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order a sequence of disjoint sets X;C X (i< w) such that ]X_iU X,
<3

= m for every j < w. In I} player IL wins if (| Xy=0 and in I} if | X,
J i<o

i<
= X. Schrejers’ argument proves that in both games, Iy and I, player 1T
has a winning strategy.

(d) A similar problem stated by S. Ulam [197 is still open.
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A duality property of nerves
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J. Dugundji* (Frankfurt a. M)

1. Our main aim in this paper is to prove the following

1.1. TaroREM. Let Y be a normal s

o ) pace, and Y = {U, -
finite (*) covering of X by open F,-sets. Ass{tme that (Pl <30} @ nbd
(a)  The order (?) of U is <n
and
(b)  For each k =1, the intersection of every k :

natiod O ; f Yy k sets of W is (n—k)-con-
Then each camonical map » of Y into the nerve () N(U) of U has a right

homotopy inverse (°) g: N (U)—Y. Moreover, » and
: . can be ch
gox is U-close (°) to the identity map of Y, ! poren w0 fhat

In [8], pp. 142-145, Weil derived the above conclusion from the
tyv9 ar?'sumptions: (a’) No restriction on the order of U, and (b’) Every
finite intersection of sets of U is oo-connected; thus, in 1.1 we strengthen
one of. 1.1is hypotheses and weaken the other. Our proof of 1.1 will be
a modification of his; note that the above version does not require the

Z;)’I;];is res;zrch was partially supported by NSF Grant Gr-244=7i.
is nbd-finite if each point has a neighhorhood i ini
mtny memabens oo ghborhood meeting at most finitely
(*) The largest integer # such that there are (n+ 1) memb i
. : ! ers of with -
intersection, i.e., the dimension of the nerve of 1I. TR notempty
(®) X is k-connected if m(X) =0 for 0 <4 <k; itis oo i
) <i<k; -connected if my(X) =0
for all)z \?I 0; m(X) = 0 denotes that X is path-connected. o
* e realize the nerve of a covering Il as a rectilinear i
G A polytope in a real vector
space spanned by linearly independent vectors in a fixed one-to-one correspondence
with the n_on-empty Uq € U. The vertex corresponding to U, is the unit point on the
?I;r]respogg;ng Z;ector, 'a‘nd is denoted by pa. The topology of V(M) is the CW-topology
eacﬂ; g.e o ). continnous »: ¥ —N(U) is called cannonical if »™*(Stpe) c Us for
(z) That is, %o g =~ 1; equivalently, ¥ dominates N ).
i _() Two maps f,g: X—+X¥ are U-close if for each x ¢ X there is a Uqell con-
aining both f() and g(). Under certain conditions (for example, if each finite inter-
section of the closures of the U, is an AR (normal) ([8], p- 142) or if ¥ is an ANR
and the Ua are “sufficiently small” ([5], p. 243)) U-closed maps are homotopie.
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sets of U to be even m-connected. Some applications, to derive a gen-
eralization of Helly’s convex-set theorem, and fto some recent work
by de Groot, de Vries, van der Walt in [3], will be given.

2. We collect separately some results on mappings of spaces into
OV%-polytopes which, though more general than required, are worth
stating explicitly for future use.

Let L be a real vector space with the finite topology (7). It is known
([4], p. 416, [7], p. B7) that if L has a basis of cardinal =2%, then the
addition operation is not econtinuous. However,

2.1. (a) Bach compact CCL 4s contained in @ finite dimensional

linear subspace.
by If X is a k-space (®) and f,g: X—L continuous, then
x—f(z)+g(w) is also continuous.

Proof. Tt is clear that (b) follows from (a) since addition is con-
inuous on each finite-dimensional linear subspace, so that z—f(z)4-g(x)
is continuous on each compact O C X. To prove (a), assume that O is
not contained in any finite-dimensional linear subspace. Choose @y, 2, € 0,
with @, # #,, and proceed by induction, choosing &,y € C to be a point
not in the finite-dimensional linear subspace spanned by &y, ..., @,. Then
A= {x,| n>1} is an infinite closed discrete subset of (O, since each
finite-dimensional linear subspace contains at most finitely many mem-
bers of A4, and therefore ¢ cannot be compact.

We shall assume all polytopes taken with the CW-topology; they
are not required to be either finite-dimensional or locally finite. Every
such polytope P will always be considered embedded as a subspace of
a vector space L(P) with finite topology, spanned by independent vectors
in 1-1 correspondence with the vertices of P, and with each vertex of P
being at the unit point p. of the corresponding vector.

Call a map f: X—P locally finite whenever each # ¢« X has a nbdV
such that f(V) is contained in a finife subpolytope; for example, any
canonical map of a normal gpace into the nerve of a nbd-finite open
covering is locally finite, whereas the identity map of a non-locally finite
polytope is not.

2.2. THEOREM. Let f,g: X P be continuous and such that for each
2 € X the points f(») and g(z) belong to a common open vertex-star. Assume

(") A set is cloged if and only if its intersection with each finite-dimensional linear
subspace i8 closed in the Euclidean topology of that subspace.

(®) X is a k-space if a set is open whenever its intersection with each compact
subspace is open in that subspace ([2], p. 220; [4], p. 248). A map h: XX i8 there-
fore continuous if and only if 2|0 is continuous for each compact ¢. It is easy to see
that ([4], p. 243) every locally compact space, every first-countable space, and every
CW-polytope, is a k-space.
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that either (a) X is a k-space, or (b) both § and g are locally finite maps.
Then | = g by a homotopy in whick the paih of each @ lies in an open
vertex-star.

Proof. We consider case (a). Let
@)= 2 1@)pey  gle)= Y gula)- e,

where {fa(zv)}. resp. {gu(_m)} are the barycentric coordinates of f(x) resp. g(z).
Bach fo, g« 18 & continuous real-valued function on X, so for each a,
ho{) = min[fo(), go{)]

is also contix}uous. For each w, at most finitely many h,(z) 0, for if
(g s ...,pa'ﬂ) is the carrier of f(w), then fy(#) = 0 for all a # ay, ..., an.
The function k= Y h, is therefore well-defined and we show that it is

continuou.s on each compact 0 C X: Indeed, by 2.1 (a), £(€) and ¢(C)
lie on a finite subpolytope of P, so on C only a fixed finite number of

. the h, are not identically zero, and %|C, being the sum of a fixed finite

number of continuous functions, is therefore continuous. Since X is
a k-space, h is consequently continuous on X. Finally, h(x) is never
zero: given any z, there is an a such that f(z), g(%) e St(p,); then
fu@) >0, gu(®) > 0, and h(z) > hu(2) > 0.

Because of 2.1, the function

1
Mo =55 Dl 2

maps X continuously into L(P). Choose any @ eX; if k()£ 0 for
i=1,..,n and only these indexes, then A(x) belongs to the open sim-
plex (pa, ..., p,); since both f,(2) and g.(w) are not zero, both f(z)
and g(z) are carried by simplexes of P having (pa, ..., Pa,) as face. This
shows first that in faet 2 maps X into P and then that for each z, g(z)
and A(z), so well as A(x) and f(z), belong to a common closed simplex
of P. Since X xI is a k-space ([4], p. 263) and, by 2.1, (2, t)~>1f (x)-+
+{(1—1%)A(x) is a continuous map into P, we find f ~ A and, similarly,
that 1 = g. The proof in case (b) is similar and simpler.

This generalization of the wusual theorem, wherein f(z), g(z) are
required to be in a commen cloged simplex for each x ¢ X, is frequently
more ugeful.

3. If P i3 a polytope, we write o <7 to denote that o is a proper
face of 7, and we denote the barycenter of o by [o]. The first barycentric
subdivision P’ of P consists of all simplexes ([0,], [6s], .-, [05]) such that
0, < 0, < ... < 05. For each o e P, the linked complex Lk(o) is that sub-
complex of P’ consisting of all simplexes ([o],[0,], ..., [0s]) such that
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0< 0y <0p<..<os and Tr(o), the closed iraverse of o, is the join
(6], Lik(a)), that is, all simplexes ([o], [o,], [oa], ..., []) such that o < o,
< 0, < ... < 05, together with all faces of such simplexes. If dimP g n,
then clearly dimTr(s) < n—dimoe.

Using the notation in the statement of Theorem 1.1, we now give the

Proof of 1.1. Let »: ¥Y—N(U) be the canonical map
%(y) = 2 #%a(Y) * Pa

where {x.}; is a partition of unity subordinated to {U.| a A} and »;*(0)
= ¥—U, for each (") ae. In particular, if y e U,, ..., Uy, and only
these sets, then x(y) lies in the open simplex (P, ..., Pe,)-

For each o= (po,; ) Pa,) € N (U), let H(o)= Uy e n U,,. Let
N’ be the barycentric subdivision of N; we will construct a continuoug
g: N'—Y such that g(Tr(c)) C B(os) for each o e N.

For each k>0, let By be the subcomplex

By = |J{Tr(o)| dimo >k}

of N', so that B,C By-y C ... C By= N’ and B, is discrete. Define g,:B, +¥
by sending each [0”] to a point of H(o®). We proceed by induction,
assuming that g, has been extended to a continuous gy: Br—Y such
that gi{Tr(o)) C B(s) whenever dimo >k For each o*~1, observe that
gLk (o*=1)] C B(o*~1); since Llk(o*~!) ig a subcomplex of Tr(o*-1) with
dim[Tr{o*~*)~ Lk (0"*)] < n—k-+1, and since my(B(o*~1)) = 0 for 0 <4
< n—k, the mapping gx| Lk (¢*~) can therefore be extended ([5], p. 237,
[6], p. 241) over Tr(o*!) with values in F(o*1!). Because each inter-
section Tr(o*-1) ~ Tr(6%-1) C By, this piecewise extension over each
Tr(c*~1) results in a continuous gi-1: Be—1—Y such that g, (Tr(0)) C (o)
whenever dimo > k—1, and completes the inductive step (1%). We set
g=1-

The maps gox and 1: ¥—>Y are U-close. For if y ¢ ¥ belongs to
Ugy iy Ug, and only these sets, then x(y) lies in the open simplex
6= {Payy oy Poy,); if ' = ([04], ..., [0x]) is the carrier of »(y) in N, then
oy must be some face of ¢, and for any vertex p, of oy, both y and g o x(y)
belong to U,.

The map »og ~ 1. Let p e N; if o' = ((Pays -1 D]y --.) is the carrier
of p, then g(p) ¢ Uy oo n oy and, if U, , ..., [ U,, are all those

(*) Any two canonical x, #: ¥+ (U) are homotopic, since they are locally finite
maps and, for each y, both x(y) and %(y) belong to a common closed simplex.

() The property that g(Tro) c E(o) for each ¢ is the only one used in the bal-
ance of the proof. In the case of co-connectedness, its construction is by induction
on the k-gkeleton of N' itself, starting by sending each [0] to a point of ¥ (o), and
extending over each simplex so that always ¢ ([o], [05], ..r) [03]) € B (oy).
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sets containing g(p), then o g(p) lies in the open simplex (Do, vev) Puys
wrs Pay)- I particular, p and x . g(p) both belong to St(p, ).OSince 1‘\7 is
a k-space, 2.2 shows that xog ~ 1. Thig completes the PI?OOf.

It is simple to generalize 1.1 to the case where the nerve is locally
finite-dimensional (that is, each St(p,) is finite-dimensional); in this
case, the conclusion holds if each B (o) is required to be [dimTr(s)—17-
connected, so that the required connectedness of the intersection of k&
sets Uy, ..., Uy, depends on the maximal number of sets that can be
adjoined to Uapy oory o, and still have a non-empty intersection. Thus,
for example, we find

3.1. THEOREM. Let Y be a locally equiconnecled metric space (%), and
A an equiconnecting function defined on the nbd W of the diagonal in ¥ x Y.
Let W= {Ud| acW} be any nbd-finite open covering of Y such that each
U xU, CW. If N(U) is locally finite-dimensional, and if each E(o) is
[dim Tr(o)~—1]-connocted, then Y belongs to the komotopy type of N(N),
and x: YN (U) is a homotopy equivalence.

Proof. In this case, A[g o »(y), v, t] provides the homotopy gox ~ 1.
Note that, if dim ¥ (i) = n, then no T, is required to be even n-connected.

4. We now establish a generalization of Helly’s convex-set theorem
in the following form:

4.1. THEOREM. Let W = {U,, ..., Uy}, k>n42, be open sets in En,
such that each (k—1) of them have a non-empty intersection. If the inter-
section of every | of them is (k—j—2)-connected, then Uy~ ...~ Uy # 0.

Proof. Assume Uy~ ..~ Up= 0. Then N () is homeomorphic to

k
Fr(o*-!) consequently Hy_, (¥N)= Z. It follows from 1.1 that U U; do-
1
I
minates N, so Hp—o(|J U;) must have Hj_»(N) as a direct summand. Thig
1

k k
is impossible, since | J Uy is open in B» so that Hy(|JU)=0 for all I>n.
1 1

The above version of the theorem indicates that, for finite families
of % open sets in F", & > n--2, the Helly property is dependent on the
(k—8)-connectedness (rather than convexity) of each set (12), and on the
connectedness of the higher intersections not decreasing too rapidly.
It will be shown elsewhere that 4.1 is also true for families of closed
sets in B".

5. In a recent paper ([3], pp. 607-609), it has been shown that, if
U={Ty i=1,..,n} is any finite open covering of E* by convex sets,

() ¥ is locally equiconnected ([4], p. 334) if there is a neighborhood W of the
diagonal in ¥ x ¥ and a continuous A: W xI—¥ such that i@, b,0) =a, A(a, b, 1)
=b, A(a,a,t) = a for all (a, b)yeW, tel.

(*) Of course, an (n—1)-connected open U cE" is necessarily co-connected.
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then each continuous j: E?—E? has a U-fixed point (**), that is, there
exists some x ¢ B? such that # and f(») lie in a common U;. The question
of extending this result to Hn, n > 2, was raised; by using a completely
ditferent method, we can prove, more generally,

5.1. TEROREM. Let Y be a normal space with m(Y) =0 for i n,
and let W= {Ui| i=1,...,1} be any finite open covering of ¥ by F,-seis,
having order <n. If for all k=1 the intersections of each & sels is (n—k)-
conmected, then every comtinuous f: Y ~Y has a U-fimed point.

Prootf. The nerve N (U) is a finite polytope, dim N < #n. According
to 1.1, ¥ dominates N, so that m(¥N)= 0 for 0 <4 <n; hence ¥ i
(151, p.239) a compact AR and therefore ({1], p.161) has the fixed-
point property. Now let f: ¥ =¥ be given; then xfg(p)=p for some
pelN, and g(p) is & U-fixed point of f: for, gx[fg(p)] and fg(p) lie in
a common U;, and g=x[fg(p)] = g(p). The proof is complete.

In [3], p. 612, an example is given of a covering I of E* by four
connected open sets and a continuous f: B2 —E? that does not have
a 1[-fixed point. Because necessarily dim N (M) < 3 for any such cover-
ing, it follows from 5.1 that if each U;is 2-connected, each Ui~ Uj is
1-connected (which is not the case in the example of [3]) and if each
Ui~ U; ~ Uy is 0-connected, then every f: E*—B* will have a U-fixed
point. Note that if dim N () < 2, then the requirements on the four U,
can be relaxed, so that.a general answer to the question 2 in [3], p. 612,
would appear to be fairly complicated.

Ag a further consequence of 5.1, we have the following

5.2. CoROLLARY. Let Y be compact, ni(Y) =0 for all i > 0. Assume
that Y has a cofinal family of fimite open coverings (**) by Fj-sets such
that in each covering, each finite imtersection of its sefs is oo-connected.
Then Y has the fiwved-point property.

Proof. If an f: ¥+ did not have a fixed point, then it is evident
that there is a finite open covering U such that f has no U-fixed point.
It V is a member of the cofinal family that refines I, then f has no
V-fixed point. This contradicts 5.1.

Note that 5.2 leads to still another proof of Tychonov’s fixed point
theorem. Note also that if ¥ is any compact 1-dimensional LC° space
such that m,(¥) =0, then because finite open coverings by path-con-
nected sets, of order <1, are cofinal in the family of all coverings, it
follows in the same way, using 5.1, that ¥ has the fixed-point property.

(@) Called an ‘‘almost-fixed point” in [8].

(%) A family {Ba/a « W} of open coverings is cofinal.if for each open covering u
there is some B, refining . Since ¥ is compact, each B can be assumed to be a finite
covering,
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