

On the axiom of determinateness (II)

b

Jan Mycielski (Wrocław)

This paper is a continuation of part I [9]. It contains an alternative form of the axiom of determinateness (A) of H. Steinhaus and this author [12], which has the same main consequences as (A). But a theorem proved here (Theorem 5) shows that the consistency of this new form is a conjecture which is at present much better founded than that of (A). In sections 1 and 2 the consequences of the new form are derived, in section 3, several theorems on the determinateness of some positional games are proved and the final section 4 contains miscellaneous remarks and problems.

The axiom of determinateness recalls an old saying on two kinds of truth quoted by Niels Bohr [1]: "To the one kind belong statements so simple and clear that the opposite assertions obviously could not be defended. The other kind, the so-called "deep truths", are statements in which the opposite also contains deep truth".

0. Notation. We adopt the notation introduced in part I [9], § 2 with the following additions.

R denotes the set of real numbers.

 \mathcal{C}_R denotes the following weak form of the axiom of choice: For every family F of disjoint non-empty sets, with $|F| \leqslant 2^{\aleph_0}$ and $|\bigcup_{X \in F} X| \leqslant 2^{\aleph_0}$,

there exists a selector. Of course C_R implies the still more special C of [9] (by a misprint the word disjoint is missing there).

Concerning the definition of the games $G_X^*(P)$ and $G_X^{**}(P)$ given in [9], let us add for clarity that such a game does not change whether we assume that the players when making a choice know the sequence of previous choices (1) or that they know only their concatenation. In fact the existence of a winning strategy in one of these senses implies the existence of such a strategy for the same player in the other sense. This proposition is easy and a case of it (for $G_{0,1}^*(P)$) was proved in [2], Lemma 4.2 and another case (for $G_X^{**}(P)$) was proved by S. Świerczkowski (about 1956, unpublished).

⁽¹⁾ As it is always supposed in the theory of games with perfect information (see [8]).

1. Introduction. The following diagram of implications holds.

It shows that the proposition \mathscr{A}_R^* also implies \mathscr{C} , \mathscr{M} , \mathscr{B} and \mathscr{P} , which we consider as the main consequences of \mathscr{A}_{ω} ((A) is equivalent to \mathscr{A}_{ω}). In view of Theorem 5 below the consistency of \mathscr{A}_R^* (in a set theory without the axiom of choice) is a better founded conjecture than that of \mathscr{A}_{ω} . But notice that neither \mathscr{A}_R nor some stronger proposition considered in [9], § 7, Remark 1, have been still disproved. Perhaps the consistency of \mathscr{A}_R^* or at least \mathscr{A}_R^{**} could be proved by the method of Cohen.

All the arrows of the above diagram, except $\mathcal{A}_R \to \mathcal{A}_R^* \to \mathcal{A}_R^{**} \to \mathcal{C}_R$ & \mathcal{M} , were proved in [9]. The proofs of $\mathcal{A}_R \to \mathcal{A}_R^*$ and $\mathcal{A}_R^* \to \mathcal{A}_R^{**}$ are quite similar to those of $\mathcal{A}_\omega \to \mathcal{A}_\omega^*$ and $\mathcal{A}_\omega^* \to \mathcal{A}_\omega^*$ of [9] and thus they are left to the reader. $\mathcal{A}_R^{**} \to \mathcal{C}_R$ & \mathcal{M} will be proved in the next section (Theorems 1 and 2). Our proof of $\mathcal{A}_R^{**} \to \mathcal{M}$ is analogous to the proof of $\mathcal{A}_\omega^* \to \mathcal{A}_\omega$ (see [9], [15]) and is simpler than that of $\mathcal{A}_\omega \to \mathcal{M}$ (see [13]).

The main results of this paper were announced in [10].

2. Consequences of \mathscr{A}_R^{**} . The axiom of choice will not be used in this section.

THEOREM 1. $\mathcal{A}_R^{**} \rightarrow \mathcal{C}_R$.

Proof. With no loss of generality we can suppose that the family F is of the form $\{X_t: t \in R\}$ and that $0 \notin \bigcup_{X \in F} X \subseteq R$. We consider the game $G_R^{**}(P)$, where $(t_0, t_1, ...) \in P$ if and only if $t_i \notin X_{t_0}$ for every i > 0. Clearly player I has no winning strategy in that game, and thus by \mathscr{A}_R^{**} player II has a winning strategy, say σ . Let $(t, t_1, t_2, ...)$ be the unique play in which player I made the first choice (t) (a one-term sequence) and all his later choices were (0), while II played according to σ . Hence $(t, t_1, t_2, ...) \notin P$ and then $t_i \in X_t$ for some i > 0. Such t_i with i minimal when t runs over R constitute a selector for F. Q.E.D.

Remark 1. Proposition (7.3) of [9] can be completed as follows. Each of the six propositions $\mathcal{A}_{\mathbf{X}}$, $\mathcal{A}_{\mathbf{X}}^*$ and $\mathcal{A}_{\mathbf{X}}^{**}$, where $|\mathbf{X}| = \mathbf{s}_1$ or $|\mathbf{X}| = \mathbf{t}$ (2), is inconsistent. This can be proved by an easy modification of the proof of the first part of (7.3), similar to the above proof of Theorem 1.

Theorem 2. $\mathcal{A}_{\mathcal{B}}^{**} \to \mathcal{H}$.

Proof. For any set $X \subseteq J$ (3) we denote by P(X) the set of all perfect subsets of X of positive measure and diameter $\leq \frac{1}{2}$ (diameter of X). For any set $S \subseteq J$ we define a game $\Gamma(S)$: Player I chooses any $F_0 \in P(J)$, then player II chooses any $F_1 \in P(F_0)$, and so on, I making the even choices and II the odd choices and the nth choice $F_n \in P(F_{n-1})$. Of course there is a unique point $p \in \bigcap_{n < \omega} F_n$ and player I wins if $p \in S$ and II wins if $p \notin S$.

First we show that

(i) \mathcal{L}_R^{**} implies that the game $\Gamma(S)$ is determined.

This is an exercise in coding the game $\Gamma(S)$ by means of a game $G_R^*(P)$, which is perhaps obvious, but for the convenience of the reader we perform it in detail.

For every perfect set $F \subseteq J$ of positive measure, let f_F be a function which maps in a one-to-one way P(F) onto R (such a function can be effectively constructed). To every sequence F_0, F_1, \ldots such that $F_n \in P(F_{n-1})$ for $n < \omega$ (4) we define a sequence $\varphi(F_0, F_1, \ldots) = (r_0, r_1, \ldots) \in R^{\omega}$ by putting

$$r_n = f_{F_{n-1}}(F_n)$$
 for $n < \omega$.

Thus φ is one-to-one. We set

$$P_S = \varphi\{(F_0, F_1, ...): F_n \in P(F_{n-1}) \text{ for } n < \omega \text{ and } \bigcap_{n \leq m} F_n \subseteq S\}.$$

Now it is visible that the games $G_R(P_S)$ and $\Gamma(S)$ are equivalent. To show that \mathcal{A}_R^{t*} implies their determinateness it is enough to prove that the determinateness of $G_R^{**}(P_S)$ implies that of $G_R(P_S)$.

Suppose thus that σ is a winning strategy for player Π in the game $G_R^{**}(P_S)$ (the case where $G_R^{**}(P_S)$ is a win for I can be treated similarly). We transform σ into a winning strategy $\overline{\sigma}$ for player Π in the game $G_R(P_S)$. Thus $\overline{\sigma}$ has to be a real-valued function defined on all finite sequences of real numbers such that for every $r=(r_0,\,r_1,\,\ldots)$ ϵ R^{o} we have

(1)
$$(r_0, \overline{\sigma}(r_0), \ldots, r_n, \overline{\sigma}(r_0, \ldots, r_n), \ldots) \notin P_S.$$

 $\overline{\sigma}$ is defined as follows.

First, of course, σ is a map of finite sequences of real numbers into finite sequences of real numbers. For every $r \in \mathbb{R}^{\infty}$ we put

$$s(r) = (r_0) \widehat{\sigma}((r_0)) \widehat{\ldots}(r_n) \widehat{\sigma}((r_0), \ldots, (r_n)) \widehat{\ldots}(r_n)$$

⁽²⁾ Concerning t, see [9] § 3 and Remark on p. 222.

⁽³⁾ J denotes the closed unit interval.

⁽⁴⁾ We always assume that $F_{-1} = J$.

^(*) \frown denotes concatenation of sequences; (r_i) denotes the sequence having only one term r_i .

Since σ is a winning strategy for II, we have

(2)
$$s(r) \notin P_S$$
 for every $r \in \mathbb{R}^{\omega}$.

Let $(F_0, F_1, ...) = \varphi^{-1}(s(r))$ and let $k(r_0, ..., r_n)$ be defined as the number of terms of the finite sequence

$$(r_0)^{\frown} \sigma((r_0))^{\frown} \dots ^{\frown} (r_n)^{\frown} \sigma((r_0), \dots, (r_n)),$$

and $k(\emptyset) = 0$ (6). Finally we put for any $n < \omega$

$$\overline{\sigma}(r_0, \ldots, r_n) = f_{F_{k(r_0, \ldots, r_{n-1})}}(F_{k(r_0, \ldots, r_n)-1}).$$

Now we have to prove (1). Let $(R_0, R_1, ...) = \varphi^{-1}(r_0, \overline{\sigma}(r_0), ...$..., $r_n, \overline{\sigma}(r_0, ..., r_n), ...$). It is clear that $R_0, R_1, ...$ is a subsequence of $F_0, F_1, ...$ Then by (2) we have $\bigcap_{n < \omega} R_n = \bigcap_{n < \omega} F_n \text{ non } \subseteq S$ and (1) follows. This concludes the proof of (i).

To show Theorem 2 it is enough to prove on account of \mathcal{A}_R^{**} that every set $S \subseteq J$ either is of measure 0 (|S| = 0) or has a positive interior measure ($|S|_i > 0$). Indeed, if there were any non-measurable sets $X \subseteq J$, it would be easy to construct effectively by means of X a set $S \subseteq J$ with $|S|_i = 0$ and exterior measure $|S|_i = 1$. Therefore by (i) Theorem 2 will be proved if we show the following propositions:

- (ii) $\Gamma(S)$ is a win for player I if and only if $|S|_i > 0$.
- (iii) $\Gamma(S)$ is a win for player II if and only if |S| = 0.

It is obvious that $\Gamma(S)$ is a win for player I (II) if $|S|_i > 0$ (|S| = 0). But it is the converse implications that are essential for us. Their proof requires the axiom of choice C_R , but on account of Theorem 1 we can use C_R . We are going to show (iii) (the proof of (ii) is analogous).

Let σ be a winnig strategy for player II in the game $\Gamma(S)$. For every finite sequence $F_0, ..., F_{2n-1}$ $(n < \omega)$ (4), with $F_{2i} \in \mathbf{P}(F_{2i-1})$ and $F_{2i+1} = \sigma(F_0, F_2, ..., F_{2i})$ for i < n, and every perfect or empty set $P \subset F_{2n-1}$, with $|F_{2n-1} - P| > 0$ we put

$$\varkappa(P,F_0,\ldots,F_{2n-1})$$

=
$$\sup\{|\sigma(F_0, F_2, ..., F_{2n})|: F_{2n} \in P(F_{2n-1}) \text{ and } F_{2n} \cap P = 0\}$$

and

$$\begin{split} \textbf{\textit{K}}(P,F_0,\,...,F_{2n-1}) &= \{F_{2n}\colon F_{2n} \in \textbf{\textit{P}}(F_{2n-1}),\, F_{2n} \cap P = 0 \;\; \text{and} \\ &\; |\sigma(F_0,F_2,\,...,F_{2n})| \geqslant \frac{1}{2}\varkappa(P,F_0,\,...,F_{2n-1})\}\,. \end{split}$$

By C_R there exists a third function K which is a selector for K, i.e.

$$K(P, F_0, \ldots, F_{2n-1}) \in K(P, F_0, \ldots, F_{2n-1})$$
.

Now K permits us to argue similarly to Oxtoby [15] (this idea goes back to Świerczkowski and probably even to Banach (see [14])). For every $n < \omega$ we define a denumerable family A_n of mutually disjoint choices of player II by means of σ immediately following some choices of player I which are either his first choices (if n = 0) or his choices immediately following any choice of II belonging to A_{n-1} (if n > 0). Moreover, this will be done in such a way that putting

$$A_n = \bigcup_{C \in A_n} C$$

we have

(3)
$$|A_n| = 1$$
 for every $n < \omega$

Clearly this will already prove (iii) since, A_n being a family of disjoint sets and σ being a winning strategy, it follows that $\bigcap_{n<\omega} A_n \cap S = 0$, which implies |S| = 0.

We start our inductive definition of A_n putting $A_{-1} = \{J\}$. Suppose that A_0, \ldots, A_{n-1} are already defined, satisfy the conditions above and, moreover, we have a sequence B_0, \ldots, B_{n-1} such that

(4) for every $C \in A_{n-1}$ there exists a unique sequence $B_i \in B_i$ (i < n) such that $C = \sigma(B_0, ..., B_{n-1})$ and $\sigma(B_0, ..., B_i) \in A_i$ for all i < n.

Let $A_{n-1} = \{C_0, C_1, ...\}$. For every C_i we take the corresponding sequence $B_0^{(i)}, ..., B_{n-1}^{(i)}$ and we put for all $j < \omega$

$$\begin{split} B^{(i,f)} &= K \big(\bigcup_{k < f} \sigma(B_0^{(i)}, \, \dots, \, B_{n-1}^{(i)}, \, B^{(i,k)}), \, B_0^{(i)}, \, \sigma(B_0^{(i)}), \, \dots \\ &\qquad \dots, \, B_{n-2}^{(i)}, \, \sigma(B_0^{(i)}, \, \dots, \, B_{n-2}^{(i)}), \, B_{n-1}^{(i)}, \, C_i \big) \,. \end{split}$$

Of course $B^{(i,j)} \subseteq C_i$ and by the definition of K (look at K and \varkappa) it is easy to verify that

(5)
$$|C_i - \bigcup_{i \leq \omega} \sigma(B_0^{(i)}, \dots, B_{n-1}^{(i)}, B^{(i,i)})| = 0$$

and

$$\sigma(B_0^{(i)}, \ldots, B_{n-1}^{(i)}, B_{n-1}^{(i,j)}) \cap \sigma(B_0^{(i)}, \ldots, B_{n-1}^{(i)}, B_{n-1}^{(i,j')}) = 0$$
 for $j \neq j'$.

We put $B_n = \{B^{(i,j)}: i, j < \omega\}$ and $A_n = \{\sigma(B_0^{(i)}, \dots, B_{n-1}^{(i)}, B^{(i,j)}): i, j < \omega\}$. Then by the inductive assumption we find that A_n is disjoint, that B_n satisfies (4) with n replaced by n+1, and that (5) implies (3). This concludes our inductive definition of A_n satisfying the required properties and (iii) is proved.

This concludes the proof of Theorem 2.

⁽⁶⁾ Ø denotes the empty sequence.

3. Determinateness of some games. The axiom of choice is assumed throughout this section. X will denote a discrete space and X^{ω} will have the usual product topology. The results proved here refine proposition (3.4) of [9] and the parts of Theorem 4 of [9] which concern \mathcal{A}_X^* and \mathcal{A}_X^{**} (7).

THEOREM 3. (a) $G_X^{sx}(P)$ is a win for I if and only if V-P is of the first category for a non-empty open set $V\subseteq X^\omega$;

(b) $G_X^{**}(P)$ is a win for Π if and only if P is of the first category in X^ω .

The proof is an easy modification of the idea of Świerczkowski and Oxtoby (and probably Banach) already used in the proof of (iii) above (by a construction of analogous families A_n , in this case not necessarily denumerable).

Theorem 3 clearly implies the following corollary.

COROLLARY 4. $\mathcal{A}_{X}^{**}(P)$ holds true for every set $P\subseteq X^{\omega}$ having the property of Baire.

Remark 2. Following the way indicated above and in Theorem 7 below one can prove without using the axiom of choice that \mathcal{A}_{k}^{**} is equivalent to the conjunction of \mathcal{C}_{k} and the statement that every set $P \subseteq X^{\omega}$, where $|X| \leq 2^{\aleph_0}$, has the property of Baire.

We do not know any similar equivalence involving measurability in place of the property of Baire; however, the well-known analogy of these two properties can be further magnified as follows. Consider a topology on R in which a set $A\subseteq R$ is open if and only if every $a\in A$ is a metric density point of A, i.e. $\lim_{h\to 0+}|A\cap\langle a-h,a+h\rangle|_{l}/2h=1$ (§). It is easy to see that every set $B\subseteq R$ is Lebesgue-measurable if and only if it has the property of Baire with respect to this topology.

Remark 3. A proof that the sets of the first category are denumerably additive, which already implies that sets having the property of Baire form a denumerably additive Boolean algebra which thus in-

cludes all Borel sets, requires the axiom of choice. But for a separable space this can be established on account of C only (*).

A set P in a topological space S is called *analytic* if it is the result of applying the operation (\mathcal{R}) to a system of closed sets, i.e. $P = \bigcup_{\substack{i \ n < \omega}} \bigcap_{\substack{i \ n < \omega}} F_{i_0, \dots, i_n}$, where $i = (i_0, i_1, \dots)$ runs over all sequences of natural numbers and all F_{i_0, \dots, i_n} are closed subsets of S. Recall that a Borel set in a complete separable metric space is analytic (1^0) .

THEOREM 5. $\mathcal{A}_X^*(P)$ holds true for every analytic set $P \subset X^{\omega}$.

Proof. We will first prove two auxiliary statements.

(i) If each of the games $G_X^*(P_n)$ $(n < \omega)$ is a win for player Π then $G_X^*(\bigcup_{n \le n} P_n)$ is also a win for player Π .

In fact, let σ_n be a winning strategy for II in the game $G_X^*(P_n)$. Let σ be a strategy for II such that in each play each of the strategies σ_n is applied infinitely many times, the sequences between the consecutive choices by means of σ_n being treated as if they were made by player I. Clearly σ is a winning strategy in $G_X^*(\bigcup_{n<\omega}P_n)$.

Now let $P = \bigcup_{i} \bigcap_{n < \omega} F_{i_0,\dots,i_n}$ where all F_{i_0,\dots,i_n} are closed subsets of X^{ω} and let us suppose, which does not diminish the generality of the considerations, that $F_{i_0,\dots,i_n} \subseteq F_{i_0,\dots,i_{n-1}}$ for every i and n. We put $P_{\emptyset} = P$ (§) and

$$P_{i_0,...,i_n} = \bigcup_{i} \bigcap_{m < m} F_{i_0,...,i_n,j_0,...,j_m}$$
.

(ii) If $p \in X^n$ is not a lost position for player I in the game $G_X^*(P_{i_0,\dots,i_{k-1}})$, then there exists a number $i_k < \omega$ and a sequence $q \in X^m$ with $m < \omega$ such that for every $x \in X$ the sequence $p \cap q \cap (x)$ (§) is not a lost position for I in the game $G_X^*(P_{i_0,\dots,i_k})$.

Since $P_{i_0,\dots,i_{k-1}} = \bigcup_{h<\omega} P_{i_0,\dots,i_{k-1},h}$, this proposition follows of course from (i).

Suppose that $G_X^*(P)$ is not a loss for I. The theorem will be proved if we show that $G_X^*(P)$ is a win for I. Let $i(p, (i_0, ..., i_{k-1}))$ denote the first i_k which satisfies the conclusion of (ii) and $\vartheta(p, (i_0, ..., i_{k-1}))$ be any sequence q corresponding to this i_k as in (ii) (if p were a lost position for I the definition of i() and $\vartheta()$ would not matter). Now we define inductively two other functions s and σ .

$$s(\emptyset) = (i(\emptyset, \emptyset)); (^{6})$$

$$\sigma(\emptyset) = \vartheta(\emptyset, s(\emptyset));$$

⁽⁷⁾ It was erroneously stated in [9] that this theorem does not require the axiom of choice; in fact even for X finite or denumerable the proof of $\mathcal{A}_X(P)$ for all $P \in F_{\sigma \delta} \cup \cup G_{\sigma \delta}$ is based on \mathcal{C} . For a similar result see Theorem 8 below. By a mistake it was not mentioned in [9], § 3 that \mathcal{C} was used in the proofs of the propositions (0), ..., (iii) (in fact the proofs were based on the 01-laws of the theories of measure and category, which require \mathcal{C}).

⁽a) This topology was studied in [5]. It is regular but not locally compact and I do not know if it is completely regular? It has the Souslin property (see [7], § 1) and is connected but is not separable and has totally disconnected open sets. In this space first category, nowhere density and measure 0 coincide.

 ^(*) See [9], Appendix 1. Separable = having a denumerable basis of open sets.
 (*) See [6], § 33, I. This fact requires only C.

$$s(x_0, ..., x_n) = s(x_0, ..., x_{n-1}) \widehat{(i(\sigma(\emptyset) \widehat{(x_0)} ..., x_{n-1}) \widehat{(x_n)}, ..., x_{n-1}) \widehat{(x_n)}, s(x_0, ..., x_{n-1}) \widehat{)};$$

$$\sigma(x_0, ..., x_n) = \vartheta \{ \sigma(\emptyset) \widehat{(x_0)} \widehat{...} \widehat{\sigma(x_0, ..., x_{n-1}) \widehat{(x_n)}, s(x_0, ..., x_n) \};$$

I claim that σ is a winning strategy for player I. Indeed for every $\mathbf{x}=(x_0,\,x_1,\,\ldots)$ ϵ X^ω let

$$\tau(\mathbf{x}) = \sigma(\emptyset) \widehat{}(x_0) \widehat{}(x_0, \dots, x_{n-1}) \widehat{}(x_n) \widehat{} \dots$$

It is enough to show that $\tau(x) \in P$ for every x and in fact $\tau(x) \in \bigcap_{n < \omega} F_{s(x_0,\dots,x_n)}$. If this were not the case there would exist a neighbourhood of $\tau(x)$ disjoint with some set $F_{s(x_0,\dots,x_n)}$, which is contrary to the fact that by the definition of σ there are arbitrarily long initial segments of $\tau(x)$ which are non-lost positions for player I in the game $G_X^*(P_{s(x_0,\dots,x_n)})$. Q.E.D.

Remark 4. In a T_1 topological space (i.e. singletons are closed) every set which is analytic or analytic complement has the property of Baire (see [6], § 11, VII). By [9], Theorem 3, it is consistent with the usual axioms of set theory that there are sets $P \in CA$ for which $\mathcal{A}^*_{(0,1)}(P)$ fails and sets $P \in PCA \cap CPCA$ for which $\mathcal{A}^{**}_{(0,1)}(P)$ fails. Hence Theorem 5 and Corollary 4 are sharp.

Remark 5. If N is a discrete denumerable space and X_c is the set X with the smallest T_1 topology, i.e. only finite sets and X are closed, and $f \colon N^o \to X_c^o$ is a continuous mapping, then $f(N^o)$ is analytic in X^o .

THEOREM 6. In the case where there exists a well ordering of X Theorem 3 and Corollary 4 can be proved without using the axiom of choice and in the case $|X| \leq 2^{\aleph_0}$ they require only C_R . In the case where X is at most denumerable Theorem 5 requires only C_* .

The proof follows by a simple analysis of the proofs of the corresponding results.

4. Miscellanea. 1.(a) C_R implies the following selfrefinement, which is a weak form of the principle of dependent choices.

$$\bigwedge_{r \in R} \bigvee_{s \in R} (r,s) \in A \to \bigvee_{r \in R^{\omega}} \bigwedge_{n < \omega} (r_n, r_{n+1}) \in A.$$

(b) \mathcal{C} or \mathcal{C}_R does not seem to imply that a denumerable union of denumerable sets is denumerable or even that there exists a choice set for a denumerable set of disjoint pairs.

2.(a) There are games which I have not been able to represent in the form $G_{\mathbf{x}}^*(P)$; however, they fullfil statements analogous to Theorem 5. Such is for instance, as I have realized recently, a game given

as example 3 in [8]. A slight simplification of that game for which the same result holds is the following. A set $P \subseteq R$ is given. Player I chooses any $x_0 \in R$ and then II chooses any $y_0 < x_0$ and then I any x_1 with $y_0 < x_1 < x_0$ and again II any y_1 with $y_0 < y_1 < x_1$, etc., always between the last two choices. I wins if $\lim x_n \in P$ and II wins in the other case. It is easy to see that I has a winning strategy if P has a perfect subset and that II has a winning strategy if P is at most denumerable (11). This implies that this game is determined if P is analytic.

- (b) Other facts on positional games and sets having the property L of Lusin (see [6], \S 36, VII) are given in [18].
- (c) Positional games with recursive strategies were considered by M. O. Rabin [16].
- (d) If we assume the axiom of choice, there are of course non-determined games of the form $G_{(0,1)}^*(P)$ or $G_{(0,1)}^{**}(P)$ (see e.g. [9] propositions (3.3) and (3.4)). But even if we assume this axiom the problem of the existence of non-determined games of the form described above in 2.(a) or of several related types (see [8], § 2.3 and [3] and [4] where other references are given) is open.
- 3. Finally I want to mention another set of problems on positional games; however, it is quite remote from the main subject of this paper.
- (a) An infinite set X is given. I cuts X into two parts and II chooses one of them, then I cuts the chosen part into two parts and II chooses one of them, etc. After ω steps I pays to II the cardinality of the intersection of the chosen parts. It is clear that I has a strategy for paying not more than 1 if and only if $|X| \leq 2^{\aleph_0}$. Of course II has a strategy to get at least 1, but is it possible, for X sufficiently large, that he has a strategy to get at least 2? (if there exists a denumerably additive 01-valued measure m on all subsets of X, with m(X) = 1, and vanishing on singletons then the answer is positive; but the existence of such X and m does not follow from the usual axioms of set theory).
 - (b) A related problem [11] probably involves similar difficulties.
- (c) Similar problems were stated by Banach in the Scottish Book (Problems 67, 1) and 2) (1935)). They were solved by J. Schreier [17]. In [17] the game theoretical form of the result is not stated and it has never appeared in printed form. Let us formulate it here. An infinite set X of power m being given, we define two games Γ_1 and Γ_2 . In Γ_1 player I chooses any $X_0 \subseteq X$ with $|X_0| = m$, then player II chooses any $X_1 \subseteq X_0$ with $|X_1| = m$, etc.; they construct a sequence $X_0 \supseteq X_1 \supseteq \ldots \supseteq X_t \supseteq \ldots (i < \omega)$ of sets of power m. In Γ_2 they construct in the same

⁽¹¹⁾ The same statements are true for the game $G^*_{(0,1)}(P)$ (see [2], Theorems 4.1 and 4.2, repeated as proposition (3.3) in [9]).

order a sequence of disjoint sets $X_i \subseteq X$ $(i < \omega)$ such that $|X - \bigcup_{i < j} X_i|$ = m for every $j < \omega$. In Γ_1 player II wins if $\bigcap_{i < \omega} X_i = 0$ and in Γ_2 if $\bigcup_{i < \omega} X_i$ = X. Schreiers' argument proves that in both games, Γ_1 and Γ_2 , player II has a winning strategy.

(d) A similar problem stated by S. Ulam [19] is still open.

References

- [1] N. Bohr, Discussion with Albert Einstein on epistemological problems in atomic physics, in the collection Albert Einstein, Philosopher-Scientist, Library of living philosophers, Evanston Illinois 1949.
- [2] Morton Davis, Infinite games of perfect information, in the collection Advances in game theory, Princeton 1964, pp. 85-101.
- [3] H. Hanani, A generalization of the Banach and Mazur game, Trans. Amer. Math. Soc. 94 (1960), pp. 86-102.
- [4] and M. Reichbach, Some characterizations of a class of unavoidable compact sets in the game of Banach and Mazur, Pacific Journal of Math. 11 (1961), pp. 945-959.
- [5] O. Haupt et C. Pauc, La topologie approximative de Denjoy envisagée comme vraie topologie, C. R. Acad. Sci. Paris 234 (1952), pp. 390-392.
 - [6] C. Kuratowski, Topologie, vol. I, Monogr. Mat. 20, Warszawa 1958.
- [7] E. Marczewski, Séparabilité et multiplication cartésienne des espaces topologiques, Fund. Math. 34 (1947), pp. 127-143.
- [8] Jan Mycielski, Continuous games with perfect information, in the collection Advances in game theory, Princeton 1964, pp. 103-112.
 - [9] On the axiom of determinateness, Fund. Math. 53 (1964), pp. 205-224.
- [10] Determinateness, measurability and the property of Baire (abstract), Amer. Math. Soc. Notices 12 (1965), p. 707.
 - [11] P 446 (problem), Coll. Math. 11 (1963), p. 139.
- [12] and H. Steinhaus, A mathematical axiom contradicting the axiom of choice, Bull. Acad. Polon. Sci., Série Math., Astr. et Phys. 10 (1962), pp. 1-3.
- [13] and S. Świerczkowski, On the Lebesgue measurability and the axiom of determinateness, Fund. Math. 54 (1964), pp. 67-71.
- [14] — and A. Zieba, On infinite positional games, Bull. Acad. Polon. Sci., Série Math., Astr. et Phys. 4 (1956), pp. 485-488.
- [15] J. C. Oxtoby, The Banach-Mazur game and Banach category theorem, in the collection Contributions to the theory of games III, Princeton 1957, pp. 159-163.
 - [16] M. O. Rabin, Effective computability of winning strategies, ibidem, pp. 147-157.
- [17] J. Schreier, Eine Eigenschaft abstrakter Mengen, Studia Math. 7 (1938), pp. 155-156.
- [18] Э. Д. Стоңкий, O дескриппивной теории игр, Проблемы Кибернетики 8 (1962), pp. 45-54.
- [19] S. Ulam, Combinatorial analysis in infinite sets and some physical theories, SIAM Rev. 6 (1964), pp. 343-355.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

Recu par la Rédaction le 21, 10, 1965

A duality property of nerves

b

J. Dugundji* (Frankfurt a. M.)

- 1. Our main aim in this paper is to prove the following
- 1.1. Theorem. Let Y be a normal space, and $\mathfrak{U}=\{U_{\alpha}|\ \alpha\in\mathfrak{U}\}\ a$ nbd-finite $(^1)$ covering of Y by open F_{σ} -sets. Assume that
- (a) The order (2) of \mathfrak{U} is $\leq n$ and
- (b) For each $k \ge 1$, the intersection of every k sets of $\mathfrak U$ is (n-k)-connected (3).

Then each canonical map \varkappa of Y into the nerve (4) $N(\mathfrak{U})$ of \mathfrak{U} has a right homotopy inverse (5) $g\colon N(\mathfrak{U})\to Y$. Moreover, \varkappa and g can be chosen so that $g\circ \varkappa$ is \mathfrak{U} -close (6) to the identity map of Y.

In [8], pp. 142-145, Weil derived the above conclusion from the two assumptions: (a') No restriction on the order of $\mathfrak U$, and (b') Every finite intersection of sets of $\mathfrak U$ is ∞ -connected; thus, in 1.1 we strengthen one of his hypotheses and weaken the other. Our proof of 1.1 will be a modification of his; note that the above version does not require the

^{*} This research was partially supported by NSF Grant G-24471.

⁽¹⁾ U is nbd-finite if each point has a neighborhood meeting at most finitely many members of U.

⁽²⁾ The largest integer n such that there are (n+1) members of with non-empty intersection, i.e., the dimension of the nerve of H.

⁽a) X is k-connected if $\pi_i(X)=0$ for $0\leqslant i\leqslant k$; it is ∞ -connected if $\pi_i(X)=0$ for all $i\geqslant 0$; $\pi_0(X)=0$ denotes that X is path-connected.

⁽⁴⁾ We realize the nerve of a covering $\mathfrak U$ as a rectilinear polytope in a real vector space spanned by linearly independent vectors in a fixed one-to-one correspondence with the non-empty $U_a \in \mathfrak U$. The vertex corresponding to U_a is the unit point on the corresponding vector, and is denoted by p_a . The topology of $N(\mathfrak U)$ is the CW-topology ([9], p. 223). A continuous $\kappa\colon Y\to N(\mathfrak U)$ is called *camonical* if $\kappa^{-1}(\operatorname{St} p_a)\subset U_a$ for each $a\in \mathfrak V$.

⁽⁵⁾ That is, $\varkappa \circ g \simeq 1$; equivalently, Y dominates $N(\mathfrak{U})$.

⁽⁶⁾ Two maps $f, g: X \to Y$ are U-close if for each $x \in X$ there is a $U_\alpha \in \mathbb{N}$ containing both f(x) and g(x). Under certain conditions (for example, if each finite intersection of the closures of the U_α is an AR (normal) ([8], p. 142) or if Y is an ANR and the U_α are "sufficiently small" ([5], p. 243)) U-closed maps are homotopic.