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On the conditions of monotonicity of functions *
by

Tadeusz Swiatkowski (£6d%)

G. P. Tolstov [2] and Z. Zahorski [3] have obtained the following
theorems on the monotonicity of functions:

ToLsToV’s THEOREM. Let f be o function which is approximately con-
tinuous in the interval (a, b). Suppose that its approwimate derivative exists,
emcept possibly at o coumtable set of points, and iakes non-negative values
a.e. i (@, b).

Then the function f is continuous and non-decreasing in (&, b).

ZAHORSKI'S THEOREM. Let f be a funciion satisfying in (@, b) the con-
ditions: (a) in every interval {p, q>C (a,b) the function f takes all values
from the interval <f(p), 1(4)>, (b) the derivative of the fumction | ewisis except
at a countable set of points, (c) f(z) =0 a.e. in (@,D).

Then the function f is continuous and non-decreasing in (a, b).

The theorems just quoted give some sufficient conditions for a fune-
tion to be monotone. The sets of functions satisfying the conditions given
by the authors of these theorems are not exclusive bub neither includes
the other. Z. Zahorski has proved that both sets are parts of the family Z
consisting of all funetions f satisfying in an inteérval (a, b) the following
conditions:

1. f is a function of the first class of Baire,

9. in every interval {p, ¢ C (a, D) the function | takes all values from
the interval <f(p), f(9)>

3. the approwimative derivative of the function f ewists exoept at a couni-
able set in (a, b) and

4. fon(®) >0 a.e. in (a,d).

7. Zahorski has noticed that there exist functions satisfying three
of the conditions 1-4 chosen arbitrarily, which, however, are not mono-
tone. Simultaneously he raises the following question:

* The paper was presented at the meeting of the L.6d% Section of Polish Mathe-
matical Society of February 26, 1965. :
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THE PROBLEM OF ZAHORSKI. Is every fumction of the family Z conti-
nuous and non-decreasing?

In the present paper we shall formulate some theorems giving
certain sufficient conditions of the monotonicity of funetions. One of
them (theorem 1) is a positive answer to the question of Z. Zahorski
stated above ().

In paper [3] mentioned above, Z. Zahorski has described a class ¥
of functions satisfying conditions 1 and 2. Of the properties of the func-
tions of the class § the following two will be employed in the sequel.
(a) A function f belongs to the class F if and only if each of the sets of
the form {2: f(z) > M} and {#: f(x) < m} is an ¥ set and consists only
of bilateral condensation points. (b) If feJ and ¢ is a continuous fune-
tion, then the sum of these functions belongs to .

I Levma 1. Let o function, measurable in (a,b), f possess at each
point of a residual set H C(a,b) an approvimate derivative. Further, let
M and N be real numbers such that M > N.

Then at most one of the sets 4 = {w: fap(z) > M}, B = {m: fon(®) < N}
can be dense in (a,b).

Proof. Suppose, on the contrary, that 4= B = <a,b> and let
HD(a,b)— Py, where {F,} is a sequence of closed nowhere dense
sets. Moreover, let M’ and N’ be two numbers fixed throughout the
argument and such that N < N’ < M’ < M.

Now let @ ¢ A—F,. There exist a number t, > 0 such that ¢ < @,—
—4h <@ 44t <b and gets 4,C (#y— 41, 2;) and B, C (wy, @y - 4t,)
such that

1) ) [4i]>3t, |By >3t

2) {@y— 4ty m+ 48,5 C (a, b)—F,

and

3) M>M' for wed,uB.
T—,

Now let @ ¢ B~ (23—t @y+1)—F,. There exist a number f,> 0
and sets A, C (v~ 44,, #,) and B, C (@, By~ 4y) such that

(4) [ Ao > 8ty,  |By > 3ty

(5) {@ty— 4y, @y 4ty > C (y—y, @y 1,)— Ty
and

(6) :f—@)—_—f(ﬁ?—z—) <N for wed,uB,.

*— 1,

) (*) Independently of my results the solution of Zahorski’s problem has been ob-
tained by A. Brickner. ‘His result has not yet been published.
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Repeating the above argument we obtain sequences of numbers {zn}
and {in}, and sequences of sets {4,} and {B,} such that for every nat-
ural n we have

(1) ApC(@n—din, 0n), By C(n, Tn-+4ta),

(8) |An| > 38ty, |Ba|> 8ty,

9 {Bpgr— Angry Bpo1+ dnt1d C(@n—1tu, Bn4-tn)—Fra1 ,
(10) }@%—:-%?1) >M  for wedsy i By
and

(11) I@ =T @) 3 for geduy o Bun.

L Loy,

Let @, be the common point (in view of (9) the only one) of all the i.nter-
vals (&n—1tn, Tu+1a> and let F be an arbitrary set with a density point #,
and let the limit

) i /(@) = (@)

——=°  when 2zeF
oozg  B— Ly
exist. Such a set exists because by (9) @, e H. In view of (7)’ (8), and (9)
there exist two sequences {i,} and {j»} of positive integers such that the
set F has common points with each of the sets
Ay = Asiy, ~ iy~ gy Taty— 23>,
B, = Bsg, N {&aiy oty Tty + Hain )
An =4,

By, = Baj,-1 M {Bajyt - ajp—15 Bojp—1 + Hojp—1> -

(13)

inmt O Bojy1— Asja 1y Bappm1—lojp-1>

Now let @, el ~ Ay, @speB A By, @guel n A4y, and 2,,¢E n By.
By (7), (10), and (11) we have for n=1,2,..

(14) M!i) <N’

Ban— 1,
and
(15) f(mf;,n) — f(@s,n) > M ,

Dan— Ts,n

which contradicts (12), since Lim @y, = @ and @in e B for i=1,2,3,4.

N~+00
The contradiction obtained proves lemma 1. S
LuMMa 2. Let the function fe§ possess an approm?)mate :.Zerwatufe ;/n,
the interval (a,b) except at a denumerable sel of points. Mo?e;wm , let
fin(®) = M, where M > 0, also except at @ fle%umemble set of points.
Then the fumction f is non-decreasing in (a, b).
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Proof. Let {pa} be a sequence of points of the interval (a, b) beyond
which there exists an fup(#) and fap(#) > M. Suppose that the lemmg
is not true and let oy = a < @ < &)’ < b= b, and f(#)) < f(#]). In view
of fed we may assume that p, ¢ <@, #1>. Since f ¢ the set (2], a}) A
~ {&: f(x) > f(#{)} is non-denumerable. Therefore there exists g point
@) e (w1, 4)) such that f(i")> f(#y) and there exists an fan(2l) = M1,
Let d, be a positive number such that

(2" 2+ d) ~ fo: (@) > (o)} > §dy,

wtd<al, f@'+d) =7,
Put

(16)  af=sup{m: > o +dy o' +d <t <o>F() > 1(2))}

Now let ;' be a number different from all the numbers Pn such that
f(@) <f(as) and a3 < o}’ < min (&}, as-+ dy8). Thus there exists a number
d{> 0 such that al'—d > a; and f(z™V— ) < (=) and the measure

of the set {m: f(#)>f(a1")} ~ (&]'—dj, ) is not less than 3d;/4.
Now put
7y by =inf{w: & <o’ — iy s <t <l — di=F(t) < f(wiv)}
@, = max (as, by— dy/4) .
Moreover, putting
A= {m: (@) 2 F(@")} ~ (0a—dy, a,) ,

(18)

By = {w: f(@) <f(@1")} ~ (by, byt d),
we have
(19) fl@') >f@") for w'ed, a'cB
and
(20) My > 3di,  |By >34,

"

Now let ; and 2 satisty the inequality a, < @ < 7 < b, and let
also Py e (w3, 24') and
(21) 1 @) > f(a3).

The points 2 and 2y with the properties given above exist for fe¥
and by (17) {@: f(2) > J(b)} ~ (ag, by) 5~ 0.

Proceeding analogously we find numbers g, by, dy, and d; and sets

A, C (g~ dy, ay) and B, C(by, by+ds) such that

(22) by—ay < min (dy/4, dg/4) ’

(23) < gy < @y < by < by <
(24) Mol > 3dy,  |By| > 345,
and

(25)

@) <fl@”) for o' ed, and o €B,.

icm°
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It is seen from the above considerations that one can define recurrently

number sequences {a}, {bs}, {d.}, and {d.} and set sequences {4,} and
{By} such that for all natural » we have

(26) 0 < tn < Gnpr—n <y <bpys <bpyr+dp < by < b,
27 a1~ Gnpr < Min(dnf4, dn/4),

(28) P {bny1y Dutrd,

(29) AnC(Ont1—dny Gnss), BaC (brt1y bngr+dn) ,
(30) [4n| 2 4dn,  |Bal>3d,

and

(81) fl@)<f(@') for a'ed,, 2'eB,.

Let @, be the—in view of (26) and (27)—unique point common to
all the intervals {a, b»). In view of (28) there exists a derivative fip(,)
> M. Consequently there exists a set # whose density at x, equals 1
and such that
1 (@) — 1 (o)

>lf- for

(32) —a 2

el and = #x,.
By (26), (27), (29), and (30) there exists a sequence of positive integers
{mx} such that

(33) E~dy#0 and E~Bg,#£0 for k=1,2,..

Now if &' € B ~ Ay, @' € B ~ By, then by (26), (29), and (31) 2’ < 2’
and f(2”) < f(#'), which is impossible in view of (32). Thus lemma 2
has been proved.

Lemma 3. Let the function feG possess an approwvimate derivative
in the interval (a,b), except perhaps at a denumerable set of points. Let
also fap(2) = M > 0 almosi everywhere in (a, b). Moreover, let pe(a,Dd)
be such a mumber that f is mot monotonic in any interval of the form
(8, B+ ).

Then there ewists for arbitrary ¢> 0 and 6 > 0 a point @, (§, f+05)
such that (i) f(m) > f(B)—e, (i1) f is not monotonic in any of the intervals
(@—h, ), and (iii) at least one of the conditions (a) f is monotonic in the
interval (2, @,--h), for certain h> 0 or (b) there ewists an fap(), holds.

Proof. Suppose that there exist a number s> 0 and an interval
(8, B+ 6) which does not include the point #, satisfying conditions (i)-(iii).
Since f ¢ §, there exists in the interval (8, f-+6) a non-denumerable seb
of points satisfying the inequality f(z)> f(B)—e/2. Thus there exis.;t
among them points at which fs, exists. Let @, be one of them. Since it
satisfies conditions (i) and (ii), it cannot fulfill condition (ii). Thus
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@, lies in an interval of monotonicity of the function 7, not being the
left-end point of this interval. Denote by (a,, b,) the largest of such
intervals. Since evidently g < a; < -+, we have f(a,) <f(f)—e.

In a similar way we may find in the interval (8, 4+ 6) an infinite
set of intervals {(a., bs)} such that (A) each of the intervals (a,,b,>
is the maximal interval of monotonicity of the function f (is not included
in another interval of monotonicity of function f), (B) f(an) <f(8)—e,
f(ba) = f(B)—&/2, (0) the set B = {B,B+ 8> — | (@, bs) possesses a con-
tinuum of components, (D) the sequence (@, by) includes any interval
included in (8, f+6) and satisfying conditions (A) and (B); (B) for
#= 2,3, .. point b, is an accumulation point of the sets {ax} and {b}.

Let A be the boundary of the set . Bach point of the set A dif-
ferent from all the numbers a, is an aceumulation point of the set {b,}.
Thus removing from the set 4 its isolated points (if such exist) we
obtain a perfect set B. Consequently the reduced function f/B should
have in B a non-denumerable amount of continuity points. Thus there
exists a point #, e B—{a,} at which f/B is continuous and f,, exists.
Since, according to what has been said above, #, is an aceumulation
point of the set {bs}, we have f(x,) = f(8)—¢/2. Thus point x, satisfies
conditions (i)-(ili). The contradiction obtained proves lemma 3.

THEOREM 1. Let a function fe§ possess an approzimate derivative
in (a, b}, except perhaps on a denumerable set of points, and let fap(®) = 0
almost everywhere in (a, b).

Under these assumptions | is non-decreasing and continuous in (a, b).

Proof. Since f ¥, it suffices to prove the continuity of the function f.

Assume first that fip(2) > M > 0 almost everywhere in (a,b) and
let {pa} be a sequence of points beyond which fi, exists. Suppose that
7 is not non-decreasing in (&, b). Thus by lemmas 1 and 2 the maximal
interval of monotonicity of the function f including its end-points in
(a,b) exists. Denote it by {(a,,b,>. Let &, be a positive number such
that (i) 44, < b,—ay, (ii) (a) the approximate derivative of function j at
the point b, 4, exists, or (b) f is monotonic in one interval whose left
end-point is b+ 4, (i) f(by+6,) > f(by)— (b,—ay) /8, (iv) the funec-
tion f is not monotonic in any interval whose right end-point is b,+ 4.
The existence of such a number §; immediately follows from lemma 3.

Now if fap(by+6,) >0 or (ii) (b) holds then there exist a number
hy> 0 and a set A, C (b 48y, b+ 8,4+ k) C (a, b) such that (a) 2hy < by,
(b) 214 > My, (c) for we 4, we have f(z)> f(b)— (by— a;) M/8. If, on the
other hand, fi,(b,+6;) < 0, then there exist a number hy> 0 and a set
A, C(by+ 8,— by, by+8;) such that conditions (a), (b), and (c) are satis-
fied and the function f is not monotonic in any interval whose right
end-point is by 48— h,.

icm
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Let <ay, bp) C(dy—hy, &) (where ¢, = bi+6, or & =b,+8,—h, ac-

cording to whether fip(b,+8,) > 0 or fiy(b+8,) < 0) is an interval in

which f is not monotonic and which does not include the point p,.
Introducing the notation B, = (a,, (a;-+ b,)/2), we have

X— 0y dy—z

(34) [By] > R {44 > 1 for @, <o <b,y,
and

(¢ 1’ — ’ M
(35) f";)_g“) >3 for @B, a4,

Since {a,, be> is not a interval of monotonicity of function 7, there exists,
according to lemma 2, a point #, € (a,,d,) such that there exists an
Janl®z) < M/[10.

Thus there exist numbers ¢, dy, a5, b, and sets 4, and B, satisfying
the conditions

(36) s < 0 < 8y < by < dy < by,

(37) By C (0, a5), A,C(bs,ds),

(38) B> 252, 4>520 e g <o<h,
and

(39) 1(09—&:,),2%(70:,—) —JBE for @'e¢B,, ¥''e4,.

The interval {a;, b;> can be chosen in such a way that the function f is
not monotonic in it and that p, ¢ {as, by).
In fact, there exists a positive number §, such that we have

Dot (T 8a, Byt 85D C (as, By),

— ' 3
[{w: %«Jﬂ}n (50— 80y ) > 30
and
—] M 3
{m: lla%:ﬁ‘ciiﬂ < ‘g‘} (%5 Ty 8o)| > Zaz-
Thus is suffices to put
(40)  ay=1m,—}0y, by=a,430, G=0—0, d==a+0
and
— M
Az = {w: %2—) <'§‘} [a} (ba; dz) Pl
) flo)—f(w,) M
&) —J %y
Ba={a’: —w'_mz <“‘8—}f\(027%)~
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hES

Repeating the above considerations we find number sequences {an},
{Bn}, {ca}, and {d,} and set sequences {4} and {Bn} such that ¢ =g,
and for positive integer # we have the relations:

(42) n < 0n < Uy < Dy < dp <D

(43) Ay C(but1y @n) By C(Cny 1) ’

(44) 4 dp| > dn—2, 4|Bp|>a—C for Gy <o <byga,
rr — ! M , "

(45) f (”m,),_é,im—) > for @ eBuo, o e duns,
rr ;__ /I M s »

(46) Mm—,),:%ﬂ<~g— for @ €Ban, &' € Ay, ,

(47) lim (bp—an) =0

and

(48) P ¢ {Bnt1y Opyrd -

Now let =, be a common point of the intervals {as, b). By (48)
the function f possesses at the point z, an approximate derivative. In
view of (44), (45), and (46), however, (as in the proof of lemma 1) one
can prove that such a derivative does not exist. The contradiction ob-
tained proves the validity of the theorem under the additional assump-
tion that fip(z) > M > 0 almost everywhere in (a, b).

Now suppose that there exists a function f satisfying the assump-
tion of theorem 1 which, however, is not non-decreasing. Thus there
exist two points #' and " and a positive number M such that 2’ < &
and f(a")—f(#') = 2M (#"— o). So the function g(z) = f(z)-+Mx satis-
fies the assumption of theorem 1 together with the additional condition
under which the assertion of theorem 1 has already been proved. How-
ever, it is not non-decreasing for g¢(#’)> g(z’’). Thus theorem 1 has
been proved.

THEREOREM 2. Let the function f possess a derivative in the interval (a, b),
except perhaps on a denwmerable sef. Moreover, let | take in every interval
{p, 9> C(a, d) all the values of the interval with the end-points f(p) and f(g).
Further, let such a number M > 0 exist that the set given by the inequality
f(®) = M is dense in (a, b). Finally let the equation f(x)= 0 have in (a, b)
at most a denumerable number of solutions.

Under these assumptions f is a function mon-decreasing and conti-
nuous in (a,b).

Proof. First let us observe that f is a function of the first class
of Baire. This ean be seen from the following, argument. The disconti-
nuity points of the function f may be only those points at which the
derivative does not exist and those at which the derivative is infinite.
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The latter, however, would then be the asymmetry points of the fune-
tion f. Hence the function has at most a denumerable set of disconti-
nuity points and thus is a function of the first class of Baire.

By lemmas 1 and 2 there exists an open set @ C (a, b) dense in (a, b)
and such that in each of its components 7 is non-decreasing.

Put

x
(49) g(2) = [ dist(z, F)de for a<a<b,
a
where I denotes the complement of @ to (a,b). Further, let v e the
converse function of p. We shall show that the function

(50) g0 =1 ®)
satisfies in the interval ((p(d),(p(b)) the assumptions of Zahorski’s theo-
rem (and consequently also those of theorem 1).

Indeed, the fact that the function f takes the intermediate values
follows from the corresponding properties of the function f and from
the continuity of the function y. Further, we have g'() = f'(p(t))v'(¢)
whenever the two equalities f’(w(t)) =0 and y'({)= oo do not hold
simultaneously. The latter equality can be fulfilled, in view of our as-
sumptions, only in an at most denumerable set. Since y'(t) exists every-
where in the interval ((p(a),(p(b)) and f'(z) in (a,b) except on a de-
numerable set of points, ¢'(¢) exists in (¢(a) s qJ(b)) except on a denu-
merable set of points. It is clear that g'(f) > 0 at all these points of the
set (@) at which it iy defined. Since, in turn, the measurve of the set
¢(@) equals ¢(b)—¢(a), g'(t) > 0 almost everywhere in (p(a), @(b)).

By Zahorski’s theorem, ¢ is a non-decreasing function in the interval
(p(a), p(b)), and hence follows the monotonicity of the function f in
the interval (a, b), which completes the proof.

Remark. In theorem 2 the assumption of denumerability of the
set {x: f(z) = 0} can be replaced by the assumption of denumerability
of the set {®: f'(z) = N} for some N (0, M). To prove this it suffices
to consider the function f(z)—Nu.

TerorEM 3. Let | possess a derivative in (a, b) except perhaps on
a denumerable set and let the set {x: f'(x) > 0} be dense in (a, b). Moreover,
suppose that there cxwists a sequence of positive numbers {Mn} which is con-
vergent to zero and such that each of the sets {w: f'(x) = My} is denumerable.
Finally let | take in any interval {p,q> C(a,b) all the values from the
interval with the end-poinis f(p) and f(q).

Under these assumptions the fumction f is continuous and non-de-
creasing in the interval (a,b).

Proof. Suppose that there exist two points &’ and 2" such that
@ < @ and f(#')> f(#''). There exists such a number M, (among the

Fundamenta Mathematicae, T. LIX 14
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numbers of the sequence mentioned in the assumptions of the theorem)
that fla")—f(#") > (@ '—a')M,. Thus the function f(2)4-Mnz satisfies
the assumptions of theorem 2 without being a non-decreasing function.
The contradiction obtained proves the validity of theorem 3.

II. Let T be a topology of the set of real numbers stronger than
the natural (i.e. a family of sets closed with respect to the summation
of an arbitrary and to the multiplication of a finite number of sets).
Congidering in the sequel a symbol or a term related with topology T
we shall subseribe to it the letter “7”. For instance, 4, denotes the
closure of the set 4 with respect to the topology T. The symbol fi(z)
denotes that the T-derivative of the function f at the point 2 iy under-
stood as the T-limit of the appropriate difference quotient, i.e. a limit
found in terms of neighbourhoods of the point @ in the sense of the
topology 7.

A topology T stronger than the natural topology of the set of real
numbers is said to satisfy condition (W) if for any point z and its
T-neighbourhood U (i.e. a set from the family 7' including the point )
there exists a number 6 > 0 such that the set (x—d, s+ 8)— U has no
T-accumulation point. The condition (W) is equivalent to the condi-
tion (W'): If @y e(By)r for n=1,2,.. and s,—2—>0 as n—oo, then
2z e (| Bn)r. (The equivalence of the conditions (W) and (W’) has been
proved in paper [1]. The definitions of 7'-limiting wvalue and of the
T-asymmetry point of a function, as well as the theorem on the de-
numerability of the set of T-asymmetry points of an arbitrary function
with a topology T satisfying condition (W), which will be applied in
the proof of lemma 6, can be found in the same paper.)

As will be shown later, in Zahorski’s theorem the derivative of the
function f may be replaced by its 7'-derivative with an arbitrary topo-
logy T satisfying condition (W). But first we shall prove a number of
lemmas explaining the ‘“action” of condition (W).

Lenvwma 4. Let the topology T satisfy condition (W) and let the value
of the function f at each point of the interval (a, b) be one of dits T -limii
values at this point. If the T-limit g of the function f at some point u, € (@, b)
exists, then the usual limit of the function f at the point m, also ewists and
its value equals g.

Proof. Suppose that there exists a sequence {m,} such that @, # @,
2n— @, converges to zero, and the sequence {f(x,)} converges to the limit
g #¢. Assume e.g. g' < g and let 0 < ¢ < g—¢'. Omitting, if necessary,
a finite number of elements of the sequence {z,}, we may assume that
f(#a) < g—e. By assumption there exist sets B, such that for n = 1,2, .

(51) &y € (E'n)il'

©
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holds and

(52) Ho)<g—e for zeH,.

Since T' satisfies condition (W), putting =\ J B, we have
(53) N

It follows from (52) and (53) that the number g cannot be the
T'-limit of the function f at point @,. Thus the existence of 2 sequence
{xa} possessing the above mentioned properties is impossible, which
proves the validity of the lemma.

CorOLLARY. If a real function f of a real variable is T'-continuous
at any point of some interval and the topology T satisfies condition (W),
then f is a continuous function, in the usual sense, at all points of this
interval.

LevmA 5. If T satisfies condition (W), then the interval is a T-con-
nected set.

Proof. If the interval could be presented as the union of two non-
empty T-open sets, then the characteristic function of any of them
would be T'-continuous in this interval without being continuous in it.

Levma 6. Let the topology T' satisfy condition (W) and let fo(x) ewist
at all points of the interval (a,b) except ot a denumerable set of poinis.
Then the function f 4s continuous at oll points of the interval (a,b) emcept
at a denumerable set of poimts.

Proof. If fr(a,) is a finite number, then, as can easily be seen,
f is T'-continuous at a,.

Now let fo(2y) = + oo and suppose that f is not 7'-continuous at
the point x,. Thus at this point there exist 7T-limit values different
from f(z,). However, since in this case the T'-limit values on the right
cannot be smaller than f(x,) and the 7'-limit values on the left cannot
be greater than f(m), ®, is a T-asymmetry point of the function f. We
should obtain a similar result in the case where fi(m,) = — oco.

Since the set of 7'-asymmetry points of the function f is an at most
denumerable set, the lemma has been proved.

Luyma 7. Under the assumptions of lemma 6 let the function f take
in every interval <{p,q>C (a,b) all the intermediate values between f(p)
and. §(q).

Then the fumction f possesses the usual derivative everywhere in (a, b)
except in a denwmerable set. More precisely, f'(z) ewisis at those points
% e(a, b) at which fr(») evists.

Proof. Suppose that at some point z,e (@, b) fi(z,) exists while
/() does not exist. B.g., let the lower left derivative of the function f .

14%
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at this point be smaller than fr(x,). Then there exist two numbers I
and N and two increasing sequences {3} and {,} which converge to «,
such that MN >0, M < N < fr(#,), and for n=1,2,... we have

(54) Hom 1) _
(55) f————(”z,:fv o) .

Choosing, if necessary, appropriate subsequences we may assume that
for n=1, 2, ...

(56) By < Ty < g1 < Dt
holds.

Now if N > 0, then in view of (54), (55), and (56) we have
(57) F(@h) < F ()N (@ — o) < f(00) + M (i —0o) < f (k) .

Thus the function f takes in the interval (s, @) all the values in-
cluded between f(2o)-+M (2 — 2y) and f(w,). So in view of lemma 6 there
exists in the interval (zy, #,) such a point x, that the function f is
T'-continuous in it and the inequality

(58) ' £ (00) M (@ — o) < f(@n) < f (o)
holds. ‘
Hence we obtain
(59) f(wn)—f(mo) < M-
Ly —

Similarly, if ¥ < 0, there exists in the interval (uy, Zn+1) 2 point o,
satisfying inequality (59) and such that f is T'-continuously at it.

Thus there exists a sequence {U,} of T-neighbourhoods of the
points #, such that for n=1, 2, ... we have

(60) [@=1@) g o weUp.
% — @,
Since, evidently, #,— #, converges to zero, by condition (W) x, is a point
of T-accumulation of the set defined by inequality (60). This, however,
is impossible for M < fp(w,). Lemma 7 has thus been proved.
THEOREM 4. Let f be a function taking oll the imtermediate value in
an interval included in (a, b). Moreover, suppose that in some topology T,
- satisfying condition (W), fr(z) ewist everywhere in (a,b) ewcept in a de-
numerable set of points, Finaly, let be fp(x) > 0 almost everywhere in (a, b).
Then the function f is continuous and nmon-decreasing in (a, b).

icm°
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Proof. The validity of theorem 4 follows from the fact that, in view
of lemma 7, the function f satisfies the assumptions of Zahorski’s theorem.

Ren%ark. By llemma, 7 in theorems 2 and 3, f'(x) may be replaced
by fr() in an arbitrary topology satistying condition (W). We omit the
corresponding results and their immediate proofs.
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