

order a sequence of disjoint sets $X_i \subseteq X$ $(i < \omega)$ such that $|X - \bigcup_{i < j} X_i|$ = m for every $j < \omega$. In Γ_1 player II wins if $\bigcap_{i < \omega} X_i = 0$ and in Γ_2 if $\bigcup_{i < \omega} X_i$ = X. Schreiers' argument proves that in both games, Γ_1 and Γ_2 , player II has a winning strategy.

(d) A similar problem stated by S. Ulam [19] is still open.

References

- [1] N. Bohr, Discussion with Albert Einstein on epistemological problems in atomic physics, in the collection Albert Einstein, Philosopher-Scientist, Library of living philosophers, Evanston Illinois 1949.
- [2] Morton Davis, Infinite games of perfect information, in the collection Advances in game theory, Princeton 1964, pp. 85-101.
- [3] H. Hanani, A generalization of the Banach and Mazur game, Trans. Amer. Math. Soc. 94 (1960), pp. 86-102.
- [4] and M. Reichbach, Some characterizations of a class of unavoidable compact sets in the game of Banach and Mazur, Pacific Journal of Math. 11 (1961), pp. 945-959.
- [5] O. Haupt et C. Pauc, La topologie approximative de Denjoy envisagée comme vraie topologie, C. R. Acad. Sci. Paris 234 (1952), pp. 390-392.
 - [6] C. Kuratowski, Topologie, vol. I, Monogr. Mat. 20, Warszawa 1958.
- [7] E. Marczewski, Séparabilité et multiplication cartésienne des espaces topologiques, Fund. Math. 34 (1947), pp. 127-143.
- [8] Jan Mycielski, Continuous games with perfect information, in the collection Advances in game theory, Princeton 1964, pp. 103-112.
 - [9] On the axiom of determinateness, Fund. Math. 53 (1964), pp. 205-224.
- [10] Determinateness, measurability and the property of Baire (abstract), Amer. Math. Soc. Notices 12 (1965), p. 707.
 - [11] P 446 (problem), Coll. Math. 11 (1963), p. 139.
- [12] and H. Steinhaus, A mathematical axiom contradicting the axiom of choice, Bull. Acad. Polon. Sci., Série Math., Astr. et Phys. 10 (1962), pp. 1-3.
- [13] and S. Świerczkowski, On the Lebesgue measurability and the axiom of determinateness, Fund. Math. 54 (1964), pp. 67-71.
- [14] — and A. Zieba, On infinite positional games, Bull. Acad. Polon. Sci., Série Math., Astr. et Phys. 4 (1956), pp. 485-488.
- [15] J. C. Oxtoby, The Banach-Mazur game and Banach category theorem, in the collection Contributions to the theory of games III, Princeton 1957, pp. 159-163.
 - [16] M. O. Rabin, Effective computability of winning strategies, ibidem, pp. 147-157.
- [17] J. Schreier, Eine Eigenschaft abstrakter Mengen, Studia Math. 7 (1938), pp. 155-156.
- [18] Э. Д. Стоңкий, O дескриппивной теории игр, Проблемы Кибернетики 8 (1962), pp. 45-54.
- [19] S. Ulam, Combinatorial analysis in infinite sets and some physical theories, SIAM Rev. 6 (1964), pp. 343-355.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

Recu par la Rédaction le 21, 10, 1965

A duality property of nerves

b

J. Dugundji* (Frankfurt a. M.)

- 1. Our main aim in this paper is to prove the following
- 1.1. Theorem. Let Y be a normal space, and $\mathfrak{U}=\{U_{\alpha}|\ \alpha\in\mathfrak{U}\}\ a$ nbd-finite $(^1)$ covering of Y by open F_{σ} -sets. Assume that
- (a) The order (2) of \mathfrak{U} is $\leq n$ and
- (b) For each $k \ge 1$, the intersection of every k sets of $\mathfrak U$ is (n-k)-connected (3).

Then each canonical map \varkappa of Y into the nerve (4) $N(\mathfrak{U})$ of \mathfrak{U} has a right homotopy inverse (5) $g\colon N(\mathfrak{U})\to Y$. Moreover, \varkappa and g can be chosen so that $g\circ \varkappa$ is \mathfrak{U} -close (6) to the identity map of Y.

In [8], pp. 142-145, Weil derived the above conclusion from the two assumptions: (a') No restriction on the order of $\mathfrak U$, and (b') Every finite intersection of sets of $\mathfrak U$ is ∞ -connected; thus, in 1.1 we strengthen one of his hypotheses and weaken the other. Our proof of 1.1 will be a modification of his; note that the above version does not require the

^{*} This research was partially supported by NSF Grant G-24471.

⁽¹⁾ U is nbd-finite if each point has a neighborhood meeting at most finitely many members of U.

⁽²⁾ The largest integer n such that there are (n+1) members of with non-empty intersection, i.e., the dimension of the nerve of H.

⁽a) X is k-connected if $\pi_i(X)=0$ for $0\leqslant i\leqslant k$; it is ∞ -connected if $\pi_i(X)=0$ for all $i\geqslant 0$; $\pi_0(X)=0$ denotes that X is path-connected.

⁽⁴⁾ We realize the nerve of a covering $\mathfrak U$ as a rectilinear polytope in a real vector space spanned by linearly independent vectors in a fixed one-to-one correspondence with the non-empty $U_a \in \mathfrak U$. The vertex corresponding to U_a is the unit point on the corresponding vector, and is denoted by p_a . The topology of $N(\mathfrak U)$ is the CW-topology ([9], p. 223). A continuous $\kappa\colon Y\to N(\mathfrak U)$ is called *camonical* if $\kappa^{-1}(\operatorname{St} p_a)\subset U_a$ for each $a\in \mathfrak V$.

⁽⁵⁾ That is, $\varkappa \circ g \simeq 1$; equivalently, Y dominates $N(\mathfrak{U})$.

⁽⁶⁾ Two maps $f, g: X \to Y$ are U-close if for each $x \in X$ there is a $U_\alpha \in \mathbb{N}$ containing both f(x) and g(x). Under certain conditions (for example, if each finite intersection of the closures of the U_α is an AR (normal) ([8], p. 142) or if Y is an ANR and the U_α are "sufficiently small" ([5], p. 243)) U-closed maps are homotopic.

sets of $\mathfrak U$ to be even n-connected. Some applications, to derive a generalization of Helly's convex-set theorem, and to some recent work by de Groot, de Vries, van der Walt in [3], will be given.

2. We collect separately some results on mappings of spaces into CW-polytopes which, though more general than required, are worth stating explicitly for future use.

Let L be a real vector space with the finite topology (7). It is known ([4], p. 416, [7], p. 57) that if L has a basis of cardinal $\geq 2^{\aleph_0}$, then the addition operation is not continuous. However,

- 2.1. (a) Each compact $C \subset L$ is contained in a finite dimensional linear subspace.
 - (b) If X is a k-space (8) and f, g: $X \rightarrow L$ continuous, then $x \rightarrow f(x) + g(x)$ is also continuous.

Proof. It is clear that (b) follows from (a) since addition is continuous on each finite-dimensional linear subspace, so that $x \to f(x) + g(x)$ is continuous on each compact $C \subset X$. To prove (a), assume that C is not contained in any finite-dimensional linear subspace. Choose $x_1, x_2 \in C$, with $x_1 \neq x_2$, and proceed by induction, choosing $x_{n+1} \in C$ to be a point not in the finite-dimensional linear subspace spanned by x_1, \ldots, x_n . Then $A = \{x_n | n \geqslant 1\}$ is an infinite closed discrete subset of C, since each finite-dimensional linear subspace contains at most finitely many members of A, and therefore C cannot be compact.

We shall assume all polytopes taken with the CW-topology; they are not required to be either finite-dimensional or locally finite. Every such polytope P will always be considered embedded as a subspace of a vector space L(P) with finite topology, spanned by independent vectors in 1-1 correspondence with the vertices of P, and with each vertex of P being at the unit point p_a of the corresponding vector.

Call a map $f: X \to P$ locally finite whenever each $x \in X$ has a nbd V such that f(V) is contained in a finite subpolytope; for example, any canonical map of a normal space into the nerve of a nbd-finite open covering is locally finite, whereas the identity map of a non-locally finite polytope is not.

2.2. THEOREM. Let $f, g: X \rightarrow P$ be continuous and such that for each $x \in X$ the points f(x) and g(x) belong to a common open vertex-star. Assume

(7) A set is closed if and only if its intersection with each finite-dimensional linear subspace is closed in the Euclidean topology of that subspace.

that either (a) X is a k-space, or (b) both f and g are locally finite maps. Then $f \simeq g$ by a homotopy in which the path of each x lies in an open vertex-star.

Proof. We consider case (a). Let

$$f(x) = \sum_{a} f_a(x) \cdot p_a, \quad g(x) = \sum_{a} g_a(x) \cdot p_a,$$

where $\{f_a(x)\}$ resp. $\{g_a(x)\}$ are the barycentric coordinates of f(x) resp. g(x). Each f_a , g_a is a continuous real-valued function on X, so for each a,

$$h_a(x) = \min[f_a(x), g_a(x)]$$

is also continuous. For each x, at most finitely many $h_{\alpha}(x) \neq 0$, for if $(p_{a_1}, ..., p_{a_n})$ is the carrier of f(x), then $f_{\alpha}(x) = 0$ for all $\alpha \neq a_1, ..., a_n$. The function $h = \sum_{\alpha} h_{\alpha}$ is therefore well-defined and we show that it is

continuous on each compact $C \subset X$: Indeed, by 2.1 (a), f(C) and g(C) lie on a finite subpolytope of P, so on C only a fixed finite number of the h_a are not identically zero, and h|C, being the sum of a fixed finite number of continuous functions, is therefore continuous. Since X is a k-space, h is consequently continuous on X. Finally, h(x) is never zero: given any x, there is an α such that f(x), $g(x) \in \text{St}(p_a)$; then $f_a(x) > 0$, $g_a(x) > 0$, and $h(x) \geqslant h_a(x) > 0$.

Because of 2.1, the function

$$\lambda(x) = \frac{1}{h(x)} \sum_a h_a(x) \cdot p_a$$

maps X continuously into L(P). Choose any $x \in X$; if $h_{a_i}(x) \neq 0$ for $i=1,\ldots,n$ and only these indexes, then $\lambda(x)$ belongs to the open simplex (p_{a_1},\ldots,p_{a_n}) ; since both $f_{a_i}(x)$ and $g_{a_i}(x)$ are not zero, both f(x) and g(x) are carried by simplexes of P having (p_{a_1},\ldots,p_{a_n}) as face. This shows first that in fact λ maps X into P and then that for each x, g(x) and $\lambda(x)$, so well as $\lambda(x)$ and f(x), belong to a common closed simplex of P. Since $X \times I$ is a k-space ([4], p. 263) and, by 2.1, $(x, t) \rightarrow tf(x) + (1-t)\lambda(x)$ is a continuous map into P, we find $f \simeq \lambda$ and, similarly, that $\lambda \simeq g$. The proof in case (b) is similar and simpler.

This generalization of the usual theorem, wherein f(x), g(x) are required to be in a common closed simplex for each $x \in X$, is frequently more useful.

3. If P is a polytope, we write $\sigma < \tau$ to denote that σ is a *proper* face of τ , and we denote the barycenter of σ by $[\sigma]$. The first barycentric subdivision P' of P consists of all simplexes $([\sigma_1], [\sigma_2], ..., [\sigma_s])$ such that $\sigma_1 < \sigma_2 < ... < \sigma_s$. For each $\sigma \in P$, the *linked complex* Lk(σ) is that subcomplex of P' consisting of all simplexes $([\sigma_1], [\sigma_2], ..., [\sigma_s])$ such that

^(*) X is a k-space if a set is open whenever its intersection with each compact subspace is open in that subspace ([2], p. 220; [4], p. 248). A map $h\colon X\to Y$ is therefore continuous if and only if h|C is continuous for each compact C. It is easy to see that ([4], p. 243) every locally compact space, every first-countable space, and every CW-polytope, is a k-space.

 $\sigma < \sigma_1 < \sigma_2 < ... < \sigma_s$ and $\text{Tr}(\sigma)$, the closed traverse of σ , is the join $([\sigma], \text{Lk}(\sigma))$, that is, all simplexes $([\sigma], [\sigma_1], [\sigma_2], ..., [\sigma_s])$ such that $\sigma < \sigma_1 < \sigma_2 < ... < \sigma_s$, together with all faces of such simplexes. If dim $P \leq \eta_s$.

Using the notation in the statement of Theorem 1.1, we now give the Proof of 1.1. Let $\kappa: Y \to N(\mathfrak{U})$ be the canonical map

$$arkappa(y) = \sum_a arkappa_a(y) \cdot p_a$$

where $\{\kappa_a\}$ is a partition of unity subordinated to $\{U_a|\ \alpha\in\mathfrak{A}\}$ and $\kappa_a^{-1}(0)=Y-U_a$ for each $(^9)$ $\alpha\in\mathfrak{A}$. In particular, if $y\in U_{a_1},\ldots,U_{a_k}$ and only these sets, then $\kappa(y)$ lies in the *open* simplex (p_{a_1},\ldots,p_{a_k}) .

For each $\sigma = (p_{a_1}, \dots, p_{a_k}) \in N(\mathfrak{U})$, let $E(\sigma) = U_{a_1} \cap \dots \cap U_{a_k}$. Let N' be the barycentric subdivision of N; we will construct a continuous $g \colon N' \to Y$ such that $g(\operatorname{Tr}(\sigma)) \subset E(\sigma)$ for each $\sigma \in N$.

For each $k \ge 0$, let B_k be the subcomplex

then clearly $\dim \operatorname{Tr}(\sigma) \leq n - \dim \sigma$.

$$B_k = \bigcup \left\{ \operatorname{Tr}(\sigma) | \dim \sigma \geqslant k \right\}$$

of N', so that $B_n \subset B_{n-1} \subset \dots \subset B_0 = N'$ and B_n is discrete. Define $g_n : B_n \to Y$ by sending each $[\sigma^n]$ to a point of $E(\sigma^n)$. We proceed by induction, assuming that g_n has been extended to a continuous $g_k \colon B_k \to Y$ such that $g_k[\operatorname{Tr}(\sigma)] \subset E(\sigma)$ whenever $\dim \sigma \geqslant k$. For each σ^{k-1} , observe that $g_k[\operatorname{Lk}(\sigma^{k-1})] \subset E(\sigma^{k-1})$; since $\operatorname{Lk}(\sigma^{k-1})$ is a subcomplex of $\operatorname{Tr}(\sigma^{k-1})$ with $\dim[\operatorname{Tr}(\sigma^{k-1}) - \operatorname{Lk}(\sigma^{k-1})] \leqslant n-k+1$, and since $\pi_i(E(\sigma^{k-1})) = 0$ for $0 \leqslant i \leqslant n-k$, the mapping $g_k \mid \operatorname{Lk}(\sigma^{k-1})$ can therefore be extended ([5], p. 237, [6], p. 241) over $\operatorname{Tr}(\sigma^{k-1}) \subset B_k$, this piecewise extension over each $\operatorname{Tr}(\sigma^{k-1}) \cap \operatorname{Tr}(\widehat{\sigma}^{k-1}) \subset B_k$, this piecewise extension over each $\operatorname{Tr}(\sigma^{k-1})$ results in a continuous $g_{k-1} \colon B_{k-1} \to Y$ such that $g_{k-1}(\operatorname{Tr}(\sigma)) \subset E(\sigma)$ whenever $\dim \sigma \geqslant k-1$, and completes the inductive step (10). We set $g = g_0$.

The maps $g \circ \kappa$ and 1: $Y \to Y$ are \mathfrak{U} -close. For if $y \in Y$ belongs to U_{a_1}, \ldots, U_{a_k} and only these sets, then $\kappa(y)$ lies in the open simples $\sigma = (p_{a_1}, \ldots, p_{a_k})$; if $\sigma' = ([\sigma_1], \ldots, [\sigma_s])$ is the carrier of $\kappa(y)$ in N', then σ_1 must be some face of σ , and for any vertex p_a of σ_1 , both y and $g \circ \kappa(y)$ belong to U_{α} .

The map $lpha \circ g \simeq 1$. Let $p \in N$; if $\sigma' = ([p_{a_0}, \, \ldots, \, p_{a_i}], \, \ldots)$ is the carrier of p, then $g(p) \in U_{a_0} \cap \ldots \cap U_{a_i}$; and, if $U_{a_0}, \, \ldots, \, U_{a_i}, \, \ldots, \, U_{a_k}$ are all those

sets containing g(p), then $\varkappa \circ g(p)$ lies in the *open* simplex $(p_{a_0}, \ldots, p_{a_l}, \ldots, p_{a_l})$. In particular, p and $\varkappa \circ g(p)$ both belong to $\operatorname{St}(p_{a_0})$. Since N is a k-space, 2.2 shows that $\varkappa \circ g \simeq 1$. This completes the proof.

It is simple to generalize 1.1 to the case where the nerve is locally finite-dimensional (that is, each $\operatorname{St}(p_a)$ is finite-dimensional); in this case, the conclusion holds if each $E(\sigma)$ is required to be $[\dim \operatorname{Tr}(\sigma)-1]$ -connected, so that the required connectedness of the intersection of k sets U_{a_1}, \ldots, U_{a_k} depends on the maximal number of sets that can be adjoined to U_{a_1}, \ldots, U_{a_k} and still have a non-empty intersection. Thus, for example, we find

3.1. THEOREM. Let Y be a locally equiconnected metric space (11), and λ an equiconnecting function defined on the nbdW of the diagonal in Y × Y. Let $\mathfrak{U} = \{U_a | a \in \mathfrak{A}\}$ be any nbd-finite open covering of Y such that each $U_a \times U_a \subset W$. If $N(\mathfrak{U})$ is locally finite-dimensional, and if each $E(\sigma)$ is $[\dim \mathrm{Tr}(\sigma)-1]$ -connected, then Y belongs to the homotopy type of $N(\mathfrak{U})$, and $\kappa: Y \to N(\mathfrak{U})$ is a homotopy equivalence.

Proof. In this case, $\lambda[g \circ \varkappa(y), y, t]$ provides the homotopy $g \circ \varkappa \simeq 1$. Note that, if dim $N(\mathfrak{U}) = n$, then no U_a is required to be even n-connected.

4. We now establish a generalization of Helly's convex-set theorem in the following form:

4.1. Theorem. Let $\mathfrak{U}=\{U_1,...,U_k\},\ k\geqslant n+2,$ be open sets in $E^n,$ such that each (k-1) of them have a non-empty intersection. If the intersection of every j of them is (k-j-2)-connected, then $U_1\cap...\cap U_k\neq\emptyset$.

Proof. Assume $U_1 \cap ... \cap U_k = \emptyset$. Then $N(\mathfrak{U})$ is homeomorphic to $\operatorname{Fr}(\sigma^{k-1})$ consequently $H_{k-2}(N) = Z$. It follows from 1.1 that $\bigcup_{i=1}^k U_i$ dominates N, so $H_{k-2}(\bigcup_{i=1}^k U_i)$ must have $H_{k-2}(N)$ as a direct summand. This is impossible, since $\bigcup_{i=1}^k U_i$ is open in E^n so that $H_l(\bigcup_{i=1}^k U_i) = 0$ for all $l \geqslant n$.

The above version of the theorem indicates that, for finite families of k open sets in E^n , $k \ge n+2$, the Helly property is dependent on the (k-3)-connectedness (rather than convexity) of each set $(^{12})$, and on the connectedness of the higher intersections not decreasing too rapidly. It will be shown elsewhere that 4.1 is also true for families of closed sets in E^n .

5. In a recent paper ([3], pp. 607-609), it has been shown that, if $\mathfrak{U} = \{U_i | i = 1, ..., n\}$ is any finite open covering of E^2 by convex sets,

^(*) Any two canonical $\varkappa, \hat{z}: Y \to N(\mathfrak{U})$ are homotopic, since they are locally finite maps and, for each y, both $\varkappa(y)$ and $\hat{z}(y)$ belong to a common closed simplex.

⁽¹⁰⁾ The property that $g(\operatorname{Tr}\sigma) \subset E(\sigma)$ for each σ is the only one used in the balance of the proof. In the case of ∞ -connectedness, its construction is by induction on the k-skeleton of N' itself, starting by sending each $[\sigma]$ to a point of $E(\sigma)$, and extending over each simplex so that always $g([\sigma_1], [\sigma_2], ..., [\sigma_\ell]) \subset E(\sigma_1)$.

⁽¹¹⁾ Y is locally equiconnected ([4], p. 334) if there is a neighborhood W of the diagonal in $Y \times Y$ and a continuous λ : $W \times I \rightarrow Y$ such that $\lambda(a,b,0) = a$, $\lambda(a,b,1) = b$, $\lambda(a,a,t) = a$ for all $(a,b) \in W$, $t \in I$.

⁽¹²⁾ Of course, an (n-1)-connected open $U \subset E^n$ is necessarily ∞ -connected.

then each continuous $f: E^2 \to E^2$ has a \mathfrak{U} -fixed point (13), that is, there exists some $x \in E^2$ such that x and f(x) lie in a common U_i . The question of extending this result to E^n , n > 2, was raised; by using a completely different method, we can prove, more generally,

5.1. THEOREM. Let Y be a normal space with $\pi_i(Y) = 0$ for $i \leqslant n$, and let $\mathfrak{U} = \{U_i | i = 1, ..., l\}$ be any finite open covering of Y by F_{σ} -sets, having order $\leqslant n$. If for all $k \geqslant 1$ the intersections of each k sets is (n-k)-connected, then every continuous $f \colon Y \to Y$ has a \mathfrak{U} -fixed point.

Proof. The nerve $N(\mathfrak{U})$ is a finite polytope, $\dim N \leqslant n$. According to 1.1, Y dominates N, so that $\pi_i(N) = 0$ for $0 \leqslant i \leqslant n$; hence N is ([5], p. 239) a compact AR and therefore ([1], p. 161) has the fixed-point property. Now let $f \colon Y \to Y$ be given; then $\varkappa fg(p) = p$ for some $p \in N$, and g(p) is a \mathfrak{U} -fixed point of $f \colon$ for, $g \varkappa [fg(p)]$ and fg(p) lie in a common U_i , and $g \varkappa [fg(p)] = g(p)$. The proof is complete.

In [3], p. 612, an example is given of a covering $\mathfrak U$ of E^2 by four connected open sets and a continuous $f\colon E^2\to E^2$ that does not have a $\mathfrak U$ -fixed point. Because necessarily $\dim N(\mathfrak U)\leqslant 3$ for any such covering, it follows from 5.1 that if each U_i is 2-connected, each $U_i\cap U_j$ is 1-connected (which is not the case in the example of [3]) and if each $U_i\cap U_j\cap U_k$ is 0-connected, then every $f\colon E^2\to E^2$ will have a $\mathfrak U$ -fixed point. Note that if dim $N(\mathfrak U)\leqslant 2$, then the requirements on the four U_i can be relaxed, so that a general answer to the question 2 in [3], p. 612, would appear to be fairly complicated.

As a further consequence of 5.1, we have the following

5.2. COROLLARY. Let Y be compact, $\pi_i(Y) = 0$ for all $i \ge 0$. Assume that Y has a cofinal family of finite open coverings (14) by F_{σ} -sets such that in each covering, each finite intersection of its sets is ∞ -connected. Then Y has the fixed-point property.

Proof. If an $f: Y \rightarrow Y$ did not have a fixed point, then it is evident that there is a finite open covering $\mathfrak U$ such that f has no $\mathfrak U$ -fixed point. If V is a member of the cofinal family that refines $\mathfrak U$, then f has no V-fixed point. This contradicts 5.1.

Note that 5.2 leads to still another proof of Tychonov's fixed point theorem. Note also that if Y is any compact 1-dimensional LC⁰ space such that $\pi_1(Y) = 0$, then because finite open coverings by path-connected sets, of order ≤ 1 , are cofinal in the family of all coverings, it follows in the same way, using 5.1, that Y has the fixed-point property.

References

- [1] K. Borsuk, Sur les rétractes, Fund. Math. 17 (1931), pp. 152-170.
- [2] D. E. Cohen, Products and carrier theory, Proc. Lond. Math. Soc. (3) 7 (1957), pp. 219-248.
- [3] J. de Groot, H. de Vries, T. van der Walt, Almost fixed point theorems for the Euclidean plane, Indig. Math. 25 (1963), pp. 606-612.
 - [4] J. Dugundji, Point set topology, Boston, 1966.
- [5] Absolute nbd retracts and local connectadness in arbitrary metric spaces, Comp. Math. 13 (1958), pp. 229-246.
- [6] S. Eilenberg, Cohomology and continuous mappings, Ann. Math. 41 (1940), pp. 213-251.
- [7] S. Kakutani and V. Klee, The finite topology of a linear space, Arch. Math. 14 (1963), pp. 55-58.
- [8] A. Weil, Sur les théorèmes de de Rham, Comm. Math. Helv. 26 (1952), pp. 119-145.
- [9] J. H. C. Whitehead, Combinatorial homotopy I, Bull. Am. Math. Soc. 55 (1949), pp. 213-245.

UNIVERSITY OF SOUTHERN CALIFORNIA

UNIVERSITÄT FRANKFURT

Reçu par la Rédaction le 26, 11, 1965

⁽¹³⁾ Called an "almost-fixed point" in [3].

⁽¹⁴⁾ A family $\{\mathfrak{B}_a|a\in\mathfrak{A}\}$ of open coverings is *cofinal* if for each open covering \mathfrak{U} there is some \mathfrak{B}_a refining \mathfrak{U} . Since Y is compact, each \mathfrak{B} can be assumed to be a finite covering.