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Computational algorithms for deciding some problems
.for nilpotent groups

by

A. Wlodzimierz Mostowski (Warszawa)

1. Introduction.

1.1. Problems considered. This paper deals with nilpotent groups
of a given nil (degree of nilpotency). When having a presentation of
a group by generators %, ..., z, and relations
(1.1.1) P1(@yy coey Bn) =1, very T4(@y, eory Ta) =1,
one can ask such guestions as the word problem, the inclusion problem,
or the finiteness problem. For nilpotent groups all these problems are
decidable. For the references concerning this question c¢f. my paper [3].

In this paper we shall look for “practically useful” (1) algorithms
for deciding this problems in the special case where we know that the
groups presented by presentations (1.1.1) are nilpotent and the bound
of nilpotency is explicitly given. The algorithms are given in sections
4.2-4.4. Now we shall explain the ideas of constructing the algorithms
given here.

1.2. The abelian case. The easiest and well-known case is where
we deal with abelian groups. Then the abelian free group is well de-

* seribed as a group of linear forms over a ring of integers. The subgroup

generated by the left sides of relations (1.1.1) is an abelian free group.
One can easily compute in an effective way the basis of this subgroup.
The knowledge of the basis allows us to decide the word problem, the
inclusion problem (the question whether an elements belongs to a given
subgroup) and the finiteness problem by simple arithmetic computations.
The required computations are such as are used in linear algebra for
solving equations with integral coefficients, finding the greatest common
divisor, and so on.

1.3. Generalizations to the case of nilpotent groups. The
idea explained in 1.2 is used in this paper for constructing the algorithms
for nilpotent groups.

() For the exact meaning of this phrase, see 1.4 and 4.1.
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The theory of basic commutators developed by M. Hall [1], gives

the standard form of elements in a nilpotent free group. This allows
us to decide the word problem in this case.
- The subgroup theorem given in section 3 of this paper is a strict
analogue of the subgroup theorem for abelian free groups. This permits
the construction, deseribed in section 4, of algorithms for deciding the
word problem, the inclusion problem, and the finiteness problem for
any class of nilpotent groups with a given bound of nilpotency. The
algorithms are mutatis-mutandis generalizations of algorithms from the
abelian case. '

1.4. Possible applications to automatic decisions. In recent
years some successful experiments were done by Hao Wang, Gelertner,
and others in so-called automatical proving of theorems in lower pred-
icate calculus and in some fragments of geometry. The author believes
that the algorithms presented in this paper can be used for deciding
automatically (i.e. by a digital computer) the word problem, the inclu-
sion problem and the finiteness problem in the case of nilpotent groups
of a given nil (degree of nilpotency). The author supposes that a success-
ful programming of the algorithms on a digital computer can be done,
and the computations realised.

1.5. Notions and notation. The terminology of this paper is the
same as in M. Hall’s book [1]. Tt is supposed that the reader is familiar
with the theory of basie commutators presented in chapter 11 of this
book. But some examples are given, mostly in section 2, for explaining
the main differences and the main similarities between the abelian case
and the case of nilpotent groups.

At the end of this introduction the author wishes to express his
gratitude to professor J. Zo§ for the helpful suggestions and remarks
offered during the preparation of this paper and for the scholarship
which I was granted by the Institute of Mathematics of the Polish Acad-
emy of Sciences.

2. Nilpotent groups.

2.1. Nilpotent free groups. The variety of nilpotent groups of
nil ¢ is composed of all groups satistying the law (y, gy Yorr) =1 (an
identical relation), where

W ¥) =902 1y and  (Gay e Yoy Yuis) = (W oo ) Yo -

The free groups in that variety (i.e. nilpotent free groups of nil ¢) can
be represented as factor groups F(X)/V"™, where F(X) is the free group
(absolutely free group), freely generated by set X , and V7% iy 5 word
subgroup generated by the set V composed from the word Y1y eery Yor1)-

Computational algorithms 139

2.2. Normal bases. A set g, ...,g; of elements of a group @ is
called a normal basis of & iff any element g e G can be uniquely repre-
sented as

(2.2.1) g=g¢" g5 ... g% where Gy Gy ..y 4 aTe integers.

For instance, in any abelian free group, a free generating set is an
example of a normal basis. Nilpotent free groups are examples of non-
commutative groups with normal bases.

2.3. Basic commutators. The notion of basic commutators was
introduced by M. Hall, cf. [1], Chapter 11. We shall omit the definition
and the theory of basic commutators; to this notion and to notations
we refer the reader to the book of M. Hall just cited.

In the nilpotent free group G(a,...,x,), freely generated by
@y ey ¥ny basic commutators in @y, ..., 2, will be denoted by ¢,, ¢, ..., Cz.
Their number ¢ is a function of » and the nil ¢ of the group:

= EZ%#((Z)MSW.

s=1 dls

where u(d) is a Mobius function on integers, ef. [1] or [2].
The basic commutators ¢,, ..., ¢; form a normal basis of the group.
Any element g of the group can be uniquely expressed as

(2.8.1) g=c e ..ot

The correspondence between the element g of the group G(,...,%s)
and the t-tuple [ay, 4, ..., a:] given by formula (2.3.1) is one-to-one.
This allows us to use the notation of elements of G (=, ..., 2») as ¢-tuples
[ayy tsy ..., a¢] of integers.

M. Hall has proved that a correspondence like the above is recur-
sive. Strictly speaking, when we have a word f(2y,...,2.) of the free
group F(z, ..., x,) presenting an element ¢ = [a,, a,, ..., @] of G(@y, ...
...y &), then the function leading from f(z,, ..., %») to the f-tuple [ay, ..., a:]
is recursive. A process which Hall calls the collecting process gives an
algorithm for computing the function. For a detailed description of the
collecting process cf. [1] or [2]. The algorithm is most suitable for Turing
machines. :

P. Hall in [2] has proved that if

a=d" .. " =[a, ., wul,
b b
b=d" e .. b =[by, e, bil,
then the exponents d,...,d: in

d dt
a-b=d=c ¢ ... C
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and the exponents v, ..., v; in
"t =v=20c" G ...
for an integer m are given by the formulas

di = as+bitfil@yy ooy A1y byy ooey Bia)

(2.3.2)
Vg = Mas+ by, oy @1, M),

where f; and h; are polynomials with rational coefficients, ¢=1,2,...,¢
(f, and %, are understood to be zero). They are called Hall polynomials,
product and exponential, respectively.

Since for any o and b in a group «-1=a and 1-b = b, it follows
from formulas (2.3.2) that

flty ooy @121, 0, ..., 0) =0,
Jil0y ey 0y Byy ey big) = 0

fori=1, 2, ..., and for any integers a,, ..., b;,
for any integer m, we have

(2.83.4) B0y .y 0,m) =0, i=1,2,..,1t

(2.3.3)

.. Moreover, from 1™ = 1,

These important formulas show how close is the case of nilpotent
free groups to that of abelian free groups. The formulas imply that the
operations a-b and a™ on presentations of elements as vectors [ay, ..., as],
ie. on presentations (2.3.1), are additive and homogeneous up to the
second non-zero coordinate. One can also easily deduce that the oper-
ation (a, b) = a0 "ab is a zero operation up to the second non-zero
coordinate of a (or b).

2.4. Example. Now we shall gwe an example explaining some parts
of the theory of basic commutators, not developed here.

Let G = G(zy, @) be a nilpotent free group of nil 3, i.e. the group
with the 1aw (4y, ¥ay ¥s, ¥2) = 1. For n = 2, ¢ =3, the number ¢ of basic
commutators is 5. The basic commuta,tors in #,, », are:

(2.4.1) CL=0yy C=1b, = (T,),

O= (T, @1y B1)y G5 = (g, 0y, @y) .
Then any element a ¢ @ can be uniquely represented as:

(2.4.2) 0= a0 (@, 0) (w5, By, 2,) (@, 2y, 7,),

where ay, a,, ..., a; are integers. We ghall write the presentation in the
form

G=[ay ...;a5], or b={[by, ..., b
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for another element b ¢ B. Then for
d=a-b=[d, .., d],
U= a" = [ty e, U],
V=" =[0y, .., V],
w=>b"ab=a" = [y oovy 5],
b=a"07"ab = (a,b) =[ky, ..., ],

we shall compute Hall polynomials, for # = 2, and ¢= 3. This requires
the use of the following formulas valid in any group:

(2.4.3) ry=y-a (Y,

(2.4.4) (@)= (2, 9)7";
{2y, 2) = (x, 2)(y, 2) = (%, 2) (%, 2, ) (¥, 2),
(@, y-2) = (2,20 (2, 4) = (z,2) (2, Y}z, 9,2) ,
(@, 97 = (y, @) ‘,
(

&, Y) =y, )
We shall give only the final results of the computation, i.e.:
The product polynomials:

dy=a,+b,,

dy=a,+ by,

dy = a3} by+ay by,

dy = ay+ b4—|—a3bl+1/2(asb,_(b,—l)) y

s = 5+ by + 0y by +1/2(arby (a,—1)) +a:bbs -

The exponence polynomials:

Uy = My,
Dy = My,
Uy = Mg+ m(w;—l) By
0y = may+ @(”;_1) a3“1_1/4(m(m_1)) a0y +
+1/12{m (m—1)(2m—1)) a0, 0,
vy = mag - "D o001 (m—1)) dy s +

+1/12{m(m—1) (4m-+1))aya, 0, .
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From these polynomials we can compute as a special case:
The inverse polynomials:

Uy == — g,
Uy = —0ls ,
Uy = —A3+ Ay Oy,

Uy = — Qg+ ag0,—1/2 (“2“1(“1 +1)) )

Us = — 5+ g 0;—1/2 (@, 0 (@, +1)) .
The conjugacy polynomials:

Wy = a4y,

Wy = Gy

Wy = @3+ (b — a, by) ,

Wy =y + (agb;— b3a1)+1/2(a’2b1(b1_1)_ bzaq(“'l'—l)) )

Ws = 5+ (3 by— by @) + (2,5, 02— b0, 0,) +

+1/2(ayby(a;—1)— bya,(b—1)) .

The commutator polynomials

k1 =0 )

k=0,

kg = a,by—ayb,,

ky = (a3b,~ b3“1>+1/2(‘1’zb1(b1—1)“‘ bz“].(%*l)) ’

ks = (a3by— by @) + (a3, b,— by a1, ay) +1/2(“2b1(“2“1)“‘ bzaq(bz“l)) .

2.5. Lemmas on presentations of nilpotent groups. Now we

shall prove the following lemma. :

Lemma 1. Let G be a nilpotent group of nil ¢, generated by a finite
set X = (1, ..., %n); then for any subset B of G the normal closure N(R)
of the set R is a subgroup generated by the following set R* composed of the
elements

£ &4 Ef,
(2.5.1) Ty (1@ vy (Py @, o,y 200

Ye-1

where v ranges over R, j, ranges over 1,...,n for a=1, vy ¢—1, and the
exponents & range over L1, independently.

In other words, for a set R of relations of the group, to obtain
a generating set of the normal closure of R (i.e. the set of all relations
of the group) we must: firstly join with R all commutators of elements
of R, commuted with generators of the group of powers 41; secondly,
to join the commutators of elements from the set just obtained, com-
muted with generators of the group of powers +1; thirdly repeat the
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operation as regards joining the last non-vanishing commutators, i.e. the
commutators of length ¢, where ¢ is the nilpotency of the group.

An immediate corollary to this lemma is

Lemma 2. For nilpotent groups the normal closure of a finite set is
generated by the finite set ewplicitly given by formaula (2.5.1).

Proof of Lemma 1. It is evident that R* < N(R). Now it re-
mains to prove that for any f € ¢ and any r ¢ R the element 7 'rf can be
generated by the set R*. Let ‘

PR ' 7 D,
[ = @ay by o 7225 gy ey ape(l, ., n).

The proof is by induction on m = || |1yl 4 ...+ |nyl.
For m =1, we have f=x}, where ¢ = +1. Then

o7 rep=r- (r,z) e {R*}.

£ e Mp

We now present f = g, "° ... 2,7 = a,- f'. By the inductive assump-
tion, the hypothesis is true for f/, since |n;— e[+ ...+ iny] = m—1. By
a suitable formula (2.4.4),

(ryf) = (ry @y 1) = (r, 2) (r, ') .

Bvidently (r, i) e R*. Now by the inductive assumption (r, ) e {R*},
and so there exist & wu;,..,%;eR* and a g, = +1,..., us = +1 such
that

(*, f') = ui* ... us®.

By the last equality, in order to prove that (r, f’)’éx ¢ {R*}, it remains
to prove that for any u ¢ R* and # ¢ X v X" both (#™)* and «° belong
to {R*}. By formulas (2.4.2),

—~1)a: -1 ~1

(w =" = (e, u) U= (w, ) u.

Now since % ¢ R*, we have that (u,») e {R*} or equals 1. In both cases
(w™)® e {R*}. Evidently v” = u- (u, z) ¢ {B*}.
Thus we have proved that for f of length m is (r,f) ¢ {R*}, and
consequently 7 rfe {R*}. The proof is finished by induction.
Thus we have proved that N(R)= {R*}, as required in lemma 1.
Now we shall prove a lemma of a similar character. _
LEMMA 3. Let G be any group gemerated by a set X, finite or mot.
Let Vi be a set consisting of a single word (y, ..., Ym). Then the word sud-
group V& is a normal closure of the set Ry of elements of the form

(2.5.2) (Tayy oy Ta)  LOT QDY Bayy wovy Loy € X

The lemma shows that the law (41, ..., ¥m) =1, le. an identical
relation in a group, is equivalent to a finite number of relations between
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generators in the case of the group being finitely generated by a set X,
The relations are

(Tays vony o) =1 for any @, ..., &, ¢ X.

The proof of the lemma is by induction on m. For m = 1, the set v,
consists of a single word y,. Since R,= X and V= @, this is a triv-
ial case.

Suppose the lemma is proved for m—1. The set of elements of
the form

(2:8.3)  (A(X); ey Fns(X) s Fl X)) = ((fl(X), ey fm—-l(X))yfm(X)) ;

where fi(X), ..., fu(X) are any words in X, generates the subgroup V.
It must be prove that any element (2.5.3) belongs to N (Bw). By the
inductive assumption f = (fl(X), ey fm_l(X)) € N(Rp—1). This means that
there exists a 7, ..., 7 ¢ R,_; such that

f= (Til)gl . (Tzk)ﬂk

for some &= +1, and g;¢@ for i=1,..,k
First we shall prove that there exist words $i(X) in variables in X
and elements ky of & and wi = 41, 4=1, ..., &k, such that

(2.5.4) (Fuy ooy o) = (F fm) = [(70y )1 ... [, 6)" 7% .

The proof is by induction on %, with the use of formulas (2.4.2).
For k=1:

0
(2.5.5) () ) = (54,00 )" -
For & = +1, '
—-1
(X)) =fu(X)2, = G, t=+1.
For & = —1, from formula (2.5.5) and a suitable formula (2.4.2) we have

(9 ) = (5 ) = [, £ )5 02,

which gives

-1
§(X) = fu( XY+, by=1g, u=-1.

" The step from k—1 to % eagily follows from the formula

(Y e 3 (™, fn) = ({20 e DY, ) S ()%, F1)
and from the case % = 1.
To finish the induction on m it now remains to prove, by (2.5.4),

thm'; (, s).sN (Bm) for any reR,_; and any se@. This is quite easy
by induction on the length of s(X)= s with the use of formulas (2.4.2)
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Let §(X) = @) - 5 Gy oy Sy € X, 63= 41, for i=1,...,1. For
1=1, in the case of s(X)=u,,

(vy8) = (7, %) €Rm, since 7veRn.

In the case of §(X)=a;' we have

_ -1
(v, 8(X) = (7, 20") = ({7, @fPor) ™" € N (B
If (v, 81) € N(En) for any v e Ry ; and any s, of length 1—1, then
(71 8) = (7, @5} oo 2) = (1, @) (1, 43 ... )% € N (Rom)
since both (r, @) and (v, 2} ... 4%52) belong to N(Rm) by the inductive
assumption.
Now the proof is complete.

3. Subgroup theorem.

3.1. Formulation of the theorem. In the next section we prove
a theorem concerning subgroups of groups with normal bases. The theo-
rem is a very natural generalization of the subgroup theorem for abelian
free groups. In the proof some properties of a normal basis of the group
are assumed. They are all listed below, and are called assumptions I in
the sequel. )

AssumpTioNs I. The group @ has a normal basis e, ..., ¢, i.e. any

element @ « G can be uniquely expressed as
a=c" of* ... .¢f, where ay,..,a; are integers.

(We shall write for the sake of brevity a = [a,, 4y, ..., @;].) The basis
has the following properties:

I oa=cf %% ..-c* and b= i ...¢ then, for d=a-b
= [dy, ..., d:] and v = al= [Ogy ey 5]y = do= ... =d;_;=0, di = as+
+b; and d;4q, ..., d: depends on ¢ and b in a more complicated way;
V) = Vy= .. ¥4—y == 0, vs=—a; and v;1, .., v; depends on a in a more
complicated way.

If a = ¢ ciiy - ... ci* and b is any element of &, orif b = DA i

and @ is any element of @, then for (a,d)= k= [k, ..., k:] We have
y="Fy= .= ky_y = k; = 0 and k;_q, ..., k; depends in a certain, possibly
complicated way on a« and b.

Note that the last property implies the nilpotency of the group.

We now give the subgroup theorem.

THEOREM 1. (The subgroup theorem.) If a group G satisfies assump-
tions I according to the normal basis ey, ..., ¢, then any subgroup H has
a normal basis wy, ..., Us, § <1, 1.6. any u < H can be uniquely represented as

(3.1.1) w=ul U ug.
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Moreover, the basis u,, ..., us can be chosen in such & way that

Q@
ty = O " O = [y, Gy very Gut],
A2z Qat
Uy == ™ s O = [0, gy ey ]y
(3.1.2)
Us = O -1 =1[0,0, ..., Qs ooy Qst] .

3.2. Proof of the subgroup theorem. The proof given here is
under assumptions I from the previous section, which are used in almost
every step of the proof. Therefore we shall not mention the use of them.
As below, the proof is by the construction of u,, ..., us starting from
any generators Ay, ..., hx of H. But the construction can be done, with
only small changes, even if we start from an infinite set of generators of H.

The inequality s <t follows in any case from (3.1.2).

Proof. The theorem is true if H is a subgroup of a eyclie group
generated by ¢, le. if H < {e;}. Then

h=dY b= 67 .., hp=d".
It we take d = GCD(b,, ..., bx), then there exist integers I, ..., g such
that d = 1b,+ ...+ be. Then for u;= A ... A= ¢fPF W% — o wo have
{u;} = H, and (3.1.1) and (3.1.2) holds.
To form an inductive proof we assume that the theorem is true
for any H'< {tm41, ..., ¢}, and we shall prove it in the case where
H < {tm, Cms1, ..., ¢s}. Then

b d
b= ¢ Cpey . th
br i ) e
he = ¢+ Gy vn 61° .

If by=..=0=0, then H < {Gns1,.., ¢} There remains the case
where a certain b differs from zero. Define d = GCD (byy .oy bi)y Uy ooy I
as before; 80 U;b,+...+lkby = d. Write h= kY ... h¥. By the properties
assumed by assumptions I: ‘

(3.2.1) h=dh oy,

Whelte d is the d defined before, and e, ..., f depend on the coordinates
in a more complicated way. Now, for: my = b,[d, ..., my = by/d, the
elements

(3.22) Ry M =0T Ry ey Ry =R By

form a generating set of H.
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In our procedure it is to construct explicitly
of the normal clcsure H' in H f the set hiy .
bellow, H’ is generated by the set

a finite generating set
-5 b As we shall prove

(3-2:3) By eeey Biey (B3 Ry ey (hiey B), ooy (B By oo,y B)y ey (s By ey ).

¢—~1 times ¢—1 times

Since (2.2.3) is contained in H', it remains to prove that for any
f from (2.2.3) both h~=*fh and hfh—1 are generated by elements (3.2.3). Since
b =f-(f k) and (f,h) belongs to (3.2.3) or is equal 1, it remains to
prove that hfh~* is generated by elements (3.2.3). One can easily check
the following formula AfA=t = f-(f,h=1) = f-(f, A=) 17" = ffy (fo, =0,
where f; = (f,h) and f, = (f,,h). Let us define f;,, = ({5»h), then by succesive
application of the former formula, we obtain Afh— = ff.f, ... f5'f7%. Since
fifus fay - are elements from (3.2.3), or elements equal 1 (e.g. for sufficiently
large indices), the proof.is finished.

Now we shall continue the proof cf the thecrem.

By (3.2.2) since (3.2.1), according to the assumptions I, all elements
(3.2.3) belong to {¢n+1, ..., c:}. This proves that H' < {en1, ..., ¢:}. More-
over, by the definition of the elements (3.2.3), the subgroup H' is
a normal subgroup of H.

By the inductive assumption H' has a basis with the required prop-
erties. Adding to the basis the element k, defined by (3.2.1), we obtain
a normal basis of H (i.e. a basis satisfying (3.1.1)) with property (3.1.2).
This completes the proof of the theorem.

3.3. Some remarks concerning the subgroup theorem. If we
deal with a nilpotent free group of a given nil and an explicitly given
set X of free generators ay, ..., #;, then the basic commutators ¢, ..., e
form a normal bagis with the properties listed in assumptions I (ef. sec-
tion 2.3). Thus the subgroup theorem can be applied to a nilpotent
free group.

In this case, if we start from hy, ..., by explicitly given as words
in generators #,...,%,, the construction of a normal basis %, ..., us
of H= {h, .., hy} described in the proof of the theorem is effective.
Precise considerations of the effective question are given in section 4.1.
Here we shall give only an example of effective calculation. We shall
compute the normal basis with property (3.1.2), for a subgroup H, of

" a group from the example given in section 2.4. Let H be generated by

b= alw, and hy, = a5, Then
h1=[391;0’010]7 h,=1[3,3,0,0,0]

is a presentation in basic commutators ¢,, ..., ¢s (cf. (2.4.1) and (2.4.2)).
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The GOD(3,3) =1-3+40-3. This gives the element (3.2.1), h=h}. 1
= h,. The elements (3.2.2) are
h=h, h=1 k=a=[0,2,0,0,0].
The generating system of H' given by (3.2.3) is
(3.31) Ri=1, RM=ua, (B,h), (Rt Bh), (hi,h,h), (R, h,h),
Elements equal to unity can be omitted, as well as recurrent elements,

For the next operations the normal form of the elements must be cal-

culated. After a simple computation we obtain
(3.3.2) (B B) = (@3, @3- 05) = (B, 2, (0, 4, )" (2, @y, @),
(hzs hyb) = ((Wz; 5"’1)6(9”27 fan wl)s(mm &y mz)n: wimz) = (&g, @y, ml)m(xz; @y, 5)°,

These are the normal forms of the elements. Using the square bracket
notation, we have the normal form of elements (3.3.1) as
h=‘[0:2707070]7 (hi, h) =1[0,0,86,6,9],
(hs, R, B) =0, 0,0,18, 6].

No further caleulation is required, since in this special example the
elements (3.3.3) form a basis with properties (3.1.1) and (3.1.2). Adding
to elements (3.3.3) the element %, we obtain a normal basis of the whole
subgroup H, satisfying (3.1.1), with a triangular matrix in (3.1.2)

“1=h=h1=[_3’11 0,0,0],

us = (hz, h) = [0, 0, 6,6, 9],

(3.3.3)

Uy =h3=1[0,2,0,0,0],
uy = (hs, by b) = [0, 0,0, 18, 6].

4. Some effective algorithms for the decision procedure.

41. Effectiveness of the construction from theorem 1.
Now we shall analyse the effectiveness problem of the construction of
Ugy wooy Us given in the proof of theorem 1 for nilpotent free groups.

First let us observe that if we have a finite generating set X of
a nilpotent free group, then the construction of basic commutators
€y -y ¢ In variables in X is effective. The construction is explicitly
given in M. Hall’s book [1] (cf. also [2]). The collecting process of M. Hall,
described there, gives an effective method of the computation of pres-
entation (2.3.1), for any ge G given as a word in X. I believe that the
Turing machine is an extremly good tool for describing the algorithm
giving the collecting process. The action of the machine can be simulated
by a digital computer. In this way we can hope to obtain a practical
method of calculating presentation (2.3.1) for words in X, if #, ¢, and
the length of the caleulated word are not very large.

An alternative way of caleulating presentation (2.3.1) is to begin
by calculating Hall’s polynomials. A systematic method of calculating
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the polynomials is given in [2]. The knowledge of the polynomials re-
duces the calculation of presentation (2.3.1) to simple arithmetic oper-
ations. This method was implicitly used in example 3.3,

If the group ¢ is nilpotent free of nil ¢, freely generated by a finite
explicitly given set X, the proof of theorem 1, given in 3.2, describes
an algorithm of constructing the matrix of (3.1.2) for any hyy ooy B given
a8 words in X. The algorithm requires the following operations:

finding the basic commutators for the given n and c;

caleulation of the presentation (2.3.1);

simple arithmetic operations, such as addition and multiplication;

finding & GCD of integers, and so on.

Thus the algorithm can be programmed on a digital computer.
In general we cannot hope that the computer shall calculate the result.
The number of data to be stored by the computer during the calculation
can exceed the number of places in the storage, or the number of oper-
ations to be made by the computer can make the calculation take up
an absurdly long time. But the author believes that when n, ¢, and the
maximum length of hy, ..., by are small numbers, the caleulation can be
effectively done. This cannot be verified until a routine on some com-
puter is prepared, and a model caleulation is done.

42. An effective algorithm for the inclusion problem.
Now we shall give an effective algorithm, based on the subgroup theo-
rem (theorem 1) for solving the inclusion problem for nilpotent groups.
In this section we shall investigate the algorithm in the case where the
group is nilpotent free of a given nil.

We must construct an algorithm to decide for any words f, ky, ..., b,
whether or not

F(@1y vy @n) € {ha(®@1y ey B}y vony By, ooy Ba)} = H

holds in the nilpotent free group & generated by the set X = (, ..., 2s).

Description of the algorithm. At first we find for hy, ..., ks
3 System 4, ..., s with properties (3.1.1) and (3.1.2) from theorem 1.
An algorithm for this procedure is described in the proof of theorem 1;
cf. also 3.3 and 4.1.

Then we find a presentation
(4.2.1) f=dr .
of f. The procedure to decide whether or not f e H is by recursion on
a number m such that the first i—m coefficients b in (4.2.1) are zeros,
i.e. on the smallest m such that f € {ei—m1 y --r) Co}-

For m =0, all b, = ...= b; = 0 then f ¢ H, since f =1 in the group Q.
If we have a decision procedure whether or not f « H, for any f € {6s—m+1,
ey i}y then for any * € {¢;—m, ..., ¢} the procedure is as follows:
Fundamenta Mathematicae, T, LIX 11
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Let f* = em & The element f* ¢ H iff either ff=1lorit—m<s
and moreover there exist integers dim, ..., ds such that
Fr= il ud.

According to (3.1.2), this gives
f* — (c?i-;;Lz:t—m = céld—m,c)dt-m (ng G?ﬂ)d‘
or
7
P Di-m

17
—m» t—md} Gy b
(4.2.2) = ot tem@ g L et = Gy e O

where the coefficient of ¢i—m 18 i mi—m* Gt—m = be—m, and the coefficients
of Cjmt1y -0y Gt ATE
7
Opomit = Dtomt1y vy G = Di.

Now if &_mim does not divide b;—m, then we decide that f* does
not belong to H. If a_mi—m divides b, then the formula (4.2.2) does
not give us a decision procedure for deciding whether or not f* e H,
§iNce @j_mi1, .., i depends on undetermined coefficients d—mi1y ..., de.
But we can do ag follows: First we determine dj—y = Ds—m/@—mt—m (OT
di—m = 0 when both b_, and @ —n are zeros). Then

e
f = fe il

belongs t0 {G—m+1y -, €} The decision procedure for f gives a decision
procedure for f*.

43, Inclusion problem. In this section we shall give an algo-
rithm for solving the inclusion problem for any nilpotent group when
the nilpotency of the group is given. The algorithm is based on an algo-
rithm given in 4.2 for nilpotent free groups.

When having a finite set X of generators and a finite set R of words
in elements of X, we deal with a presentation of a group in generators
from X and relations #(wy, ..., ¥n) =1 for r ¢ R.

For applications of the algorithm we must know that the group
with the presentation in question is nilpotent of a nil at most ¢; thus
the group can be presented as a factor group of the nilpotent free group
of nil ¢ generated by the set X, by a normal closure of the set R of re-
lations.

The inclusion problem consists in deciding for any X and R as above
and for any words f, by, ..., hs in X whether or not

(4.3.1) fe{by, .., hs}.
This is equivalent to
(4.3.2) fe{lbyy oy hs, R¥}=H
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in the nilpotent free group of nil ¢, where R* ig g finit ici
given by formula (2.5.1) (cf. lemma 2). Tndeed, {R%lti ;?Rixpxl\;ilit;g
gives H = {hy, ..., hs}- N(R) when the normal closure is taken iI’I a nil-
potent free group. This proves the equivalence of (4.3.1) and (4.3.2)

For a nilpotent free group of nil ¢, there exists an algorithl;z ior
decision (4.3.2). This is the algorithm given in section 4.2.

Note that the inclusion problem in the special case where all A h,
are trivial words is a word problem. Thus the algorithm given 11’nt’hls8
section solves both the inclusion problem and the word problem.

. 4.4, Finit_eness problem. In this section we shall give an algo-
rithm for solving the finiteness problem for nilpotent groups of a given
nil. The algorlt?lm is based on the algorithm given in the proof of theo-
rem 1 (cf. sections 3.2 and 4.1). We start with some algebraic conside-
rations.

A nilpotent group B is finite iff all abelian groups B;/B;.; are finite.
Here B; denotes an ith member of the lower central series, i.e. the series
defined as follows:

B,=B, Bi.=(B,B) for i=1,2,..

If B= G/N where @ is a nilpotent group of the same nil, then, by the
Zassenhauss lemma and *isomorphism theorem, since B;= G;-N/N
= @4/G; ~ N we have

(44.1) ByBiy1 = G- N|/N|Gyyy NN = @4 N|Gypr-N = Gi/@iyr- (Gi A N).

The finiteness problem consists in deciding for any finite set X of
generators and any finite set B of words in X whether or not the group
generated by X, with the relations 7 (s, .., #,) =1 for » ¢ B, is finite.
. Denote the group by B. If it is ensured that the nilpotency of B
Is equal or less than a given number ¢, then B is a factor group G/N
where G is the nilpotent free group of nil ¢, generated by X, and ¥ is
the normal closure of R in @. Then by (4.4.1) we must decide whether
or not all abelian groups Gy/Gu:-(Gi~N); i=1, ..,¢, are finite.

By lemma 1, we can effectively find, having R, the elements
byy ooy B which generates N. Let us now find for hy, ..., hz the normal
base uy, ..., u; of the subgroup N of @, with properties (3.1.1) and (3.1.2).
For the matrix given by (3.1.2)

Mgy CGpp e Gyt
0 ay ot

the vector space generated by strokes over the ring of integers will be
denoted by M (R). This is the subspace of the space C' (the ?-dimen-
11*
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gional space over the ring of integers). The quotient space 0’/M (R) is
isomorphic to the cartesian direct product of the abelian groups
G4/Gis1- (GeAN) for =1, ..,¢ The finiteness of the space O”/M(R)
is equivalent to the rank of M(R) equal ¢ (s=1 and au 30 for
d=1,..,1).

CEhe’effectiveness of the construction of the matrix M (R) (cf. 3.2
and 4.1) gives an algorithm to decide whether or not the rank of M (R)
is equal to #. This gives an algorithm to decide for any presentation for
which the set X of generators and the set B of relations is finite, whether
or not the group so presented is finite, if it is ensured that the nilpotency
of the group is equal to or less than a given number c.

4.5, Final remarks. This final section is a continuation of the
remarks contained in section 4.1.

In sections 4.2-4.4 the following two algorithms were described.

I. The algorithm for deciding the inclusion problem and the word
problem relative to the class of all finite presentations of nilpotent groups
of a given nil (deseribed in 4.2-4.3).

II. The algorithm for deciding the finiteness problem relative to
the same class as in I (described in 4.4).

The base, for both I, and II, was the algorithm of constructing
a normal base for a subgroup of a nilpotent free group of a given nil.
The algorithm was described in section 3.2, where the subgroup theo-
rem was proved by giving the explicit method of the construction.
A possibility of programming this algorithm for a computer was dis-
cussed in section 4.1.

The author believes that algorithms I and II can also be program-
med for a computer.

The author does not know how deep is the interest of topology and
other branches, in the practical possibility of deciding the word prob-
lem and the finiteness problem in such a narrow class of presentations
a8 that for which the algerithms I and IT are applicable. But he is glad
that he has been able to construct algorithms, practical as he hopes, for
a larger class of groups than the class of Abelian groups.
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On topologies for 7'
by

Michael Gemignani (Buffalo, N. Y.)

The terminology and propositions referred to by number are those
of [1].

Let X be a space with geometry @ of length m—1 > 0. The purpose
of this paper is to investigate possible topologies on F, the set of i-flats
of G. Two possible topologies of F* are defined as follows:

1. Let {f'},ex be a net of i-flats. Define imf” = {&|  is a limit point
for some net {&,}, en; 4, €'} and imf” = {z| there is a net {&,}yen, @ €
with #,—x}. We say that f—f if f is an ¢-flat and Hmf = limf=7f.

II. Define Li(X) C X*** by LX) = {(@o, ..., 2:) € X {o, ..., @i} is
linearly independent in X}. If 2= (2,..., %) e LX), let 2* denote
{@yy vy @i} For w, 2 € Ly(X), define w~z if fi(w*) = fi(2*). ~is an equiv-
alence relation. Let ¥;== LX)/~ with the quotient topology. There
is a natural map p: ¥Yi—F" defined by p(y) = f(y*). p is obviously 1-1
and onto, hence topologize F* 50 as to make p a homeomorphism.

II is clearly equivalent to

II'. Let {{},ex be a net of i-flats. Then f -7 iff there is a basis
{#}, ..., @} for each f° such that (7,...,%)—> (%, .., @) =2 in L(X)
and o* is a basis for f.

That topology I is not necessarily the same as topology II is shown
by the following example:

Exawrre 1. Let X= {(z,y) ¢ ¥ @+ P < Lo {2, 9|1 << 2,y =0}
and let X have geometry Gz induce from R? (with the usual Euclidean

geometry). Consider the sequence of 1-flats {f*}nes Where f"={(m,y)1 y
=]%;m} ~ X. Then in topology I, this sequence fails to converge, but in

topology II, f"—~f = {(@,y)| y=0}n X.
Example 2 shows that the topology defined by II is not always
T, even when X is.
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