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On the axiom of determinateness (IL)
by
Jan Mycielski (Wroctaw)

This paper is a continuation of part I [9]. It contains an alterna-
tive form of the axiom of determinateness (A) of H. Steinhaus and
this author [12], which has the same main consequences as (A). But
a theorem proved here (Theorem 5) shows that the consistency of this

‘new form is a conjecture which is at present much better founded than

that of (A). In sections 1 and 2 the consequences of the new form are
derived, in section 3, several theorems on the determinateness of some
positional games are proved and the final section 4 contains miscellaneous
remarks and problems.

The axiom of determinateness recalls an old saying on two kinds
of truth quoted by Niels Bohr [1]: “To the one kind belong statements
so simple and clear that the opposite assertions obviously could not be
defended. The other kind, the so-called »deep truths«, are statements
in which the opposite also contains deep truth’’.

0. Notation. We adopt the notation introduced in part I [9], § 2
with the following additions.
R denotes the set of real numbers.
Cr denotes the following weak form of the axiom of choice: For
every family F of disjoint non-empty sets, with |F] < 2% and l)lz\J'FX | < 2%,
€

there ewists a selector. Of course Cr implies the still more special @ of [9]
(by a misprint the word disjoint is missing there).

Coneerning the definition of the games G%(P) and G¥(P) given in [9],
let us add for clarity that such a game does not change whether we
agsume that the players when making a choice know the sequence of
previous choices (*) or that they know only their concatenation. In fact
the existence of a winning strategy in one of these senses implies the exis-
tence of such a strategy for the same player in the other sense. This
proposition is easy and a case of it (for G (P)) was proved in [2],
Lemma 4.2 and another case (for G¥*(P)) was proved by 8. Swierczkowski
(about 1956, unpublished).

(*) As itis always supposed in the theory of games with perfect information (see [8]).
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1. Introduction. The following diagram of implications holds.

Cr

dAr—> Al —- AR
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s ST — S0 B
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Tt shows that the proposition «(% also implies €, U, °B and P, which we
consider as the main consequences of <7, ((A) is equivalent to «{.). In view
of Theorem 5 below the congistency of «{% (in a seb theory without the
axiom of choice) is a better founded conjecture than that of «l,. But
notice that meither ¢fz nor some stronger proposition considered in [9],
§7, Remark 1, have been still disproved. Perhaps the consistency
of % or at least <% could be proved by the method of Cohen.

All the arrows of the above diagram, except olr—Ak—>E—>Cn
& M, were proved in [9]. The proofs of slp— ok and slh—>oAE" are quite
similar to those of o, o% and oA%->o(%* of [9] and thus they are left to
the reader. o(—Cr & W will be proved in the next section (Theorems
1 and 2). Our proof of «%*—W is analogous to the proof of o5
(see [9], [15]) and is simpler than that of of,— W (see [13]).

The main results of this paper were announced in [10].

2. Consequences of o{#. The axiom of choice will not be used
in this section.

THEOREM 1. AE—~>Cr.

Proof. With no loss of generality we can suppose that the family
F is of the form {X:; t<R} and that 0¢| )X C R. We consider the
XeF

game GH(P), where (i,?,..) ¢ P if and only if #; ¢ X} for every 4> 0.
Clearly player I has no winning strategy in that game, and thus by A%
plaiyer IT has a winning strategy, say o. Let (t, %, 1, ...) be the unique
play in which player I made the first choice (¢) (a one-term sequence)
and all his later choices were (0), while II played according to ¢. Hence
(¢, 8, T2y -..) ¢ P and then #; ¢ X; for some i> 0. Such # with 4 minimal
when ¢ runs over B constitute a selector for F. Q.E.D.

Remark 1. Proposition (7.3) of [9] can be completed as follows.
Fach of the siz propositions A x, A% and A%, where | X|=1x, or | X|=1 (*),
is inconsistent. This can be proved by an easy modification of the proof
of the first part of (7.3), similar to the above proof of Theorem 1.

(*) Concerning f, see [9] § 3 and Remark on p. 222.
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THEOREM 2. ol& .

Proof. For any set X CJ (3) we denote by P(X) the set of all per-
fect subsets of X of positive measure and diameter < }(diameter of X).
For any set 8 CJ we define a game I'(S): Player I chooses any F, € P(J )s
then player II chooses any F, e P(F,), and so on, I making the even
choices and II the odd choices and the nth choice F, e P(F,_,). Of course
there is & unique point p e (| F, and player I wins if p ¢ § and IT wins
if p ¢S. n<a

First we show that

(i) olB implies that the game I'(8) is determined.

This is an exercise in coding the game I'(S) by means of a game
@%(P), which is perhaps obvious, but for the convenience of the reader
we perform it in detail.

For every perfect set F' C J of positive measure, let fr be a function
which maps in a one-to-one way P(F) onto R (such a function can be
effectively constructed). To every sequence ¥y, I, ... such that Fy, e P(Fp,_;)
for n< o (*) we define a sequence ¢(F,,Fy,..)= (ry, 1, ...) e B® by
putting
for

Ty == an‘l(-Fn) n<w.

Thus ¢ is one-to-one. We set
Ps=o{(Fy, Fy,..): FpeP(F,_,) for n < o and N F, C 8}.
. n<aw
Now it is visible that the games Gga(Ps) and I'(S) are equivalent. To
gshow that (¥ implies their determinateness it is enough to prove that
the determinateness of G%*(Ps) implies that of Gr(Ps).

Suppose thus that ¢ is a winning strategy for player IT in the game
G%(Ps) (the case where @8 (Ps) is a win for I can be treated similarly).
We transform ¢ into a winning strategy o for player IT in the game
Gr(Ps). Thus & has to be a real-valued function defined on all finite
sequences of real numbers such that for every r = (v, ry, ...) ¢ B” we have

1) {ro, T(70), ooy 0y G(Fgy vuey Ta)y o) ¢ P

o ig defined as follows.

First, of course, ¢ is a map of finite sequences of finite sequences
of real numbers into finite sequences of real numbers. For every 7 e R”
we put

s(r) = (r) "o ((1) " v T (#m) "0 ((70)y ey (ra)) e (-

(8) J denotes the closed unit interval.

(*) We always assume that F_, =J.

(*) ™ denotes concatenation of sequences; (r;) denotes the sequence having only
one term ;.
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Sinee o is a winning strategy for II, we have
2 s(r) ¢ Ps

Let (Fyy Fyy o) = ¢72(s(r)) and let &(r, ...,
of terms of the finite sequence

(ro) o) e () ((70), e
and k(9) = 0 (¢). Finally we put for any n< w

for every r e B”.

75) be defined as the number

(7"71)) )

(s ooy T0) = frpgpe o Fitro,rd—1) -

Now we have to prove (1). Let (By, Ry, ...)= ¢7ry, 3{r,), ...
ey Ty O(Pgy vej Tu)y ). It is clear that Ry, Ry, ... is a subsequence of
Fy, 7y, ... Then by (2) we have (Y Ryp={)\Frnon C 8 and (1) follows.

n<ao n<w

This coneludes the proof of (i).

To show Theorem 2 it is enough to prove on account of off* that
every set 8 CJ either is of measure 0 (|S}= 0) or has a positive interior
measure (|S}; > 0). Indeed, if there were any non-measurable sets X C J,
it would be easy to construct effectively by means of X a set § CJ with
18]i= 0 and exterior measure |§), = 1. Therefore by (i) Theorem 2 will
be proved if we show the following propositions:

(ii) I'(8) is & win for player I if and only if | S > 0.

(iii) I'(8) is a win for player IL if and only if |8]= 0.

It is obvious that I'(8) is a win for player I (II) if |S|: > 0 (|.S] = 0).
But it is the converse implications that are essential for us. Their proof
requires the axiom of choice Cr, but on account of Theorem 1 we can
use Cg. We are going to show (iii) (the proof of (ii) is analogous).

Let ¢ be a winnig strategy for player II in the game I'(S). For
every finite sequence Fy, ..., Fon_; (< w) (%), with Fy; e P(Fy,) and
Foip1 = o(Fy, Fy,y ..., Foy) for i< m, and every perfect or empty seb
P C Fopy, with |Fon—1—P|>0 we put

#(Py Foy ey Fopoy)
= sup{'“(Fszi ") an)l: 1;7211, GP(FZ‘IE—I) ?1:11(1 -Fzrn, ~ ,P = 0}
and
K(P,Fo, ---,F‘Z.n—l) = {FEn: F?m fP(F‘m—l), anr'\P = 0 and
16(Foy By eony Fop) = 35(P, Fyy .oy o)} .

By Cr there exists a third function K which is a selector for K, i.e.

E(P,Fyy ..., Fony) e K(P, Ty, ..., Fon_y).

(®) 9 denotes the empty sequence.
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Now K permits us to argue similarly to Oxtoby [15] (this idea goes
back to Swierczkowski and probably even to Banach (see [14])). For
every n < o we define a denumerable family 4, of mutually disjoint
choices of player IT by means of ¢ immediately following some choices
of player I which are either his first choices (if # = 0) or his choices
immediately following any choice of II belonging to A4,_, (if n> 0).
Moreover, this will be done in such a way that putting

A= 0
Cedy,
we have
(3) |4z =1 for every n < w.

Clearly this will already prove (iii) since, 4, being a family of disjoint
sets and o being a winning strategy, it follows that M Ann~ S§=0,

n<w
which implies |8]= 0.
We start our induective definition of 4, putting 4_, = {J}. Suppose
that A, ..., 4,1 are already defined, satisfy the conditions above and,
moreover, we have a sequence By, ..., B,_; such that

(4) for every ( eA,_; there exists a unique sequence B;eB; (i< )
such that €= o(By, ..., Bu—1) and o(By, ..., Bi) e4; for all i <n.
Let 4y, = {C,, C

1y «.}. Tor every C; we take the corresponding sequence

BY,..., B, and we put for all j < o
B :K(,}&J_G(Bg), oy B4, B9, B, o(BSY), ..
7

L BR,, 6(BP, ..., Bsfiz), BY,, 04 .

Of course B C 0, and by the definition of K (look at K and =) it is
easy to verify that

(8) 10— o(B, ..., By, B*) =0
<o
and
o(BS, oy By, B A o(BP, ..., B, B¥) =0 for j#§.

We put B, = {B*": i,j < o} and 4, = {o(B, ..., B, B¥): 4, j < w}.
Then by the inductive assumption we find that A, is disjoint, that Bs
satisfies (4) with n replaced by n-+1, and that (5) implies (3). This con-
cludes our inductive definition of 4, satisfying the required properties
and (iii) is proved.

This concludes the proof of Theorem 2.
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3. Determinateness of some games. The axiom of choice ig
assumed throughout this section. X will denote a discrete space and
X* will have the usual product topology. The results proved here refine
proposition (3.4) of [9] and the parts of Theorem 4 of [9] which con-
cern of% and o(%* (7).

THEOREM 3. (a) ¥(P) is a win for I if and only if V—P is of the
first category for a mon-empty open set V C X*;

(0) GR(P) is a win for 1L ¢f and only if P is of the first category
in X°.

The proof is an easy modification of the idea of Swierczkowski and
Oxtoby (and probably Banach) already used in the proof of (iii) above
(by a construction of analogous families 4,, in this case not necessarily
denumerable).

Theorem 3 clearly implies the following corollary.

COROLLARY 4. o(¥(P) holds true for every set P C X having the
property of Baire.

Remark 2. Following the way indicated above and in Theorem 7
below one ean prove without using the axiom of choice that A¥ is equivalent
to the conjunction of Cr and the statement that every set P C X, where
1X| < 2%, has the property of Baire.

We do not know any similar equivalence involving measurability
in place of the property of Baire; however, the well-known analogy of
these two properties can be further magnified as follows. Consider
a topology on R ih which a set 4 C R is open if and only if every ae 4
i3 & metric density point of 4, i.e. ’}nﬁr 4~ <a—h, o+ B> /2h =1 (5).

Tt is eagy to see that every set BC R is Lebesgue-measurable if and
only if it has the property of Baire with respect to this topology.

Remark 3. A proof that the sets of the first category are denu-
merably additive, which already implies that sets having the property
of Baire form a denumerably additive Boolean algebra which thus in-

(") It was erron'e.ously stated in [8] that this theorem does not require the axiom
of choice; in fact even for X finite or denumerable the proof of Ax(P) for all P ¢Fyy0
UGy, is based on €. For a similar result see Theorem 8 below. By a mistake it was
not mentioned in [9], § 3 that © was used in the proofs of the propositions (o), ..., (iii)
(in fact the proofs were based on the 01-laws of the theories of measure and category,
which require @).

(%) This topology was studied in [5]. It is regular but not locally compact and
I do not know if it is completely regular? It has the Souslin property (see [7], § 1)
and is connected but is not separable and has totally disconnected open gets, In this
space first category, nowhere density and measure 0 coincide,
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cludes all Borel sets, requires the axiom of choice. But for a separable
space this can be established on account of @ only (%).

A set P in a topological space § is called analytic if it is the
result of applying the operation (A) to a system of closed sets, i.e.

P=J) N Fu,..iry Where i== (4,1, ...) Tuns over all sequences of natural
T n<o

numbers and all Fy, . ;, are closed subsets of §. Recall that a Borel seb
in a complete separable metric space is analytic (10).

TeROREM 5. o(%(P) holds true for every analytic set P C X°.

Proof. We will first prove two auxiliary statements.

(1) If each of the games G%(Py) (n< @) is a win for player II then
@\ P} s also a win jor player II.

n<o

In/fact, let on be a winning strategy for IT in the game G%(Pn).
Let o be a strategy for II such that in each play each of the strategies
0, is applied infinitely many times, the sequences between the consec-
utive choices by means of o, being treated as if they were made by
player I. Clearly o is a winning strategy in a%{ U P ).

n<w
Now let P =] (" Fy,.,, where all F; , are closed subsets of
T n<o

X® and let us suppose, which does not diminish the generality of the
considerations, that g, i CFy, .., for every ¢ and n. We put

Py =P (*) and
Pin,...,in = U m F‘l’n,-.-,in,fo,m,:"m .
i m<o

(i) If p € X™ is not a lost position for player I in the game G%(Pio,...15-1)s
then there ewists a number iy < w and a sequence qe X" with m < o such
that for every x e X the sequence p™q  (2) (5) is not a lost position for I in
the game G%(Pi,... i)

Since Py,...,0- =hU Piy,..ipn, this proposition follows of course
from (i). =

Suppose that G%(P) is not a loss for I. The theorem will be proved
if we show that G%(P) is a win for I. Let i(p, (4, ..., ix—)) denote the
first 4 which satisfies the conclusion of (ii) and 9(p, (%, ..., iz-1)) be
any sequence g corresponding to this 4 as in (i) (if p were a lost position
for I the definition of ¢( ) and 9( ) would not matter). Now we define
inductively two other functions s and o.

$(0) = (i(@,9)); (%)
o(@)=9(0,s(0));

() See [9], Appendix 1. Separable = having a denumerable basis of open sets.
() See [6], § 33, I. This fact requires only C.
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$(&yy ey Bn) = $(Voy ove mn—l)’\(i(”(g)h(wo)ﬁ“-ﬁa(“'07 vy Bp1)” (2n)
8(@gy +es mn_l)));

0(%yy -ery Tn) = B0 (D) (@0) .. 0 (o e 1) " (@n) 1 8 (@0 vy ) 5

T claim that o is a winning strategy for player I. Indeed for every
x= (&, &, -..) e X let

(%) = 0 (@) (@) 70 (@oy ey Tns) (#0) e
It is enough to show that 7 (x) ¢ P for every x and in fact 7(x) « (M) Fstaonion)
n<w

If this were not the case there would exist a neighbourhood of 7(x) dis-
joint with some set Fsg,..zny, Which is contrary to the fact that by the
definition of ¢ there are arbitrarily long initial segments of z(x) which
are non-lost positions for player I in the game G%(Psiap,...on)- QB.D.

Remark 4. In a 7T, topological space (i.e. singletons are closed)
every set which is analytic or analytic complement has the property
of Baire (see [6], § 11, VII). By [9], Theorem 3, it iy consistent with the
usual axioms of set theory that there are sets P eCA for which «{fy(P)
fails and sets P ¢ PCA ~ CPCA for which of%(P) fails. Hence Theo-
rem 5 and Corollary 4 are sharp.

Remark 5. If N is a discrete denumerable space and X, is the
set X with the smallest T, topology, i.e. only finite sets and X are
closed, and j: ¥N°~X% is a continuous mapping, then f(N®) is ana-
lytic in X°®.

THEOREM 6. In the case where there emists a well ordering of X Theo-
rem 3 and Corollary 4 can be proved without using the aziom of choice and
in the case |X| < 2% they require only Cg. In the case where X is at most
denumerable Theorem b requires only C.

The proof follows by a simple analysis of the proofs of the cor-
responding results.

4. Miscellanea. 1.(a) Cp implies the following selfrefinement,
which is a weak form of the principle of dependent choices.

/\ V (7‘,8) cd— \/ /\ (Vnyrn-hl) ed.

reR seR reRY n<w

(b) @ or Cg does not seem to imply that a denumerable union of
denumerable sets is denumerable or even that there exists a choice seb
for a denumerable set of disjoint pairs.

2.(a) There are games which I have not been able to represent
in the form G%(P); however, they fullfil statements analogous to Theo-
rem 5. Such is for instance, as I have realized recently, a game given
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as example 3 in [8]. A slight simplifieation of that game for which the
same result holds is the following. A set P C R is given. Player I chooses
any % ¢ R and then I chooses any Y <@y and then I any #, with
Yo < %, < @ and again II any y, with g, < Y1 <z, ete., always between
the last two choices. I wins if lima, ¢ P and 1T wins in the other case.
It is easy to see that I has a winning strategy if P has a perfect subset
and that II has a winning strategy if P is at most denumerable (11).
This implies that this game is determined if P is analytic.

(b) Other facts on positional games and sets having the property I
of Lusin (see [6], § 36, VII) are given in [18]. ’

(c) Positional games with recursive strategies were considered by
M. O. Rabin [16].

{(d) If we assume the axiom of choice, there are of course non-
determined games of the form G}y(P) or 553(P) (see e.g. [9] propo-
sitions (3.3) and (3.4)). But even if we assume this axiom the problem
of the existence of non-determined games of the form described above

in 2.(a) or of several related types (see [8], § 2.3 and [3] and [4] where
other references are given) is open.

3. Finally T want to mention another set of problems on positional
games; however, it is quite remote from the main subject of this paper.
(a) An infinite set X is given. I cuts X into two parts and IT chooses
one of them, then I cuts the chosen part into two parts and II chooses
one of them, etc. After o steps I pays to II the cardinality of the
intersection of the chosen parts. It is clear that I has a strategy for
paying not more than 1 if and only if |X| < 2%°. Of course II has a strat-
egy to get at least 1, bub is it possible, for X sufficiently large, that
he has a strategy to get at least 22 (if there exists a denumerably ad-
ditive 01-valued measure m on all subsets of X, with m(X)= 1, and
vanishing on singletons then the answer is positive; but the existence
of such X and m does not follow from the usual axioms of set theory).
(b) A related problem [11] probably involves similar difficulties.
(c) Similar problems were stated by Banach in the Scottish Book
(Problems 67, 1) and 2) (1935)). They were solved by J. Schreier [17].
In [17] the game theoretical form of the result is not stated and it has
never appeared in printed form. Let us formulate it here. An infinite
set X of power m being given, we define two games I3 and I. In I}
player I chooses any X, C X with |X,| = m, then player IT chooses any
X, C X, with |X,|= m, etc.; they construct a sequence X,2X,D...
w2 X5 L (< w) of sets of power m. In I, they construct in the same

() The same statements ave true for the game Gloi(P) (see [2], Theorems 4.1
and 4.2, repeated as proposition (3.3) in [9]).


GUEST


icm°®

212 J. Mycielgki

order a sequence of disjoint sets X;C X (i< w) such that ]X_iU X,
<3

= m for every j < w. In I} player IL wins if (| Xy=0 and in I} if | X,
J i<o

i<
= X. Schrejers’ argument proves that in both games, Iy and I, player 1T
has a winning strategy.

(d) A similar problem stated by S. Ulam [197 is still open.
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A duality property of nerves
by
J. Dugundji* (Frankfurt a. M)

1. Our main aim in this paper is to prove the following

1.1. TaroREM. Let Y be a normal s

o ) pace, and Y = {U, -
finite (*) covering of X by open F,-sets. Ass{tme that (Pl <30} @ nbd
(a)  The order (?) of U is <n
and
(b)  For each k =1, the intersection of every k :

natiod O ; f Yy k sets of W is (n—k)-con-
Then each camonical map » of Y into the nerve () N(U) of U has a right

homotopy inverse (°) g: N (U)—Y. Moreover, » and
: . can be ch
gox is U-close (°) to the identity map of Y, ! poren w0 fhat

In [8], pp. 142-145, Weil derived the above conclusion from the
tyv9 ar?'sumptions: (a’) No restriction on the order of U, and (b’) Every
finite intersection of sets of U is oo-connected; thus, in 1.1 we strengthen
one of. 1.1is hypotheses and weaken the other. Our proof of 1.1 will be
a modification of his; note that the above version does not require the

Z;)’I;];is res;zrch was partially supported by NSF Grant Gr-244=7i.
is nbd-finite if each point has a neighhorhood i ini
mtny memabens oo ghborhood meeting at most finitely
(*) The largest integer # such that there are (n+ 1) memb i
. : ! ers of with -
intersection, i.e., the dimension of the nerve of 1I. TR notempty
(®) X is k-connected if m(X) =0 for 0 <4 <k; itis oo i
) <i<k; -connected if my(X) =0
for all)z \?I 0; m(X) = 0 denotes that X is path-connected. o
* e realize the nerve of a covering Il as a rectilinear i
G A polytope in a real vector
space spanned by linearly independent vectors in a fixed one-to-one correspondence
with the n_on-empty Uq € U. The vertex corresponding to U, is the unit point on the
?I;r]respogg;ng Z;ector, 'a‘nd is denoted by pa. The topology of V(M) is the CW-topology
eacﬂ; g.e o ). continnous »: ¥ —N(U) is called cannonical if »™*(Stpe) c Us for
(z) That is, %o g =~ 1; equivalently, ¥ dominates N ).
i _() Two maps f,g: X—+X¥ are U-close if for each x ¢ X there is a Uqell con-
aining both f() and g(). Under certain conditions (for example, if each finite inter-
section of the closures of the U, is an AR (normal) ([8], p- 142) or if ¥ is an ANR
and the Ua are “sufficiently small” ([5], p. 243)) U-closed maps are homotopie.
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