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gional space over the ring of integers). The quotient space 0’/M (R) is
isomorphic to the cartesian direct product of the abelian groups
G4/Gis1- (GeAN) for =1, ..,¢ The finiteness of the space O”/M(R)
is equivalent to the rank of M(R) equal ¢ (s=1 and au 30 for
d=1,..,1).

CEhe’effectiveness of the construction of the matrix M (R) (cf. 3.2
and 4.1) gives an algorithm to decide whether or not the rank of M (R)
is equal to #. This gives an algorithm to decide for any presentation for
which the set X of generators and the set B of relations is finite, whether
or not the group so presented is finite, if it is ensured that the nilpotency
of the group is equal to or less than a given number c.

4.5, Final remarks. This final section is a continuation of the
remarks contained in section 4.1.

In sections 4.2-4.4 the following two algorithms were described.

I. The algorithm for deciding the inclusion problem and the word
problem relative to the class of all finite presentations of nilpotent groups
of a given nil (deseribed in 4.2-4.3).

II. The algorithm for deciding the finiteness problem relative to
the same class as in I (described in 4.4).

The base, for both I, and II, was the algorithm of constructing
a normal base for a subgroup of a nilpotent free group of a given nil.
The algorithm was described in section 3.2, where the subgroup theo-
rem was proved by giving the explicit method of the construction.
A possibility of programming this algorithm for a computer was dis-
cussed in section 4.1.

The author believes that algorithms I and II can also be program-
med for a computer.

The author does not know how deep is the interest of topology and
other branches, in the practical possibility of deciding the word prob-
lem and the finiteness problem in such a narrow class of presentations
a8 that for which the algerithms I and IT are applicable. But he is glad
that he has been able to construct algorithms, practical as he hopes, for
a larger class of groups than the class of Abelian groups.
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On topologies for 7'
by

Michael Gemignani (Buffalo, N. Y.)

The terminology and propositions referred to by number are those
of [1].

Let X be a space with geometry @ of length m—1 > 0. The purpose
of this paper is to investigate possible topologies on F, the set of i-flats
of G. Two possible topologies of F* are defined as follows:

1. Let {f'},ex be a net of i-flats. Define imf” = {&|  is a limit point
for some net {&,}, en; 4, €'} and imf” = {z| there is a net {&,}yen, @ €
with #,—x}. We say that f—f if f is an ¢-flat and Hmf = limf=7f.

II. Define Li(X) C X*** by LX) = {(@o, ..., 2:) € X {o, ..., @i} is
linearly independent in X}. If 2= (2,..., %) e LX), let 2* denote
{@yy vy @i} For w, 2 € Ly(X), define w~z if fi(w*) = fi(2*). ~is an equiv-
alence relation. Let ¥;== LX)/~ with the quotient topology. There
is a natural map p: ¥Yi—F" defined by p(y) = f(y*). p is obviously 1-1
and onto, hence topologize F* 50 as to make p a homeomorphism.

II is clearly equivalent to

II'. Let {{},ex be a net of i-flats. Then f -7 iff there is a basis
{#}, ..., @} for each f° such that (7,...,%)—> (%, .., @) =2 in L(X)
and o* is a basis for f.

That topology I is not necessarily the same as topology II is shown
by the following example:

Exawrre 1. Let X= {(z,y) ¢ ¥ @+ P < Lo {2, 9|1 << 2,y =0}
and let X have geometry Gz induce from R? (with the usual Euclidean

geometry). Consider the sequence of 1-flats {f*}nes Where f"={(m,y)1 y
=]%;m} ~ X. Then in topology I, this sequence fails to converge, but in

topology II, f"—~f = {(@,y)| y=0}n X.
Example 2 shows that the topology defined by II is not always
T, even when X is.
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Exampie 2. Let X = R? with geometry defined as follows: Define
¢ R*—~R? by

(@ y) = (@,9), (2,9) <B—{0,0),(1,0),(0,1),(1,1)},
q((0, 0)) = (0, 1),

4((0,1)) = (0, 0),

a((1, 0)) = (1,1),

q((1,1) =(1,0)

If @ represents the usual Buclidean geometry on B2, let X have geo-
metry ¢(¢). Then the sequence of 1-flats {/*},; where "= {{z,9)] y=1/n}
converges to both the images under ¢ of the lines whoge equations are
Yy=0and y=1. If /"~ f in topology I, then /" —fin topology II, hence
if topology II is T,, topology I is also.

z tTHEOREM LIfP={{z}zeX }, the following statements are oquiv-
alent:

(a) X is T, and F* with topology II is Ty, 0 <4 < m.

(b) If .cv;—>mj, Ji=0,.,4 and {m, .., 2} is linearly independent,
t.hen there is some vy e N such that v > v, implies {wg, ..., &3} s linearly
independent, 0 <1 < m.

(e) If {ayy ..., ms} is linearly independent, there is an open neighbor-
hood of etz?h ?:1, Usy §=10,...,% such that for each set S = Woy vy yi}y
y1€ Uj, 8 is linearly independent, 0 <i < m.

Proof. (b) and (c) are clearly equivalent. Before completing the
proof, we prove the following

Lmvva 1. If dimf (Yo, oy Yuosd) = &, then § = i
at least two bases for fk(S)o.’ Y] ’ oz s Yusa) contains
. Proof. If k = 0, then {y,} and {1} are hoth bases for f,(8). Suppose

“that lemma 1 h@s been proved for k—1>0. § = {Yoy v+ Yrs1} contains
it least one basis for f(S), i.e. & maximal linearly independent subset;
_er;oee Wé may suppose that {y,, ..., yx} in such a basis. If dim g (8— {y,})
I—f é then g(8— {y,}) = 7x(8) and S— {%} is another basis for fi(S).
tlmg(8~ {yﬁ): k—1, then by the induction assumption, S— {y,}
containg a basis B fgr 9(8—{y,}) which includes yy,, whence B w {yo}
i3 a basis for f(8) distinet from {Yos oy Ya}
bl Proot of. theorem 1 completed. (a) implies (b). If (b) does not
to d, we can find, for each element » of a directed set ¥ and some in-
;ger k, a get _S-—_ {:00', oy @} such that af—su;, j= 0,..s % with
. = {Zy, «.uy ‘%f} h.ne;:u‘ly independent, but dimf({a}, wey @x}) = k—1. By
emma 1, {a, ..., 24} contains two distinet bases for f({&dy .., w2}) for
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each » ¢ N; hence we can find a subnet of j({a3, ..., 2}}), say {/™luerr,
such that 8,,— {#*} and 8,,— {;"} are bases for each /™ for fixed p
and g, p #¢ Then F*—fi y(8—{a,}) and [*—>fe_s(S— {zg}) and hence
F*1 could not be T,.

(b) implies (a). Suppose that P’ is not T,. Then we can find a neb
of i-flats {f’},ex such that f'—~f and f—f’, f f'. Then for each ve N
we have bases {&q, ..., #;} and {y3, ..., y7} of /" such that a2, ¥i >y,
j=0,..,1% and {zg, ..., @} and {y,, ..., y:} are bases of f and f', respe-
ctively. We may suppose ¥, ¢ f. Then {m, ..., @i, 3} is linearly indepen-
dent, but (b) is not satisfied.

If Fo= {{z}| » ¢ X}, F° with topology II is clearly homeomorphic to X.

LeMmA 2. Suppose that X and @ form an m- arrangement, S = {2y, ...
ey Zm} 18 @ linearly independent subset of X and y e Int C(S). (a) Then
for any face of C(8), F'C(8), there is at least one m—1-flat f which con-
tains y and which does not intersect F°C(8). (b) Moreover, { ~ C(8)= C(T),

| ([ p—
where T =f~ (| %®:) s @ linearly independent set of m~—1 points.
i1

Proof. Lemma 2 is trivially verified for m = 1. Assume that it has
been proved for m—1 > 0. Let 8 = {x, ..., #n} be a linearly independent
subset of X, and y ¢IntC(8). We may suppose that i= 0 and yex;2

F(zx0)

for some z ¢ F1C(8) (3.6). By the induction assumption, we have some
m—2-flat g C fn_s(F*C (8)) which contains z but does not intersect
F"(FlO (S)). g disconnects F'((S) into two components, one containing
#, and the other containing FO(F'0(8)) (412, 3.25, and 3.26); label this
latter component C.

A gimple argument shows that fy(#, &) ~ € ~ IntFC(8) 7 0; hence
choose w in this intersection. Again using the induetion assumption,
there is an m— 2-flat b which contains w and does not intersect F“(Fl(} (S)).
Let f= fp—y(h v {y}). f disconnects X into two convex components A
and B. We may suppose #, ¢ A. For ¢ = 2, ..., m, f ~ Intwya; 7 @; hence
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%1€ B, 1=2,..,m Since f ~ Intez, # @, it follows by (3.23) that either
frme #B, or f~ow #0. I @enf0, then fi(a, w)Ch, which
implies &~ F“(FIO’ (S)) # @, a contradiction; hence it must be thag
f @@ #D. If @ ¢f, then ze C f and henee again f,(z,, w) C &, whence
we have that f interseets #,#, in an interior point. It follows then that
@ ¢ B, and since B is convex, F°C(S) C B, therefore f~F0C(8)= g,
This completes the proof of (a).

(b) is true for m = 1. Assume that (b) has been proved for m—1 > 0.

mo
(U @) = T contains m—1 points since f intersects each segment

=2
L —
in an interior point. By the induction assumption, 7 v ( |J %@i) = b A
iz2

m o
~ (U w@i) is & linearly independent set, call it T, of m— 2 points. Since

=2

f @y, A fo(T') = @, T is linearly independent.

Fig. 2
Certainly O(T)Cf~ 0(S). By the induction assumption, C(7")

=fAFC(8)=h~F0(S). Suppose uefn C(8). Set {0} = 1w,
Then fi(u,v) intersects F*C(S) at a point of h, whence u ¢ 0(T) (3.6).

THEOREM 2. Suppose that X and G form an m-arrangement. Let
8={@o, ..., @} be a linemly independent subset of X and select y e Int C(8).
Let i1 be an m—1-flat which contains y and does not intersect F'C (8),
j=0,..,m. fhy disconnects X into two conves open sets A; and Bj;,
FO(8)C A; and ;¢ B;. Set U(v;)= N Ay j=0,...,m. Ulw,) is a conves

- . v j
open meighborhood of ;. Then if T ={wo, ..., w,} where wy € Ul(ws),.

J=0,..,m, T is linearly independent.

Proof. Theorem 2 is true for m = 1. Assume it has been proved
for m—1>0. fo1n CF)=0C(Q) where Q= Foez  ( Lmj wos). For
f=1,.,m fos~foy is an m—2-flat contained in f;’nmflvvhich con-
tains y (which is in Int0(7)) and such that (fh_y ~ fos) ~ F7 C(Q) = O.
Set {27} = fm—1 ~ Bpay, thus Q = {15 ooy 2m}. Set V(zy) = ]ﬁl Ax A fet s

Py
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By the above observations and the induction hypothesis, if {uy, ..., um}
is a seb such that wu;eV(z)), j=1,..,m, then {uy, .., un} is linearly
independent. Set {uj} = wows ~ fa—1, §=1,...,m. This intersection is

Fig. 3

non-empty for each j since w, and w; arve in different components of

X—fo_1. us e V(25) since both w, and w; are in (Ln] Ay a convex set, hence
. kot
wow; C ﬁ1Ak' Hence if {wy, ..., wn} is linearly dependent, it must be
etf
contained in an m—2-flat for which {u,, ..., 4x} is a basis; hence that
flat must be fy_;. Bub similar reasoning shows that it must also be ﬂ'n_I,
j=1, ..., m, a contradiction.

CoROLLARY. If X and @ form an m-arrangement, then F* with topol-
ogy IL is T,, 0 i < m.

Proof: Theorem 1 (c).

In the light of the previous results we may define a “meaningful”
derivative in the situation where X and geometry G form an m-arran-
gement: Suppose ¥ C X. Then a k-flat f, k> 1, is said to be iangent
to ¥ at y ¢ ¥ if given any directed set I and for any » e ¥ any linearly
independent set of points {y5, ..., ¥k} C ¥ such that 4j—>y, j=0,.., %,
then fx({ys, -.., ¥i})—f in topology IL. It is easily seen that if there is
any flat tangent to ¥ at v, such a flat is unique.
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