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Autohomeomorphisms on E"
by

Henry Sharp, Jr. * (Atlanta, Ga.) USA

1. Introduection. Let H denote the family of all autohomeomor-
phisms on E" (homeomorphisms on euclidean »-dimensional space onto
itself). If f,g <« H and if d is the usual metric in ", let

e(f, 9) =supd(f(z), g(w)) for all weB".
For any countable dense sets A and B in E", let
H(A,B)={heH: h(4)=B)}.

It is well known that H (4, B) is non-empty (for example, [2], p. 44).
Section 2, below, is devoted to the proof that there exist members of
H(A,B) arbitrarily close (in the sense of p) to the identity. Various
applications of this result are given in Section 3. Since ¢ is not a metrie,
we assume there that H is given the compact-open topology. It then
follows that H (A4, B) is dense in H and this fact is a key to other ap-
plications.

2. Main Theorem. The proof of Theorem 1 depends upon two
lemmas. The argument is related to that in Hurewicz and Wallman
but involves Cauchy sequences. '

TaroREM 1. If A and B ave countable dense sets in B", then for any
e> 0 there is an h e H such that h(4) = B and o(h, identity) <e.

LuMMA 1. Let A and B be countable dense sets in E' and let £ >0
be given. Then A and B may be ordered into sequences A = {a;} and
B = {Bs} such that for each i, ]

(1) g2 < Bi—au <&,
(2 w<ar if and only if Pi<Ps,
3) a < ay implies fi—ay<Pir—ai.

~

* This paper was written during the author’s tenure as a National Science Foun-
dation Science Faculty Tellow (U.8.A.).
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Proof. The proof is by induction and we may assume that 4 and B
are ordered into sequences {a;} and {b;} arbitrarily except that

g2 <b—a;<e and by, <b.

Define a; = @y, f; = by, & = fy— ;. Corresponding to B = by, let a denote
any a; (¢>1) such that

< pf—a<s.

" Define a,= o, fa= by=f, 6= fo— @, and nobe that a, < o; and ¢/2
< <dy<e.

Now assume that ay, ..., dam and By, ..., fom have been selected, so
that conditions (1), (2), (3) hold. Let a denote the first a; not previously
selected. There are three cases to consider.

(i) If e< oy for i=1,..,2m, let j be the subscript such that
oj— ¢ is the minimum, and let § denote any b: not previously selected
such that

5§<ﬂ—a<£ and ﬁ<ﬁj

Define oomis == &, fam+1 =0y Ommt+1 = fomt1— Cem+1, and note that for
i=1,..,2m
Bemir < Bt and  g2< 6 < dami1 < €.
(i) If es< o for i=1,..,2m, let & be the subseript such that
a— ay is the minimum, and let f denote any b; not previously selected

such that
g2<pP—a<d and fr<§p.

Define apni1 = @, fomt1 = P; Oom+1 = Pom+1— Oom+1, and note that for
i=1,..,2m )
ﬂt < [3211;.;-1 and 8/2 << 52m+1 < <e.
(iii) Suppose that for some §, %, ox < a < o5, where or and a; are
the closest elements to a. By the induction hypothesis, S << B (no other

fs lies between them) and 8; < 8. Let 8 denote any b; not previously
gelected such that

G<f—a<dh and H<p<Ppy.

Define tomi1= @, fomss =P OGum+1 = Pamii— Gom41, and note that if
ay < Ogmi1 then

Bi<fomyr and g2 <ompi<d<e,
and i agmiq < a5 then

Bemir <P and &2 < i< domys < .
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A similar argument suffices for the construction of aypis and fomes.
This completes the induetion and the proof.

It is important to observe that, at each step in the construction
above, an interval is established within which the appropriate a or §
may be selected.

LeMMA 2. Let A and B be countable dense sets in E" and let ¢ >0
be given. Then A and B may be ordered into sequences A = {ai} and
B = {Bi} such that for each 4,

(1) &2 < d{oq, Bi) <&,
(@) By, Be) < d(ay, @) .

Proof. Let the coordinate representation of a point p in E™ be
(9%, 9% ..., p™). Again the proof is by induetion and we may assume that
A and B are ordered into sequences {a;} and {b;} arbitrarily except that
for each coordinate »

g2)n < bi—a, <slyn and B <B.

Define o, = a,, f; = b;. Corresponding to p = b,, use Lemma 1 coordi-
nate by coordinate to determine an n-dimensional interval within which
@ (#a,) can be selected so that each coordinate pair (o, ') satisfies
Lemma 1 with & replaced by sfy/n. (We assume here that the coordinate
axes are in general position with respect to A and Bj [2], D. 45.) The
inductive step follows also by use of Lemma 1 coordinate by coordinate.

For each ¢, §, and v=1,2,..,n,
ef2Yn < fi—di < elyn implies g2 < d(a, fi) <e,
Bi—df < fi—aj implies  d(By, Bi) < dlay; o),

and the lemma is proved.

Proof of Theorem 1. We may assume that 4 = {o;} and B = {f:}
are ordered, so that conditions (1) and (2) of Lemma 2 hold. For each 1,
define h{a;) = fi. For each @ ¢ E"—A4, let {z;} be any subsequence of A
converging to @. By (2), {h(»;)} converges to a point A(x) independently
of the subsequence chosen, and by (1), ¢/2 < d(z, h(z)) < e for all v e B
By (2) again, h is non-expansive (i.e. for all u, veE" d@(h(u),h(v)) < d(u,v))
hence b is continuous. To show that % is one-to-one, suppose that d(u, v)
= 0. Then for some coordinate », #* # ¢*. By (2) of Lemma 1, (h(u))’
# (h(v))"; hemce %(u) % h(v). By Brouwer’s theorem on invariance of
domain, % is a homeomorphism on B into B", and L(E") is open in E™
Since the image of each unbounded sequence in E" is unbounded, h(E")
is also cloged in E", whence heH.
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3. Applications. In this section we assume that H is assigned
the compact-open topology: a sub-basis for this topology is the family
of all sets

W(K,U)={heH: H(K)C U}

where K is compact and U is open in E™
TueoREM 2. For any countiable dense sets A and B in H", H (4, B)
is dense in H.
Proof. Any member M of a basis in the space H can be represented
as a finite intersection
M=N\W(E:, U;).

If feM then, for each 4, f(K;) is compact and dist (]‘(]Q),E”-U,)
> &; > 0. Let ¢ be the least of the positive numbers ¢;,. Now fld)=4’
is countable and dense in B"; hence by Theorem 1 there is a g € H such
that ¢(4’) = B and ¢(g, identity) <e. Then gf eH(A,B)~ M.

Suppose now that » > 1 and that dimX < # where X C B". Tn [17,
8. W. Hahn showed that for some % ¢ H. , h(X) misses the set of rational
points in B". The corollaries below extend this result.

CoroLLARY 1. If B is any countable dense set in E", then the set
Hp={heH: h(X)CE"—B} is dense in H.

Proof. Since dimX < n, B*—X contains a countable dense set A.
But H(4,B)CHg, so Hp is dense in H.

COROLLARY 2. Under the additional hypothesis that X is an F,-subset
of B*, Hg is a dense Gy-subset of H.

Proof. The argument is similar to one given in [3]. Let X = | J X;,
t=1,2, .., where, for each 4, X; is compact and dimX; < n, and let
B={b, b, ...}. For each 1, j, let

Hiyy={heH: bj#h(X{)}

Note that (1) Hy; is open, since it is a sub-basic set in the c-o topology,
and (2) Hy is dense, since by Theorem 2 it contains a dense set. The
space H is metrizable as a complete space, and since Hp= (") Hy; (all ¢
and j), Baire’s Theorem apyplies.

We consider finally an application to mappings (continuous fune-
tions). Let ¥ denote the family of all mappings on E" into itself under

the compact-open topology. Let I denote the subfamily of maps which
lower dimension in the sense

L= {feF: dimf(B") <n)}.

TemoREM 3. If B is a countable dense set in B" and if Fs
= {f eF: {(E")CE"—B), then F3CLC Iy (closure of Fg).

icm°

. Lrd
Autohomeomorphisms on B 175

Proof. If feFp then f(E") contains no set open in E“’,'hence
dimf(E") < n. I feL then dimf(B") <n and by Corollary 1, in any
neighborhood of the identity there is an he H such that h{f(E™) C B"—B.
Hence in any neighborhood of f there is a mapping hf ¢ Fis. B

Theorem 3 leaves unsettled an interesting conjecture: that L = Fa.
The conjecture is true if and only if F—L is 9pen,1 which means (roughly):
if {(B") contains a spherical neighborhood in E”, then s0 also does the
image of any map sufficiently close to f. We prove this only for the
case 1= 1. B

CoRrOLLARY 3. In the notation above, if n =1 then L = Fp.

Proof. In this case, the set L congists of all consta,.nt maps. If
feF—L then there exigt disjoint open intervals U, and U, in f(,El). Let
E; be any compact subset of f(Uy). Then fe W(E,, U;) ~ W(K,, Uy)
CF—L. Thus L is closed under the compact-open topology.
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