

Autohomeomorphisms on Eⁿ

hv

Henry Sharp, Jr. * (Atlanta, Ga.) USA

1. Introduction. Let H denote the family of all autohomeomorphisms on E^n (homeomorphisms on euclidean n-dimensional space onto itself). If $f, g \in H$ and if d is the usual metric in E^n , let

$$\varrho(f,g) = \sup d(f(x),g(x))$$
 for all $x \in E^n$.

For any countable dense sets A and B in E^n , let

$$H(A, B) = \{h \in H \colon h(A) = B\}.$$

It is well known that H(A,B) is non-empty (for example, [2], p. 44). Section 2, below, is devoted to the proof that there exist members of H(A,B) arbitrarily close (in the sense of ϱ) to the identity. Various applications of this result are given in Section 3. Since ϱ is not a metric, we assume there that H is given the compact-open topology. It then follows that H(A,B) is dense in H and this fact is a key to other applications.

2. Main Theorem. The proof of Theorem 1 depends upon two lemmas. The argument is related to that in Hurewicz and Wallman but involves Cauchy sequences.

THEOREM 1. If A and B are countable dense sets in E^n , then for any $\varepsilon > 0$ there is an $h \in H$ such that h(A) = B and $\varrho(h, identity) \leq \varepsilon$.

LEMMA 1. Let A and B be countable dense sets in E^1 and let $\varepsilon > 0$ be given. Then A and B may be ordered into sequences $A = \{\alpha_i\}$ and $B = \{\beta_i\}$ such that for each i, j

(2)
$$a_i < a_j$$
 if and only if $\beta_i < \beta_j$,

(3)
$$a_i < a_j \quad implies \quad \beta_j - a_j < \beta_i - a_i$$
.

^{*} This paper was written during the author's tenure as a National Science Foundation Science Faculty Fellow (U.S.A.).

Proof. The proof is by induction and we may assume that A and B are ordered into sequences $\{a_i\}$ and $\{b_i\}$ arbitrarily except that

$$\varepsilon/2 < b_1 - a_1 < \varepsilon$$
 and $b_2 < b_1$.

Define $a_1 = a_1$, $\beta_1 = b_1$, $\delta_1 = \beta_1 - a_1$. Corresponding to $\beta = b_2$, let α denote any a_i (i > 1) such that

$$\delta_1 < \beta - \alpha < \varepsilon$$
.

Define $a_2 = a$, $\beta_2 = b_2 = \beta$, $\delta_2 = \beta_2 - a_2$, and note that $a_2 < a_1$ and $\epsilon/2 < \delta_1 < \delta_2 < \epsilon$.

Now assume that a_1, \ldots, a_{2m} and $\beta_1, \ldots, \beta_{2m}$ have been selected, so that conditions (1), (2), (3) hold. Let α denote the first a_i not previously selected. There are three cases to consider.

(i) If $a < a_i$ for i = 1, ..., 2m, let j be the subscript such that $a_j - a$ is the minimum, and let β denote any b_i not previously selected such that

$$\delta_i < \beta - \alpha < \varepsilon$$
 and $\beta < \beta_j$.

Define $a_{2m+1} = \alpha$, $\beta_{2m+1} = \beta$, $\delta_{2m+1} = \beta_{2m+1} - \alpha_{2m+1}$, and note that for i = 1, ..., 2m

$$\beta_{2m+1} < \beta_i$$
 and $\varepsilon/2 < \delta_i < \delta_{2m+1} < \varepsilon$.

(ii) If $a_i < a$ for i=1,...,2m, let k be the subscript such that $a-a_k$ is the minimum, and let β denote any b_i not previously selected such that

$$\varepsilon/2 < \beta - \alpha < \delta_k \quad \text{and} \quad \beta_k < \beta$$
.

Define $a_{2m+1}=a$, $\beta_{2m+1}=\beta$, $\delta_{2m+1}=\beta_{2m+1}-a_{2m+1}$, and note that for $i=1,\ldots,2m$

$$\beta_i < \beta_{2m+1}$$
 and $\varepsilon/2 < \delta_{2m+1} < \delta_i < \varepsilon$.

(iii) Suppose that for some $j, k, a_k < a < a_j$, where a_k and a_j are the closest elements to a. By the induction hypothesis, $\beta_k < \beta_j$ (no other β_i lies between them) and $\delta_j < \delta_k$. Let β denote any b_i not previously selected such that

$$\delta_j < \beta - \alpha < \delta_k$$
 and $\beta_k < \beta < \beta_j$.

Define $a_{2m+1}=\alpha$, $\beta_{2m+1}=\beta$, $\delta_{2m+1}=\beta_{2m+1}-a_{2m+1}$, and note that if $a_i< a_{2m+1}$ then

$$\beta_i < \beta_{2m+1}$$
 and $\varepsilon/2 < \delta_{2m+1} < \delta_i < \varepsilon$,

and if $a_{2m+1} < a_i$ then

$$\beta_{2m+1} < \beta_i$$
 and $\varepsilon/2 < \delta_i < \delta_{2m+1} < \varepsilon$.

A similar argument suffices for the construction of a_{2m+2} and β_{2m+2} . This completes the induction and the proof.

It is important to observe that, at each step in the construction above, an interval is established within which the appropriate α or β may be selected.

LEMMA 2. Let A and B be countable dense sets in E^n and let $\varepsilon > 0$ be given. Then A and B may be ordered into sequences $A = \{\alpha_i\}$ and $B = \{\beta_i\}$ such that for each i, j

$$\varepsilon/2 < d(\alpha_i, \beta_i) < \varepsilon,$$

(2)
$$d(\beta_j, \beta_i) < d(\alpha_j, \alpha_i).$$

Proof. Let the coordinate representation of a point p in E^n be $(p^1, p^2, ..., p^n)$. Again the proof is by induction and we may assume that A and B are ordered into sequences $\{a_i\}$ and $\{b_i\}$ arbitrarily except that for each coordinate ν

$$\varepsilon/2\sqrt{n} < b_1^{\nu} - a_1^{\nu} < \varepsilon/\sqrt{n}$$
 and $b_2^{\nu} < b_1^{\nu}$.

Define $a_1 = a_1$, $\beta_1 = b_1$. Corresponding to $\beta = b_2$, use Lemma 1 coordinate by coordinate to determine an n-dimensional interval within which $a \ (\neq a_1)$ can be selected so that each coordinate pair (a', β') satisfies Lemma 1 with ε replaced by ε/\sqrt{n} . (We assume here that the coordinate axes are in general position with respect to A and B; [2], p. 45.) The inductive step follows also by use of Lemma 1 coordinate by coordinate. For each i, j, and v = 1, 2, ..., n,

$$arepsilon/2\sqrt{n} < eta_i^{r} - lpha_i^{r} < arepsilon/\sqrt{n} \quad ext{implies} \quad arepsilon/2 < d\left(lpha_i, eta_i
ight) < arepsilon \, , \ eta_i^{r} - lpha_i^{r} < eta_i^{r} - lpha_i^{r} \quad ext{implies} \quad d\left(eta_j, eta_i
ight) < d\left(lpha_j, lpha_i
ight) \, ,$$

and the lemma is proved.

Proof of Theorem 1. We may assume that $A = \{a_i\}$ and $B = \{\beta_i\}$ are ordered, so that conditions (1) and (2) of Lemma 2 hold. For each i, define $h(a_i) = \beta_i$. For each $x \in E^n - A$, let $\{x_j\}$ be any subsequence of A converging to x. By (2), $\{h(x_j)\}$ converges to a point h(x) independently of the subsequence chosen, and by (1), $\varepsilon/2 \leq d(x, h(x)) \leq \varepsilon$ for all $x \in E^n$. By (2) again, h is non-expansive (i.e. for all $u, v \in E^n$ $d(h(u), h(v)) \leq d(u, v)$) hence h is continuous. To show that h is one-to-one, suppose that d(u, v) > 0. Then for some coordinate $v, u^v \neq v^v$. By (2) of Lemma 1, $(h(u))^v \neq (h(v))^v$; hence $h(u) \neq h(v)$. By Brouwer's theorem on invariance of domain, h is a homeomorphism on E^n into E^n , and $h(E^n)$ is open in E^n . Since the image of each unbounded sequence in E^n is unbounded, $h(E^n)$ is also closed in E^n , whence $h \in H$.

?

3. Applications. In this section we assume that H is assigned the compact-open topology: a sub-basis for this topology is the family of all sets

$$W(K, U) = \{h \in H: h(K) \subset U\}$$

where K is compact and U is open in E^n .

THEOREM 2. For any countable dense sets A and B in E^n , H(A,B) is dense in H.

Proof. Any member M of a basis in the space H can be represented as a *finite* intersection

$$M = \bigcap W(K_i, U_i)$$
.

If $f \in M$ then, for each i, $f(K_t)$ is compact and $\operatorname{dist}(f(K_t), E^n - U_t) > \varepsilon_t > 0$. Let ε be the least of the positive numbers ε_t . Now f(A) = A' is countable and dense in E^n ; hence by Theorem 1 there is a $g \in H$ such that g(A') = B and $\varrho(g, identity) \leq \varepsilon$. Then $gf \in H(A, B) \cap M$.

Suppose now that $n \ge 1$ and that $\dim X < n$ where $X \subset E^n$. In [1], S. W. Hahn showed that for some $h \in H$, h(X) misses the set of rational points in E^n . The corollaries below extend this result.

Corollary 1. If B is any countable dense set in E^n , then the set $H_B = \{h \in H : h(X) \subset E^n - B\}$ is dense in H.

Proof. Since dim X < n, $E^n - X$ contains a countable dense set A. But $H(A, B) \subset H_B$, so H_B is dense in H.

COROLLARY 2. Under the additional hypothesis that X is an F_{σ} -subset of E^n , H_B is a dense G_{δ} -subset of H.

Proof. The argument is similar to one given in [3]. Let $X = \bigcup X_i$, i = 1, 2, ..., where, for each i, X_i is compact and $\dim X_i < n$, and let $B = \{b_1, b_2, ...\}$. For each i, j, let

$$H_{ij} = \{ h \in H \colon b_j \notin h(X_i) \}.$$

Note that (1) H_{ij} is open, since it is a sub-basic set in the c-o topology, and (2) H_{ij} is dense, since by Theorem 2 it contains a dense set. The space H is metrizable as a complete space, and since $H_B = \bigcap H_{ij}$ (all i and j), Baire's Theorem applies.

We consider finally an application to mappings (continuous functions). Let F denote the family of all mappings on E^n into itself under the compact-open topology. Let L denote the subfamily of maps which lower dimension in the sense

$$L = \{ f \in F \colon \dim f(E^n) < n \}.$$

THEOREM 3. If B is a countable dense set in E^n and if $F_B = \{ f \in F: f(E^n) \subset E^n - B \}$, then $F_B \subset L \subset \overline{F}_B$ (closure of F_B).

Proof. If $f \in F_B$ then $f(E^n)$ contains no set open in E^n , hence $\dim f(E^n) < n$. If $f \in L$ then $\dim f(E^n) < n$ and by Corollary 1, in any neighborhood of the identity there is an $h \in H$ such that $h(f(E^n)) \subset E^n - B$. Hence in any neighborhood of f there is a mapping $hf \in F_B$.

Theorem 3 leaves unsettled an interesting conjecture: that $L = \overline{F}_B$. The conjecture is true if and only if F - L is open, which means (roughly): if $f(E^n)$ contains a spherical neighborhood in E^n , then so also does the image of any map sufficiently close to f. We prove this only for the case n = 1.

COROLLARY 3. In the notation above, if n=1 then $L=\overline{F}_B$.

Proof. In this case, the set L consists of all constant maps. If $f \in F - L$ then there exist disjoint open intervals U_1 and U_2 in $f(E^1)$. Let K_i be any compact subset of $f^{-1}(U_i)$. Then $f \in W(K_1, U_1) \cap W(K_2, U_2) \subset F - L$. Thus L is closed under the compact-open topology.

References

[1] S. W. Hahn, Universal spaces under strong homeomorphisms, Trans. Amer. Math. Soc. 70 (1951), pp. 301-311.

[2] W. Hurewicz and H. Wallman, Dimension theory, revised edition, Princeton, 1948.

[3] H. Sharp, Jr., Strongly topological imbedding of F_σ-subsets of Eⁿ, Amer. Jour. of Math. 75 (1953), pp. 557-564.

EMORY UNIVERSITY

Recu par la Rédaction le 2.9.1965