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On functions defined on Cartesian products
by

R. Engelking (Warszawa)

It is generally known that, under certain assumptions about the
spaces {Xs}ses and about the space Y, every continuous function f:

]; X;—Y depends only on a countable number of coordinates, i.e. that
€,

8 . . .
there exists a factorization f= f'py , where &' CS is a countable set
and f is a continuous function from P X, to ¥ ().

se8’

The following table contains all theorems of this type which are
known to the author:

Agsumptions on Xg's Assumptions on ¥ Authors
1 | compact metrizable Y. Mibu [16] ,
2 | Ty, countable base Ty, diagonal of ¥ x Y is 8. Mazur [15]
a Gs-set
. H. H. Corson and
3 | countable base metrizable T. R. Ishell [3], [4]
4 | property (K) metrizable K. A. Ross and
- ’ A. H. Stone [19]
5 | separable T,, points are Gs-sets A. M. Gleason cited
in [14]
6 | caliber 8; Ty, points are Gs-sets A. MikEenko [18]

This table needs some explanations.

Ad 1. The theorem is an easy consequence of the Stone-Weierstrass
theorem; it wag rediscovered and cited as a well-known fact without
the name of the author (see [2] and [7]).

Ad 2. The paper [15] is devoted to sequentially continuous map-
pings (see paragraph 3 below) and the theorem is not stated in it ex-
plicitly, but follows easily from theorem IT. Let us remark that in theo-

() For any 8§ c8 the symbol pg denotes the projection of the Cartesian
product P Xz onto the partial product 1‘3‘s Xs.
568 ses’
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rem II of [15], in contradistinetion to theorem IIT, no assumption on
the power of the set of indices § is made (cf. theorem 3 below).

Ad 3. The common opinion (see [3], [4] or [19]) that the theorem
formulated in the table under 2 follows from the results of S. Mazur
only under cerfain assumptions on the power of § made H. H. Corson
and J. R. Isbell re-prove it (in a completely different manner and without
the assumption that X,'s are T,-spaces; let us note that in the proot
of 8. Mazur the assumption that Xs's are T'-spaces suffices).

Ad 4. A space has property (K) if every uncountable family of
open sets containg an uncountable subfamily in which every two setg
have a non-void intersection. Every separable space (i.c. every space
containing a countable dense subset) has property (K).

_ Ad 6. A space is of caliber , if for every family {Us}ey, where
S =x, and Us # 0 for s e 8, of open sets there exists a set 8§, C § such
that S,= s, and (| Us;+ 0. Every space which is of caliber s, has

se8y
property (K). A. MiS¢enko has also proved that if §> % and one of
the spaces {Xs}ses; Wwhich all have at least two points, is not of caliber ,,
then there exists a Hausdorff space ¥ in which every point is a G;-set
and a continuous function f: }; Xs—>Y which depends on a uncountable
8¢,

number of coordinates.

Let us also remark that without any essential change in the proofs
all the theorems from our table can be generalized, by——roughly speak-
ing—replacing in the assumptions the number s, by an arbitrary car-
dinal number m > x,; in this case the set S from the conclusion is of
power <nt.

In [15] and [3] there were considered functions defined on X-prod-
ucts of spaces {Xs}ses, i.6. on the sets of the form

2(a) = {{mws} EsstS: st %5 # a5t < %o} )

where ¢ = {as} € ]; X, and the corresponding theorems were also proved
s€

for such functions. It is not difficult to see that this is also true for
the situations listed in the table under 4 and 5. The fact that every
continuous function from the X-product of compact spaces to a metriz-
able space depends only on a countable number of coordinates follows
from the Mibu theorem and a theorem of I. Glicksberg [12] (see Corol-
lary 1 below). The theorems for functions defined on X-products are
evidently more general and give also some information on the Cech-
Stone compactification or the Hewitt real-compactification of Z'-prod-
ucts (see [11] for the definitions).

In the first part of this paper we prove a theorem which completes
our table and is a common generalization of the theorems of Mibu and
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Mazur. In the second part we examine the possibility of reinforeing the
Gleason theorem by assuming that only points of a set ¥, dense in ¥
are Gs-sets. The last part is devoted to sequentially continuous mappings
and contains variants of the results of S. Mazur [15]. The proofs of all
theorems of this paper are obtained by some modifications of reasonings
of A. Gleason and 8. Mazur.

1. The following lemma was proved by N. Sanin ([20], p. 24) and
8. Mazur ([15)], lemma (vii)). The lemma follows also from Theorem I (ii)
of [8], proved in an elegant manner by E. Michael in [17] (cf. lemma 1
in [6]).

LEMMA 1. For every family {Siher of finile sets, where T > &, there
exist @ finite set Z and a subset Ty of T such that Ty> s, ond S5~ Sy = Z
for distinct 1,1 ¢ T',.

From Lemma 1 we obtain the following variant of lemma (viii) from
[15]; the set Zy(a) oceurring in its formulation is defined by the formula.

Zy(a) = {{@s} e};Xs: st ms # ask < %9},
where @ = {as} ¢ P X;s.
ges

LEMMA 2. If {Xs}ses 98 @ family of Ty -spaces such that every finite
product Xe X Xey X oo X Xgp, where 8y, 8yy .y Sk € S, has the Lmde:lﬁf prop-
erty, then for any ae P X and every family {mihier, where 1> s, of

N

elements of Zy(a), there exists a point x, e To(a) whose every neighbourhood
contains the point z; for infinitely many te T.

Proof. For every teT thes et §;= {seS: ps(a:) 7 as} is finite. By
Lemma 1, there exist a finite set Z C S and a set T,C T of power >,
sueh that 8¢~ Sy= Z for distinct t,% ¢ T, If Z =0, then the point
%, = a satisfies the conclusion of the lemma. Thus we can suppose that
Z = {8,, Say ., Sk}. Since the space Xz= X X X5y X ... x X5, has the
Lindelof property, there exists a point a; e Xz whose every neighbour-
hood contains the point pz(w:) for infinitely many te To. It is easy to
prove, uging the fact that 8~ Sy= 7 for distinet %, € Ty, that the
point @, ¢ Xy(a), defined by the conditions Pz (%) = Psnz(a) and pz(w)
= oy, satisfies the conclusion of the lemma.

Remark 1. Let us note that it X,’s satisty the first axiom of coun-
tability, then there exists a sequence i, ... of distinct elements of T
such that the sequence @, %, ... CONVErges to @, (see paragraph 3);
in fact it is an arbitrary sequence fy, %, ... of distinet elements of T’ such
that the sequence pz(®s), P2(®s),... CONTEIZes to ;. If Xs’s have count-
able bases, then one can Suppose moreover that . @§ = pz(®,) for
some f,e T.
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Remark 2. It is well known that the assumption that the spaces
{Xs}sew have the Lindel6f property does mot imply that finite products
X5y X Xsp X ... x X, also have this property. Let us note that finite prod-
ucts have the Lindelof property if for every s e S the space X; is com-
pact or has a countable base and if X, has, for every s e 8, the Lindelst
property and is complete in the sense of Cech (i.e. is a Tychonoft space
which is a @s-set in some of its compactifications). The last fact follows
from paper [10] of Z. Frolik. Indeed, it is enongh to notice that if the
space P in the proof of theorem 3 from [10] has the Lindelsf property,
then one can suppose that the coverings B, are countable and it easily
follows that the space @ contains a countable dense subset. Using the
fact that the Lindeldf property is invariant (in both directions) under
perfect mapping (see [13], theorem 2.2) we conclude that a space hag
the Lindelof property and is complete in the sense of Cech if and only
if it can be transformed by a perfect mapping onto a separable and com-
plete metric space (cf. theorem 3 in [10]). Lastly, the invariance of the
class of spaces which have the Lindeléf property and are complete in
the sense of Cech under countable Cartesian multiplication follows from
lemma 4 of [10].

TEROREM 1. If {Xs}ses is a family of T-spaces such that every finite
product Xs; X Xs, X ... X X5, where 8, 8y, ..., 85 € 8, has the Lindelsf prop-
ety and Y is a Hausdorff space such that the diagonal of ¥ xY is a
Gy-set, then for any a e 12 X; and a continuous function f: X(a)—Y ihere

8¢,

ewists a factorization f = f'(ps:| Z(a)), where 8 C 8 is a countable set and
1" is a continuous function from P X to Y. In particular f is in this case
8eS”

extendable to the whole product P X.
8es

Proof. We shall show that the set 8’ of those s ¢ § for which there
exist points @, 2’ € Zy(a) such that ‘

Ha) #f(@)  and  pe(®) = psyal®’),

is countable. Let us suppose that §’ > 8y and let points w(s), @'(s) € Zy(a)
satisfy the conditions

1) fla(s) #f(e'(s)  amd  pgya(n(s)) = Pavis(@'(s))

for s ¢ §’. Since the diagonal AC Y x Y is o G;-set, there exist an un-
countable set 8 C 8 and a closed set FC ¥ x¥\4 such that (/(m(s)),
f(o:’(s))) ¢l for se8”. From Lemma 2 if follows that there exists
a point #, ¢ Zo(a) whose any mneighbourhood W contains the point x(s)
for all s in an infinite subset S8”(W) of 8”. From the second part of (1)

we conclude that W contains also the point @'(s) for infinitely many
s eS8 (W).
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But the counterimage f™(V), where V is an arbitrary neighbour-
hood of f() € ¥ which satisfies ¥V xV C Y x Y\F, does not contain the
points #(s) and 2'(s) simultaneously for any s 8. Hence & < 8.

Applying induction we conclude that if for %, %" € Zy(a) there exists
a finite set 8" CS\8’ such that pg g (@) = ps.s (@), then f(o) = f(=').
From the continuity of f and the fact that Zy(e) is dense in X(a) it fol-
lows that if for z,a' ¢ Z(a) we have Pe(®) = pe(a’), then f(z)= f(a’).
This implies that there exists a function f': P X;—Y which satisfies

eS8’

f=F(ps|Z(a)). It is easily seen that f' is continuous.

From Theorem 1 we obtain, as corollaries, theorem 2 of I. Glicks-
berg [12] and a reinforcement of theorem 2 of H. H. Corson [3]:

CoROLLARY 1. The Cartesian product P X, of a family of compact
se8

spaces s the (ech-Stone compactification of X(a) for every a e P X,.
8€8

CoROLLARY 2. The Cartesian product P X, of a family of Tychonoff
s€8

spaces {Xskseg such that every fimite product X, X X, X oo x X, where
811 82y ey Sk €8, has the Lindelsf property, is the Hewitt real-compactifi-
cation of Z(a) for every ae P X,.

ses

CorROLLARY 3. Huvery metric space which is a continuous image of
o Z-product of a family {Xs}ses of Ty-spaces, such that every finite prod-
uth Koy X Xgy X oo X Xy, where sy, 8y, ..., 85 €8, has the Lindelof property,
is separable.

Indeed, such a space is a continuous image of a countable Cartesian
produet Xj, XX, X ... X X, ... which contains a dense subspace with the
Lindelof property.

2. The Gleason theorem implies the well-known theorem (see [9])
on continuous images of Cartesian products of compact spaces:

ESENIN-VOLPIN THEOREM. Let {Xs}ses be a family of compact spaces
with countable bases, and let f: P X;—Y be a continuous function onto
seS

a Hausdorff space Y. If every point of ¥ is a Gy-set, then Y has a couni-
able base.

The last theorem can Dbe reinforced (see [5]) by assuming that only
points of a set ¥, dense in ¥ are Gy-sets.

We shall show that the Gleason theorem cannot be reinforced in
this manner (which answers a question raised by A. Mis€enko).

We begin with a generalization of the “double circumference” of
P. Alexandroff (example 4, in [1], p. 13). Let X be an arbitrary topo-
logieal space and for @ ¢ X let V(z) denote the family of all open sets
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containing #. Consider the product A(X)= D xX, where D= {0,1},
and put for ACX and @ X

A =Gy x4, o®=(i,#), where i=0,1.

Assuming the class {B(2)}eaxy, Wwhere B (@) = {{z®}] ana
B) = (VN v 7 W), ey s to be a system of neighbourhoods,
we introduce a topology in A(X). It is easy to see that X® is homeo-
morphic to X and that X@ i5 composed of isolated points. A straigh-
forward argument shows that 4 (X) is compact for compact X. In this
case A9 U X® is compact for any A CX. If 4 is dense in X and X is
dense in itself, the set A® is dense in A” X,

Now let X = P Dy, where T = 2% and D;= {0,1} with discrete

teT

topology, be the Cantor cube of the weight oX and let Q = {r,, x,, o}
be a countable dense subset of X (see [19]). Consider the space ¥ = Q“’) v
o X% C A(X), the Cartesian product N xX, where N is the set of all
non-negative integers with diserete topology, and the function f: N x X ¥
defined by

70, @) =a", j@E,0)=2" for zeX and i=1,2,..

It is easy to verify that f is continuous and there exists no factorization

f = pf’, where p is the projection onto some proper partial product of

N x P D;. Since factors of the product N x P D; are separable (what
teT el

is more, they have countable bases) and points of the set Q0 dense

in Y are open sets, this example shows that the Gleason theorem cannot

be reinforced in the manner mentioned above. We shall now prove that

such a reinforcement is possible if ¥, is a dense set of a special kind

and factors of the product have countable bases. _
THEOREM 2. Let f be a continuous function from the Cartesian prod-

uct P X;, of spaces with countable bases to a Hausdorff space Y. If, for
seS

some @ dense in P X, every point of [(Q) is & Gs-set in X then there

se8

exists a factorization f= f'ps, where 8’ C8 is countable and f' is a con-
tinuous function from P X to Y.
ses’

Proof. For every ¢e@C X = P X, there exists a countable seb
ged
8(g) C 8 such that
(2) it psw(®) = Ps(q) for @« X, then f(z)=f(q).

We shall define, by means of induction, a sequence @, @y, .. of
countable subsets of ¢, which satisfy the condition

3 the set pg(Qir1) is dense in pg(Q),
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where
i
(4) 8= U U S(Q)
i=0 qeQy

Let Qo= {¢o} Where g, is an arbitrary point of Q (the case @ =0
being trivial) and let us suppose that Q,, @1y -y Qr are defined and sat-
isfy (3). The set S defined by (4) is countable and hence the product

P X;=pg,(X) and also its subset Ps(@) have countable bases; it fol-

8€Sk
Jows that there exists a countable set @x+1 CQ such that (3) holds
for ¢ = k.

We shall show that the countable set 8§ = G 8; satisfies the con-
=0

clusion of the theorem. From the openness of pg it follows that every f’

satisfying f = f'psr is continuous, whence it suffices to show that for

any o, %, ¢ X if pg(@,) = ps(,), then F{#) = f(@,). Let us suppose that

fle,) # f (@) and let U, U,C Y be disjoint neighbourhood of f(z,) and

f(@). The set (U is a neighhourhood of #; and thus contains its

neighbourhood of the form ]; Us, where Ut is open in X, and U= X,
8€

for all but a finite number of s 8. Moreover, we can suppose that
Ui= U? for s e §'. By (3) there exists a point g = {gs} ¢ | J Qs such that
=0

gse Us= U; for se 8. By (2), (4) and from the definition of &' it fol-
lows that for 2z;,#, ¢ X, defined by the conditions ps(z:) = ¢s for se S,
Ps(2s) = ps(ws) for s e S\S§' and i=1,2, we have f(z)=f(g)=f(z)-
Since #; < E}; U, we infer that U, ~ U, # 0, which is impossible.

Let us remark that an analogous theorem for functions defined on
open subsets of products also holds (the proof is similar to the proof
of the corresponding theorem of Gleason ([14], p. 132) and that Theo-
rem 2 can easily be generalized by supposing that X,'s have bases of
power <<m =8, and that points of f(@) arve intersections of <m open
sets; of course in this case S < m.

It seems to the author that Theorem 2 does not hold under the
assumption of separability of X,'s, but he has not been able to con-
struct a corresponding example. M. Karlowicz has remarked in this
context that Theorem 2 is still valid if we suppose that X s have
countable dense subsets at the points of which there exist countable
bages. Indeed, in this case the product ps(X) has a countable dense
subset {x,, #,, ...} such that every z; has a countable base B of neigh-
bourhoods. Choosing a point of ps,(@) in every element of B; for
t=1,2,.. we obtain a countable subset of ps(@) dense in ps,(X),
and the existence of Q.. follows.
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3. By applying Gleason’s reasoning in the proof of Magur'y theo-
rems IT and IIT in [15] we obtain some interesting modifications of
those theorems. Before formulating them we give some definitions,

For z,4'«€ ]; X; and T'CS we denote by #(T, ') the point of

8S€

P X; defined by the conditions
s€es
pr{e(T, o)) = pr(@),  por(e(T, o')) = pep(a’) .

The set A C P X, will be called invariant under composition it for any
seS

©,2" e d and TCS we have (T, x')e A. For every a = {as} e P X, an
8¢S

€
example of & set invariant under composition is given by the sets Z(a)
and Zy(a).

A sequence {w,} of points of a topological space X is called con-
vergent to @ e X if every meighbourhood of # contains all points , per-
haps with the exception of a finite number; in this case we write
% € limm,. The set F C X is called sequentially closed if @, e B and ¢ ¢ limg,
implies 2 ¢ . Every countable union of sequentially closed sets is called
a sequentially F,-set, and its complement is called a sequentiolly G- set.
It iy easy to see that every closed (F, or @) set in X ig sequentially
closed (¥, or Gs). The function f from a topological space X to a topo-
logical space Y is called sequentially continuous it » elim®, in X implies
fl#) elimf(zs) in ¥; in a space X which satisties the first axiom of
countability sequential continuity implies continuity. In a Hausdorft
Space any sequence converges to at most one point; we write in this
case  =limw, instead of z ¢limam,.

TBEOREM 8. If A s a subsel of the Cartesian product P X, of T,-
seS

spaces with countable bases, invariant under composition and such that
A C Z(a) for some ae A, and f: A—Y is a sequentially continuous fune-
tion from A to o Hausdorff space Y in which every point is o sequentially

s-sety then there ewists a factorization f= F'(ps|A) where 8'C 8 is count-
able and ' is a continuous function from pg(A) to Y.

Moreover, if 4 = X(a) for some aed, then it suffices to suppose
that Xg’s are T, separable, satisfy the first awiom of countability, and every
fintle product X, x Xy, x ... X X, where 81y 85y .oy sy € 8, has the Lindelf
property (2).

(%) Theorems IT and III from [18] differ from the first parts of Theorems 3 and 4
only in the fact that the diagonal of ¥ x ¥ ig supposed to be a sequentially G-set
and A is supposed to be invariant under composition of any « ¢ 4 with a ¢ 4. Let us
also remark that if in theorem II we have 4 — Z{a) for some ¢ ¢ A and in theorem ITI
we have Z(a) c 4 for some a € 4, then it suffices to suppose that X,'s satisfy the first
axiom of countability and every finite product Xs, x Xs, % ... X X has the Lindelst
property.
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Proof. First, we prove that for every ye Y there exists a count-
able set So(y) CS such that if Z, % €Q = A ~ Zo(@), f(#) =y and the
set {s: ps(2) # ps(2')} has at most one element and is disjoint with
Sy(y) then f(2') =y.

Suppose the contrary. Thus there exists an uncountable set 8, C8
and for every seS; we have points x(s), #'(s) €@ such that
() @) =y #f@)  and  poola(s) = pola'(s)) .

Since Y\{y} is a sequentially Fy-set, there exist a sequentially
closed set I' C ¥\{y} and an uncountable set §,C 8, such that f(z'(s)) « 7
for s e8,. By remark 1, there exists a Sequence sy, 8,, ... of distinet ele-
ments of S, such that z,e A ~ lim#(s,). Since s, £ Sm for u s m, from
the second part of () it follows that #, € lima'(s,) and we have Limf(x'(s4))
= f(m) = limf{z(ss)) = y, which is impossible.

Trom the fact just proved it follows that for every # ¢ Q there exists
a countable set S(z) such that

(6) fl@(S\T, o)) =f(») for every finite TCS\S(w) and ' Q.
Now, exactly as in the proof of theorem 2, we define a sequence
@9y @1, ... of countable subsets of @ satisfying (3). We can evidently
suppose that peg,(Qri1) = Psvsi{@). We shall show that the countable
set 8 = J 8, where §; is defined by (4), satisfies the conclusion of
1=0
the theorem. It suffices to show that

(7 @) = f(z(8', a)

for every = e A. Indeed, the function f satisfying f = f'(ps|4), whose
existence follows from (7), is sequentially continuous and hence con-
tinuous, the space pgs(d4)C ]; X, satisfying the first axiom of coun-
tability. *

First, we shall show that (7) holds for #¢¢Q. The set D = {se8:
Ds(@) 5 ps(@)} is finite in this case, and the set D ~ § i contained in S;
for some integer k. From (3) it follows,s 1; X satisfying the first axiom

€Sk

of countability, that there exists a sequence @y Xy, ... of points of Q.
such that pg, () e limpg,(@).

By (6), for the points

@5 = a(S\(D\S"), )
we have f(wi) = f(2). Since # ¢lima; and #(S', a) e limap;, the validity
of (7) follows from the sequential continuity of f.

We shall now show that (7) holds for every # e A. Since A C Z(a),
there exists a sequence ;, @, ... of points of § convergent 1_:0 2. We have
fl@) = f(wd S, a)) and @(8, a) elimz(§’, a) and.the validity of (7) fol-
lows from the sequential continuity of f.

Fundamenta Mathematicae, T. LIX 16
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We now formulate the lemma of [158], which we shall use in the
proof of Theorem 4. This lemma is an improverge_nt of the well-known
theorem of S. Ulam [21] on real-valued a.-addltwe measures. Let us
remember that the function @ from the fam]_ly S of sets 110. a Hm}sdo?f_f
space Y is called sequentially continuwous if limS, = 8 in S implies
limf(8z) = f(S) in ¥ (®). .

f(Iﬂ:l)\mAf;.)If & is a sequentially continuous function fro.m th:e fa'm,'ily- S
of all subsets of a set S whose power does not exceod .the ﬁmt maoces‘?@ble
aleph (*) to o Hausdorff space X, in which every goomi i a sequentially
@,-set tramsforming every finite subset of 8 to a fized point y,e Y, then
D(8) = y,-

( )TH;/gREM 4. If A is a subset of the Oartesian product 853 X, of T,-

spaces with countable bases, where § does not ewceed_ the first z’n_acoessible
aleph, invariant under composition, and f: A—->Y,. 8 a.sequentwlly' con-
tinuous function from A to o Hausdorff space .Y in whwhl every point is
a sequentially Gi-set, then there exists factomzqt’wn f=Ff(ps|4), where
8 C8 is countable and f' is a continuous function from ps(4) to Y.

Moreover, if Z(a)C A for some ac A, then it suffices to suppose that
2T, a)e A for e A and TCS, XJs are Ty, separable, and satisfy the
first amiom of countability, and every finite product Xg X Xg X oo X Xy,
Where Sy, Sy ey Sk €S, has the Lindelsf property.

Proof. Let a be an arbitrary point of 4. The set

Ay=1{2(Z,a): v A and Z <x}CAn Z(a)

is invariant under composition, and by Theorem 3 there exist a count-
able 8’ C 8 and a continuous fo: Ps(do)—~Y such that flA,= fy(ps]4,)
To show that &' satisfies the conclusion of the theorem it suffices _‘no
prove that (7) holds for every x ¢ A. Let @, be a function from the family
of all subsets of S\§' to ¥ defined by

Bo( T) = flw(§' v T, a)) for TCH\S.

If T is finite, then @(S' u T, a) € 4, and f(z (8" v T, a)) = f(z(8', 2)),
ie. Oy(T) = f(@(8', a)) = y(a). Since, as can easily be verified, @, is
sequentially continuous, we obtain from Lemma 3

f(@) = f{o(8, a) = Bu(S\S") = y (@) = f{(S', @) -

The second part of theorem can be deduced analogously from the
second part of Theorem 3. :

(%) § = lim&, means that &, converges to § in the sense of the theory of sets,
fe. that § = U O Sppm =01 U Spim -

~1_m=0 =1_m=0 . -
(%) An alnez;hms,t is said go_b“é inaccessible provided that A > 0 is a limit ordinal

and that > m, <, whenever S < &, and m, <8, for s 8.
S€S
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