':). By computing coefficients it is seen that ¢(4,) 5= 0 implies
e(i) #0, e(t;—1)#0,...,6(0) = 0. Further, ¢(0) is a sum of terms, one of
which is (7‘+2+‘) o(iy). But 4> 0 impies (1 o 1) ("“r;) >2, 50 ¢(0)> 2.
Thus there is a combinatorial series h(w) such that g(w)= 24 h(u).

Since (g(u))® = g(u), certainly g(u)(2-h(u)) = g(u). It follows imme-
diately from this equation that 2g(u)= g(u). Thus each e(s) is 0 or s,.
Since 6(0), ..., 6(¢) are non-zero, e(0) = ...= e(4;) = 8. We claim that
e(i) = wy for all 4. If not, there is a least i, with e(i,) = 0. Obviously
4> 14 >0, 80 4—1>i,> 0. By assumption, e(i;—1) = 8,. Now g(u)

= (g(u)]* = %} e(i)e(d) (':) ('7‘) When expanded as a combinatorial series,

there is a summand (e(s))* (“:)2 But (’j)“: é‘ t)( ) with 0(6) # 0, ..,
0(26) 0. Thus for i=4s—1 and ¢ =iy e get a term (e(sy—1))" (¥)o(is
=8, (Z) . Therefore e(iy) =&,, a contradiction. Thus (ii) holds.

Conversely, suppose that (ii) holds. Then fo(u-%)== Zu.,() But
(2 8o (,)) = Zso(i), 50 (f(u+k)® = f(u-+k). Apply Proposition I, get
fo(@+E) = (fa(+ &) for all @ eQ. Thus (i) holds.
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THEOREM 5.4. The following conditions are equivalent.
(1) (fol@))" = 2(fa(@))" for almost all v Q.

(i) There ewists a % such that (f(fu—{—k))":Ze(z)( ) with each e(4)
having value 0 or ;.

(il) There ewists a k such that for all 4 (iii)(a) below implies (iii)(b)

below
iii) (a) There emists & o(j) %0 such that j—% <i <.

(iji) (b) There ewist o(j1) # 0, ..., 6(jn) %0, one of €(71)y ery ()
being Ry, and an &' with $<i' <i+k, such that max(j, ..., js) < i’
<j+ o Fn.

Proof. Propositions I, IT, and Theorem 5.2 show that (i) and (ii)
are equivalent. The equivalence of (ii) and (iii) will follow from a close

examination of (2 e(4) (‘;’))" = ﬁ%;c(q;l) wee € (i) (Z) (::) . Observe that

(’.’) (u) = 0(% 1y eueyin) (1:), where the latter summation extends over

1, n

- all 4 satisfying max (¢, ...,4) <i<i+..+4s and for each such i,

0(4y %1y wery in) > 0. Thus

n
(Z o(4) (’:)) = Z(Z*O(i, Bry wory n) 0 (6g) - O(im) (”;))
i i
where the asterisk * indicates summation over all (i, ..., is) such that

mMax (4, ey fn) <4 <4 +...+ 9. From this we derive

(B1)  S*6(i, by o, in)0(ig) o (in) > 0 if and only if there emisis a
e(f) # 0 such that j <i<jn.

Proof of (5.1). Suppose that such a j exists. Then max(j,...,J)
<i<jn=j+..+j and ¢; #0, so
D 00y g ey in)0(31) wos 0n) > 0657y weey ) ()" > 0.

Conversely, it 3*6(i, iy, ..., i) 6(4) ... ¢(és) > 0, then for some il., weey Bn
with max (i, oy ) <4< 6. —H,., we have ¢(¢)> 0, ...,¢(in) > 0.
If § = max(iy, ..., in), then j <i<nj and ¢(j) > 0.

: ¥
Thus (5.1) and the expansion of ( + ) yield

(62) Iat (flurk)"=Zo00)(] ) Then e(s)> 0 §f and only if there

ewists a § with ¢(j) >0 and j—k <i<jn.

A similar argument shows that
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S™6(iy Gy ey in)0(8y) - Clin) = %o if and only if there ezist ¢(jy)
£ 0, ...y 0{jn) # 0 such that some one of 6(f); .., ¢(jn) is % and
MAX (fyy enry Ju) K< Jot oo AT

(5.3)

. . +T
Combine this with the expansion of (“% ) to get

If flu+k) = _Ee(i)(’;), then e(i) = s, if and only if there ewist
¢(41) # 0, ..., 6(jn) # O with some one of c(j:), ...,c(j,..) being x,,
such that max(fy, ..., fn) < <fy+...+u for some &' such that
1< <tk

(5.4)

Then (5.2) and (5.4) show that (ii) and (ill) are equivalent.
THEOREM 5.5. The following conditions are equivalent for mon-con-
stant f.
(@) (fa(@)" = (fal@)"™ for almost all © L.

(ii) There ewists a % such that (f(u-+ k))nig; = No (1:) :

(iii) There exists a k such that for all i there exist ¢(j;) # 0, ..., ¢(ju) 7 0
(with one of ¢(jy), ..., e(ju) = 8o) such that Max(ji, ..., fu) <& <j-+..+jn
for some i’ with i <4’ <i+k.

Proof. Suppose that (ii) holds. Then f non-constant implies f(u %)

non constant. Thus
(=]

flut+k) ( Zso(’:)) = Zo:’so (’:) = (f (w+B)"**.

i=0 i=
By Proposition I, (fo(z+ k)" = (falw+ k)" for all z €2, ie., (i) follows.
Suppose that (i) holds. Then
(fala)" = (fala))™
for almost all zeQ. Apply Proposition I and Theorem 5.3 to obtain
a & such that (f(u—{—k))"’:{é’_,’: %o (':) This is (ii). To see that (ii) is equiv-

alent to (iii) apply (ii) and (iii) of Theorem 5.4.

CoROLLARY. Suppose that all ¢(i) are zero or x,. Then the following
are equivalent.

@) (fa(@)" = (fal@)*™ jor almost all Q.

(ii) There exists a k such that for oll i there exists a §, j—k < i < nj,
such that ¢(j) = 5.

Exavpre. Idemmultiplicity co, idempotence oco. Let f(u)= -4 8,.

Certainly for no n>1 and k>0 is (f(u+ k))”:{Z; Kg (q:), also for no
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m>1and k>0 is (fut+k)" = Ye(i) (":) with all e(4) equal to %, or 0.

Therefore Theot"illns 4.2, 5.4, 5.5 show that there are ¢ isols for which
k3 >

{fal@)" # (fale)"™ for all n>1; and simultaneously fo(z)m 5 2(fo(z))™

for all m >1.

ExAMPLE. Idemmultiplicity 1, idempotence 1 < n < oo. Let f(u)

oo
= 20 Ro (Z@) It is easily seen (via Theovem (5.5) (ii), (iii) or dirvectly) that
i

{fo)" = Zalf); and hence that (fal@)" = (fala)™ for all v e Q.
Obviously since f has all coefficients x,0r 0, fo(z) = 2fa(z) for all € Q. Note

n—1 __ o [ _ L[ N i
that (f(u)" "= 2"7('0)(,,;) = 2( ‘<i<%~1)n‘ ho(j)>. Therefore o{(n —1)n)

=% and v(j) = 0 for (n—1)n'< j < n*1, Since ni+'—(n—1)nf = ¢ and

nf->o0 as 4->co, condition (ii) in the corollary to Theorem 5.5 is not

satisfied. Therefore Theorem 4.2 assures that there are ¢ isols » for which
@) # fol®).

ExAMPLE. Idemmultiplicity m, idempotence #, with 1 < m < n < oco.
The argument above shows that it suffices to produce a recursive combinato-
rial sevies f (u) such that: (i) (f (u-+m))" = 2(?:) S (i) (f (u+m)) ™= Ze(i)(";)

. =0
with each e(é) either s, or 0. (i) If m>1 and (f(u)™ " = Zp(i)(':),

then for all % there exists an ¢ with 0 < p(4) < 8 and P(i+1) < gy «ury
P+E) < 8. (iv) I n>1 and(f ()" = 3 ¢(4) (",f), then for all ¥ there

exists an ¢ with g(4) % 8y...=g(¢+%) # 8. Such an f(u) is
00
Sl + )+l )]

where the a; are defined recursively as a, =0, @sir1 = as;+1, Azjre
= MAgi41, Asi+s = Nlaits. T0 see this, first observe that the monotonicity
of the a, and the location of x,’s in f insure that for 2 > 1,

(= 33 (wlen) + o) +ele)) -
Observe that (f(u +m))" = é: (mgg“m " s“'(";)) and Asirs = oiva; there:

fore (i) holds. Observe that (f(u +m))" = 3 ( P .\',,(;.L)); there-
=0 \asi—m<i<magize
fore (ii) holds.
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Observe that

(f (’M))m—l - Z (%c<f<(1r52——i)auc+1-1 " (7) *

i=0 (m—1)agt<j<(m—1dst+1

+ Z R u))

agtra<i<(m—1)asi+a !

Then &, > P ((m—1)asera) > 0, while for (m—1)asi<j < dsits, p(j) = 0.

But agips— (M—1)Gsi41 = Ggsr1, and g oo as t~>oo. Thus (fif) holds.
Finally, observe that f* '(u) is

o

2 (&) (o—tran |-

Then g((n—1)(asi+e)) = %, while for (n—1)as2a<j< asirs, ¢(j)=0.
But agiis— (W—1)dsipe = Ggire, and agpe—>o00 a8 ¢—co. Thus (iv) holds.

=0 [(amsis(n—l)auu—l

Exawpre., Idemmultiplicity m < oo, idempotence oo. Examine

flu)= j (s.,(;‘,:) + (2"":-1) + "°t(m(2:fb)+1))

i=0

by the above method.

6. Applications to isolic integers. The only result of preceding
sections that is relevant is Proposition I for series with finite coefficients.
This special case can be proved very simply by the method used for
recursive combinatorial funetions in [12], thus avoiding Lemma 2.2.
The gain over [12], [13] arises solely from wusing R4 coefficient func-
tions rather than just recursive coefficient functions. Notation and termin-

ology are from [12], [13]. Several elementary lemmas are required. The
first two are well known.

Levma 6.1. If f: BE—F is UV (relative to recurswe predicates), then
f is V. '

Proof. If f is HV, then there exists a recursive predicate E(w, v, @, ¥)
such that f(#) =y if and only if HuVoR(u,v,w,y). Let j: BEXE—~E
be a 1-1 onto general recursive function, let %: B—>H, 1I: E—~H be
such that j(%(a), I(a)) = a for all a ¢ B. Detine S(u, v, #, y) by 8(u,
vy m;"J)“"R(k(u)a'v:m:l(“))/\ Yu) #y. Then f(z) = Yo Vulol8 (v, v, 2,y).

LeMvMA 6.2. f: B—H s UV if and only if there ewists a recursive
sequence of recursive functions fn: B —E such that f = limf,.

n
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Proof. Suppose that f is such a limit. Then define R(w,v,z,y)
by B(%, 9, @, §) > (v > u—>f(v, ) = y). Then f () = y = TuVoR (4, v, 3, ).

Conversely, suppose that f is V. Choose R, § as in the proof of
Lemma 6.1. Define uq(2, y) as the least w such that (Vo < n)R(2, ¥, 4, v) V
v(Vo < n)8(x,y, %, v). Define fu(x) by requiring that fa(z) is the least:
y < » such that (Vo < n)R(m, Yy Un(, ), v), or is 0 if no such y exists.
We sketch a proof that limf, = f. Define u(z,y) as the least  satis-
tying VoR(z, y, u, v) V Vol(z, y, %, v). Suppose f(a,) = %,. For 0 <y < o
define v(@, y) as the least v such that TR(m,, ¥, (2, ), ). For 0 < u
< u(m,y) define w(w,y, u) as the least w such that R (z,y,u,(w)) v
v 18(2, ¥, %, (w),). Suppose that = is larger than y,, and is also larger
than each (xy,y) for ¥y <y,; and is also larger than each w(w,, ¥, )
for ¥ <9, and u < u(m,, y). Then an easy argument shows fa(@) = ¥o-

LevmMa 6.3. Let F: XEE*—>E* be the limit of a recursive sequence
of recursive fumctions. Then there ewist combinatorial functions

T @y ooy B) = 2 6(i1 -y ton) (fll) (-’sz) ’

gk

G o @) = 3 Al s 2n) (f;) (f;")

such that ¢, d are Rt and F(B,— @, ..., Dor—1— Top) = [(Zyy vy Tar)—
— (@, .-y Bor) dentically.

Proof. Consider k=1 for convenience. Let ¥u(#) be a recursive
sequence of recursive functions with limit F. We construct two sequences.
of recursive combinatorial functions

fo= Sautis D) (7)s ge= X aatin 0 (7) (7)
such that

(1) Fu(tp,— @) = ful®r, 2o)— gn(®y; 2a) identically,

(2) 07.('1;, f’) < cn+1(":7 ?): dﬂ(iy 7) <d”+1(?:, ?) for all ";: j: n.

(3) ealt, j) converges to a ¢(i,j) € B, dn(?, §) converges to a a(i,j) e B
for all 4,4. i

. . LI 1 2

(8) P(oy—2) = 1 (2, 0)— g 0y, m) identically, where = Zo(i,)(7) (7
and g= 2 d(i,7) (z:) (9;“) This will conclude the proof provided that.
en(i, j) and da(i,§) ave recursive functions of Gy fy M Fo? r= 0', +1,
+2, ... enumerate S (@) = [(y1, ¥a) € XB| = 91— Y] eifectl.vc?ly without:
repetitions uniformly in #. Partially order ExE by defining (=, z:)
< (@5, @3) if @, <ol and @, <. The construction is as follows. o

Suppose that fo(,7) and g(4,7) have been. defm-ed' for (3,9»
< (@y, ;). Then o4,7), dof¢,j) have been defined for (7,7) < (@, Za)-
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Tet (yo,,) be the first element in the enumeration of § (Fo(ml-_xz))

such that .
.. &
%= 6ot 9) (j) (7-2)
(2,1)<(z1523)
and also
PPN E &
Ya = Z do(%?)(;)(;)-
(4.7)<(T1,29)

Then define fo(@y, £2) = y1 and goly; @) = Y-

Now suppose that 2 > 0 and that fy, ..., fa—1, o, ---5 gn—1 Lave been
defined. Suppose further that fa(i,7) and ga(%,7) have been defined for
{2, ) < (#y, @,). Then ¢s(¢, §), du(t, j) have been defined for (¢, j) < (z, @,).
Algo certainly ¢y—1(@y, 2,) and dp—a(2y, 2,) also have been defined. Let
{¥1, ¥2) be the first member of S (Fn(2,— z)) in the order of enumeration

such that
1> Y @) wd ws a1 (7) (%)
Lt 7 CAY]
(2,7) <(@1,%2) (67) <(x1,%2)
and also
@y, Bs) 2 Cn1(By, B3);  An(@y,y B9) = dns(@y, By)
Define

fal@yy @) =4, and  galay, 25) = ;.

Requirements (1) and (2) have been established by construction.
‘Requirements (3) and (4) remain to be established by induction on
{2y, @;) in the partially ordered set E XxZH.

Suppose (1, #,) = (0, 0). Since Fyn(0) —F (0), there is an n, such that
TFu(0) = F(0) for # > n,. A look at definitions shows that certainly for
% 2= Moy f2(0,0) = fu,(0, 0) and gn(0, 0) = gn,(0, 0). Then ¢(0, 0) = 7(0, 0)
= fn(0,0) and d(0, 0) = dn,(0, 0) = gn,(0, 0) have the desired property
since F(0) = Fug(0) = fno(0, 0)—gn,(0, 0) = (0, 0)—g(0, 0). Now suppose
{2y, #,) > (0, 0). Take as inductive hypothesis that for (,j) < (%81, @)
it is known that ea(4, j) >c(4, §), du(i, j)->d (4, §), and Fli—g) =f(¢,§)—
—¢(i,7). Choose 7, so large that for n > mn, we have enlt, §) = e(1, 7)
and da(i,§) = d(i,§) for all (i,4) < (@, m); and have also Fu(i—7)
= F(i—j) for all (1,§) < (w, @). Then for n > n,, (4, 9) < (@, @), We
have Fu(i—j) = Fay(i—3) and ea(t, §) = euyls, ), dn(ty §) = o8, j). A look
at the definition of fu(z,, ) and ga(e,, @) shows that it follows that
Tul@y, @) = fuo(@1, @) and. gu(@,, ©a) = guo(my, 2) for 13> 0y, Thus if F(ay, 2,)
= fuol@yy @) and g(z, @) = Jno®1y @), the requiremients are satisfied
since F (y—,) = Fuo(ty—m,) = Frol @y y Ta)— Guno(y, ) = fl@y, @)~ g(wy, @)

Let ¢ be a statement which is a quantified conjunction of atomic
formulas involving relation symbols, function symbols, and the identity
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symbol. Suppose that with E* as a domain of individuals each relation.
symbol denotes a recursive relation and each function symbol denotbes
a recursive function. Then with A* as domain of individuals let relation
and function symbols denote respective extension to 4* in the sense
of [13].

THEOREM 6.4. Let ¢ satisfy the resirictions above. Then ¢ is true in A*
if and only if ¢ is true in E* and has in E* Skolem functions in both fwo-
number quantifier forms in the Kleene- Mostowski hierarchy.

Proof. One direction is Lemma 6.1 combined with the fundamental
lemma of [13]. For the other, suppose that ¢ is true in B* with such
Skolem functions. An application of results in [13] shows that consider-
ation may be limited to a ¢ which is a quantification of an atomic
formula Fy(vy, ..., o) = Fy(vy, ..., o), where F,, F, denote respectively
recursive functions f,: X#»E*->X»E*, f,: B*—E*. For notational conve-
nience, limit consideration to a typical special case. Let ¢ be

Voo, Vo, Fy(v, , Vs, Vs, 0s) = Faf®y, 0y, s, 0)]-

Let h(v), %(vy,vs) be the (both two number quantifier form) Skolem
functions in E*. Then for #, z; ¢ B,

(6.1) fl(ml.) h(m1), 3, k(2 m,)) = fz(ah: k(21), @y B(wy, ms)) .

Choose recursive combinatorial funections p:i, 2 X*E—E such that for
Dyy ey Ty € B,

Jel@y— @y By— @y Bs— Doy By—Bg) = Pil@1; ooy Be)— Ga(@1y ey Te);  T=1,2.

TUnder a 1-1 effective correspondence between F and E*, Lemma 6.2
vields a corresponding version for E*. Use Lemma 6.2 and Lemma 6.3
40 choose combinatorial funetions 7y, $;: X2:E—FE and 7., 8;: X'H-F
which have Rt combinatorial series, and are such that for x, z,, 7,
z,¢H,
T (a0, — @a) = 71(@15 To)— 84(®1, %a)
b (0, — 3, @y — ) = Ta(®yy Tay Ty Ba) — 8oy, Ly sy L) -
Let (X) abbreviate the following expression:
(971: Dy T1( @15 a), 81(y, )5 sy Ty TaD15 By Ts @)y $5(21y By Tsy 50«)) -
Then (6.1) yields that for all @, &, &5, % € B,
P X)+ (X} = poX) + @u(X) -

Since all functions involved have R4 combinatorial series, Proposition I
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applies to show that the corresponding identity is true in 4. But if
follows easily from [13] that the corresponding identity in A can be
Tephrased as asserting that for @y, @, @s, @ in 4, fiu(@— T2y r1g(@1, @)~
— 815(1y o)y B5— o Tag(1y Bay Ts, D)= Sa(@1y @y &s) we)) = [y (same),

But this shows that ¢ is true in A* since @;—x, and @;— s range
over A* (However, it has not been shown that the element 7w, w)—
— 8@y, @) of A* depends only on @,—a,.)

If the quantifier prefix in ¢ is of one of the forms V, H, V&, @V, VAV,
or HVAYV, there are always Skolem functions in both number quantifier
forms. In paper [13] it was observed that for the VEVHYV prefix (and
hence for all higher prefixes) there need not be Skolem functions in both
two-number quantifier forms. This leaves out the case VAVE which can
be disposed of easily as follows. It will follow that there is an VEVE
prefix statement ¢ without Skolem functions in @V form if there exists
an VH function f: E* —E* which is not HV. The reason is simply that
if R is a recursive relation such that f(2) = y—VulHoR(u, v, 2, y), then
the statement VoHyVulwvR(uw,v,z,y) is true in E* and has f as its
Skolem funetion for the outermost existential quantifier. Without diffic-
ulty, it suffices to produce an f: B—F which is VH but not HV. Myhill
has made the comment that if g is a retraceable set retraced by a gen-
eral recursive retracing function and E—pf is recursively emumerable
and not recursive, then the function g enumerating g in order of mag-
nitude is V but not H, i.e., F X E—f is recursively enumerable but not
recurgive. Such f are exhibited in [5].

Modify this remark as follows. Apply the construction of [5] to
obtain a set a which is refraced by a fully defined HV function such
that B—a is an AV get which is not an VH set. Then the funection f
enumerating « in order of magnitude will do.
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