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Inductive invariants and dimension theory *
by

Togo Nishiura (Detroit, Mich.)

0. Introduction. Recently, some interest has been shown in
using the beautiful induective approach of dimension theory to other
situations. Some interesting applications and conjectures have resulted.
(See [1], [2] and [5].) To clarify our discussion we first give a definition.

DEFINITION. (INDUCTIVE INVARIANT.) All spaces under consideration
are separable metrizable spaces. By a topologically closed family P of
spaces we mean a family of spaces such that X ¢ P and X’ homeomorphie
to X imply X' eP.

The inductive invariant in P X induced by the topologically closed
family P is defined for every space X as follows:

inPX=-1 if and only if XeP.

For each integer n = 0, inP X < n provided that each point of X
has arbitrarily small open neighborhoods U in X such that inP B < n—1,
where B is the boundary of U.

For each integer n >0, inP X = n if in P X < n is true and inP X
< n—1 is false.

inP X = oo if inP X < n is false for all integers n > —1.

Ot course, inductive dimension is an example of an inductive in-
variant. Tn 1941, J. de Groot [1] used the family of compact spaces and
gave a conjecture which is still unsettled to this day. (See [2] and [4]
for discussions of this conjecture.) In 1964, A. Lelek [5] defined two more
examples of inductive invariants. In fact, the name ““inductive invariant”
given above is due to A. Lelek. In the last mentioned paper, some in-
teresting results concerning dimension and continuous mappings are
proved.

In the present paper we address ourselves to a characterization
problem posed by K. Menger in 1929. In [6], K. Menger discussed the
problem of finding a characterization of the inductive dimension function.
In carrying out his discussion, Menger introduced certain topologically
closed families of spaces which arise naturally from the dimension function.
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With these topologically closed families in mind, we try to prove theorems
analogous to those in dimension theory. That is, we wish to determine
what part of dimension theory is due to the inductive nature of the
definition and what part is due to the topologically closed family P. In

" this manner, we will isolate important necessary conditions needed for
characterizing the dimension function. Employing these necessary con-
ditions and others used by K. Menger, we will give a characterization
of induective dimension in section 8.

In section 1 we give some elementary properties of inductive in-
variant. Section 2 coneerns the range of the induective invariant functions.
Sections 3 and 4 involve topologically closed families defined by Menger.
In particular, section 3 deals with monotone properties and section 4
deals. with sum and decomposition theorems. Sections 5 and 6 deal with
separation and product. Some specific examples are discussed in section 7

Throughout the paper, families P will be assumed to he topologically
closed.

1. Some elementary properties. In this section we give some
elementary properties of inP X. We do not prove the more obvious
propositions.

1.1. ProPOSITION. in P X 4s a topological invariant.

1.2. ProrosiTioN. Suppose n > —1. Then inP X <
if there is a countable basis of open sets whose boundaries have in P <
or inP X = —

1.3. THEOREM. inP@ < 0 for every P.

Proof. Suppose inP@ s —~1. Then inP@ > 0. Clearly, each point
of @ has arbitrarily small neighborhoods U with boundary B e P. Hence,
inP @ < 0. The theorem is proved.

It should be remarked at this point that arbitrary closed subsets X’
of a space X with inP X = —1 need not have inP X' = —1

The next theorem follows easily by induction.

1.4. THEOREM. Let P and Q be two families with P CQ. Then inQ X
<inPX for al X.

1.5. LevmA. Suppose X =@ and inP X = 0. Then there is o space X'
for which inP X' = —1. Ie., P#0@.

1.6. ExAMPLE. We give here a useful example. Let P, be the empty
family. Then inP, X > in P X for all X and all P. Let us comypute in P, X.
Clearly inP, X > 0. By lemma 1.5, X =@ implies inP, X > 1. Hence,
by theorem 1.3, inP, X = 0 if and only if X =@. Now it follows that

inPy X = dim X1 for all X. We summarize these facts into the following
theorem.

1.7. THEOREM. inP X <inPy X =

n if and only
v —1,

dimX+1 for all X and all P.
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1.8. THEOREM. O ¢ P implies dimX >inP X for all X.

2. The range problem. Given a family P and an integer n > —1,
one can ask whether in P X = n for some X. This problem will be ealled
the existence problem for the family P. Of course, the existence problem
refers to a specific family P. In this section we deal with a problem related
to the existence problem. Namely, we will determine exactly which subsets
of the extended integers are the ranges of induetive invariant funections.
We will call this problem the range problem. We proceed to its solution.

2.1. THEOREM. Suppose in P X = n (n finite). Then for each integer m,
(0 < m < n) there is a closed subspace Xy, of X such that inP X, = m.

Proof. The theorem is obvious for n = —1 and 0. We prove the
theorem for # > 0 by induction. Suppose that the theorem is true for
the infeger n (n > 0) and let X be such that inP X = n-1. Then, by
theorem 1.3, X # @. Let # be a point of X which has a neighborhood U
whose boundary B has inP B=n. Such a neighborhood exists since
n+1 s —1. The theorem now follows by induction.

2.2. COROLLARY. Suppose @ e P and inP X = n (n finite). Then for
every integer m (—1 < m < n) there is a closed subspace Xn of X such that
inP Xy = m.

It should be remarked that theorem 2.1 is Dest possible as inP, of
example 1.6 above shows.

For each extended integer %, % >0, let Ajy= {n|n is an integer,
—1 < n <k}, and Bg = Ay v {oo}. Next, let O be the set of non-negative
extended integers. Then we have that the range of inP is Ay or By for
some k = 0 or (. Namely, if P is a nonempty family, then by theorem 2.1
the range of inP is Ay or Bz, and otherwise by theorem 1.7 the range
of inPy is C. We show the converse to hold by examples.

2.3. ExamrrLe. For each extended integer # (—1 <=
Qu={X| dim X > n}. Then

< oo) let

[—1

. . if and only if dimX > n;
in@Q, X = 1 i

+1 if and only if dimX =j (—1<j<n).

Proof. If n = —1, then the above statement is trivially true. Hence
we will prove the above statement for all extended integers m > 0. The
proof iz by induction on j. -

Let j= —1 and n = 0. Then, clearly, dimX = —1 if and only if
in@Qy X = 0. Hence the statement is true for j = —1 and » = 0. Suppose
j= —1landn > 0. Since inQ, @ = —1, we have inQ, @ = 0 by theorem 1.3.
Suppose dimX > 0 and inQ, X > 0. Then 0 < dimX < . Consequently,
the boundary B of every open set has —1 < dimB < dimX < n. That
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is, inQs B > 0. Hence, inQ, X > 1. Thus we have shown that j= —1
and # > j imply the above statement is true.

Assume the statement to be true for u (—1 < p < j). We prove the
statement for extended integers m > j-+1. Suppose # > j+1 and let
dimX = j41. Then in@, X = —1. We have inQu ¥ = i-+1 if and only
if iim¥=4 (i=-—1,0,..,4). Hence, in@s X >j+2. Applying the
definition of inQ, X, we have inQ, X <j-+2. Thus, when n > j+1, we
have that dimX = j+1 implies in@p X = j+2.

We prove the converse implication next. Suppose n > j+1 and
inQ, X = j+2. From theorem 1.7, 14dimX > in@Q, X = j+ 2. Hence,
inQ, X =j+2 implies dim X > j-+1. Suppose n = j+ 2. Since n = j+4
+2>0, we have inQ, X =j+2 implies dmX <j+l=n-1<n
Hence, in the case #n = j+2, we have in@Q, X = j+2 implies dim X = j4+1.
Suppose the extended integer 7 > j-+2, dimX > j+2 and in@s X > j+ 2.
Since j4+2 > 0, n > dim X > j4 2. There is some point of X such that
sufficiently small open neighborhoods have boundaries B with j41
< dimB < dimX < n. That is, in@, B> j+2. Hence, inQ X > j-3.
Consequently, for % > j42, we have that inQs X = j--2 implies dimX
< j-+1. But we have already established above that n > j+41 and inQ, X
=j+2 imply dimX > j+1. Hence, # > j+1 and inQy X = j+2 imply
dimX = j41.

The statement is completely proved.

9.4. ExaMpPLE. For each extended integer n (—1 <7 < oo) leb
R, = {X| X has transfinite dimension > n}. Then

inR, X = —1 if and only if X has transfinite dimension > #;
inR, X = j+1 if and only if dimX =j (-1 <j < n);
inR, X = oo if and only if X does not have transfinite dimension.

Proof. For each n we have R,C@,. Hence inP, X >inE, X
>inQ, X. Thus, if dim X is finite then, by 1.7 and 2.3, inR, X = in@Q, X.
If dimX is infinite, then either X has transfinite dimension or not. The
statement now follows. (We note that there are spaces which have no
transfinite dimension.)

We now have the following theorem.

2.5. THEOREM. A subset N of the extended imtegers is the range of some
inP function if and only if N is one of the following:

(1) Az (k= —1,0,..., oo);

(2) By (k= —1,0,..., co);
or

3) C.

The range problem is now completely solved.
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3. Monotone property. This section concerns a property of
families introduced by XK. Menger. It is well known that the inductive
dimension function is monotone. That is, if X C ¥ then dim X < dim Y.
Hence the family P = {X|dimX < n} has the property that ¥ ¢ P and
XCY imply X ¢« P. We will study families with properties similar to
that above. Let us begin with a definition.
3.1. DEFINITION. A family P is said to be
1. monotone

2. F,-monotone
3. c-monotone

if X is a {2. F, subset

3. closed subset

1. subset ]

of a space ¥ and Y ¢ P imply X ¢ P.
An extended real-valued function f on the collection of separable
metrizable spaces iy called

1. monotone
2. Fq-monotone ¢ it f(X) < f(Y)
3. c¢c-monotone

1. subset
2. F, subset

whenever X is a of ¥.
3. closed subset

3.2. ProposITION. For families or functions, monotone implies F,- mono-
tone, and F,-monotone implies c-monotone. For c-monoione functions,
F(X) = f(O) for every X.

3.3. THEOREM. A family P is
1. monotone

2. F,-monotone
3. c¢-monotone

1. monotone
2. F,-monotone ; 4f and only 4f inP is
3. c-monotone

Proof. We prove the c-monotone case. The other cases are proved
in an analogous manner. Clearly, if in P is c-monotone then P is also
c-monotone. We prove the converse by induction. We prove the propo-
sition:

If inP X <n and X' is closed in X, then in P X' < n.

The proposition is obvious for # = —1. Let n# be an integer > —1
and assume that the proposition is true for all integers & (—1 <% < ).
Suppose that X is such that inP X = n+1 and X' is closed in X. If
X'=@, then inP@ <0 <nt+l=inP X. Suppose X' =@. Then each
point of X’ has arbitrarily small open neighborhoods U in X such that
the boundary B of U in X has inP B < n. Let U'= U ~ X’ and B’ be
the boundary of U’ in X’. Then B'C B ~ X' and B’ is closed in B ~ X".
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Also, B ~ X' is closed in B. Hence inPB <inPB~AX <<inP B < q.
That is, inP X’ < #n-+1. The proposition now follows.
3.4. COROLLARY. If\P is c-monotone then inP@ <inP X for all X.

The next theorem is very useful in the succeeding section. The proof
is the same as the analogous theorem for dimension. See [3], A), p. 27.

3.5. THEOREM. Suppose that P is c-monolone and == 0. Then,
a subspace X' of a space X has in P X' < n if and only if every point of X'
has arbitrarily small neighborhoods in X whose boundaries have intersection
with X' of inP < n—1.

Proof. Suppose that X’ satisties the conditions of the theorem.
I X’'=¢ then inP® < n. Hence we assume X’ % @. Let ¢ X' and U’
be a neighborhood in X’ of . Then there is a neighborhood U in X of »
such that U’ = U ~ X’. Hence, there is a neighborhood ¥V in X of & such
that V C U and inP B ~ X’ < n—1, where B is the boundary of ¥ in X
Let V' be the intersection of X’ with the interior relative to X of V and
let B’ be the boundary of ¥’ in X’. Then ¥’ is open in X', 3 ¢ V' C U,
and B’ is closed in B ~ X’. Hence we have inP B’ <inP B n X' < n—1.
Consequently, inP X' < n.

Conversely, suppose inP X' < #. If X’'=0 then the condition is
trivially satisfied. Hence, suppose further that X’ #@. Let # ¢ X’ and U
be a neighborhood in X of x. Then there is an open neighborhood 7’
in X’ of & for which ¥'C U and inP B’ < n—1, where B'is the boundary
in X' of ¥’'. Neither of the disjoint sets V' and X"\V’ contains a cluster
point of the other, where M means the closure of M in X. So by the
complete normality of X there exists an open set W satisfying V'C W
and W ~ (X'\V') = @. By replacing W if necessary by W ~ U, we may
assume W C U. The boundary B of W contains no points of V'. Hence
B~ X' CB’'. Since B~ X’ is closed in B’, we have inP B ~ X’ <inP B’
< n—1. Now the condition of the theorem is fulfilled by W. The theorem
is now completely proved.

The following analogue of proposition 1.2 is easily proved.

3.6. ProOPOSITION. Suppose that P is c-monotone and n >=>0. Then
inP X < n if and only if there is a countable basis of open sets such that
the inP of the boundaries are < n—1.

We conclude this section with, a characterization of inductive di-
mension.

3.7. THEOREM. Let P be a family of spaces. Then inP X = dim X 4f
and only if P is c-monotone and inP {point} = 0.

Proof. HinP X = dim X then P is ¢-monotone and in P {point} = 0.
We prove the converse. Obviously, inP @ = —1, for otherwise inP X
= dim X 41 and we would contradict the hypothesis that in P {point} = 0.
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Since P is c¢-monotone, X @ implies inP X > inP {point} = 0. Conse-
quently, inP X = —1 if and only if X =@, Therefore, in P X = dim X.

4. Sum and decomposition theorems. In this section we
investigate to what extent the sum and decomposition theorems of
dimension are valid. (See [3] for the dimension theorems.)

4.1. THEOREM. If P s c-monotone then inPX o Y <inPX -+
+dim ¥ -1.

Proof. If dimY = —1 then the proposition holds for all X. Assume
that the proposition holds for all spaces ¥ with dim¥ <n (0 > —1) and
all X. Let dimY = n+1. Then by [3] B), page 34, each point of X U ¥
has arbitrarily small open neighborhoods U whose boundaries B meet ¥
in a set of dimension <{n. Hence inP B<inP B~ X-+dimB Y41
<LinP X+dimB ~ Y-1. Therefore, inP X v ¥ <inP X+ dim Y41,
The theorem now follows.

4.2. TEEOREM. If P is c-monotone and XD Y, then inP X\¥
<inP X+ dim Y 4-1.

Proof. The proposition is true for dim¥ = —1 and all X. Assume
the proposition holds for all spaces ¥ with dim¥Y < (n > —1) and
all XD Y. Let iimY = n+1 and X D Y. Bach point of X\Y has arbi-
trarily small open neighborhoods U whose boundaries B meet ¥ in a set
of dimension < n. Hence,

inP(B\B~Y)<inP B4+dimB ~ ¥Y+1 <inP X+dimB ~ ¥+1.

Therefore, by theorem 3.5, inP X\Y <inP X+ dim ¥+1. The theorem
now follows.

We now proceed to investigate the analogues of the sum theorem
of dimension, [3], Theorem III2. The next definition is motivated by
the sum theorem. Similar definitions were given by K. Menger in [6].

4.3. DuEpInITION. A family P is called F,-constant if each space X
which is the countable union of closed subsets each a member of P is
also a member of P.

An extended real-valued function f on the collection of separable
metrizable spaces is called F,-constant if for each space X which is the
countable union of closed subsets X; we have f(X) < Sup f(X4).

4.4, PROPOSITION. A family which is c-monotones and Fy-constani
i3 also Fy-monotone. The family of finite dimensional spaces is monotone
but not Fy-constant,

4.5. PROPOSITION. If inP is Fy-constant then P is Fy-constant. There
ewists an Fy-constant family P which is not c-monotone such that inP is
not Fy-constant.

Fundamenta Mathematicae, T, LIX 18
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Proof. The first statement is obvious. To show the second statement,
we consider the family P of o-compact zero-dimensional spaces._(]learly,
Pis closed under countable unions and is not ¢-monotone. Since in P@=0,
we have that the“subspace X = [0, 1] © {2} of the realline has in P X = 1.
Now, inP[0,1] =0 and inP {2} = —1. Hence, inP is not F,-constant,

With proposition 4.3 in mind, we now prove a sum theorem for
inductive invariants. The proof is modeled after the proof of the sum
theorem of dimension given in [3]. The major difference is the use of
theorem 4.1 above.

4.6. THEOREM. Suppose that P is c-monotone. Then P is Fo-constant
if and only if inP is Fg-constant.

Proof. Due to proposition 4.5, we need only prove one implication.
Suppose that P is c-monotone and F4-constant. We assume in P @ = —1
because inP @ = 0 implies in P X = inP, X = dim X1 and the theorem
is true for dimension.

We prove by induction the following proposition:

Su. If X is the countable union of Fy subsets Xy, where in P X < n,
then iInP X < n.

"%, is trivial. We deduce I, from Z,.;, making use of theorem 4.1.

First, we prove for # 3> 0 that Z,—, implies the following proposition:

An. Any space of inP < n s the union of a subspace of inP < n—1
and a subspace of dimension < 0.

Proof of A,.Let X be a space of in P < n. Then there i a countable
basis {U:} of open sets of X made up of sets whose boundaries B; have
inP < n—1. (See proposition 3.6) From X, it follows that B = Li)B;

has inP < n—1. Now .dimX\B < 0. Hence we have shown that X is
the union of a subspace of inP < n—1 and a subspace of dimen-
sion < 0.

‘We now combine I, and A, to prove X,. Suppose that X is the
countable union of closed sets C; with inP C; << n. 'We want to show

i-1
nPX<n Let K= Cand By= O\ |J C; (1 = 2,3, ...). Then X = |J Ky,
=1 7

KinK;=0if i 2§, Kiisan Fy set in X and inPEK; =i (4 =1, 2, ..).
The last fact follows from proposition 4.4 and theorem 3.3.

Applying A, to each Ki, we have K;= M;v N;, where inP M;
< n—1 and dimN; < 0. Let M be the union of the M; and N be the
union of the ¥;. Then X = M v N. Each M; is an F; subset of M and
each N¢ is an ¥, subset of N. Hence by X,_, inP M < n—1. Also,
dm~N < 0. By theorem 4.1, we have inP X <inP M+ dimN+1<n.

The theorem 4.6 is now completely proved.

The following corollaries are easily proved.
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4.7. COROLLARY. Suppose that P is c-monotone and Fy-constant. Let
X = A v B, where B is closed, inP A <nandinP B < n. TheninP X < n.

4.8. CoROLLARY. Suppose that P is c-wmonotone and Fs-constant,
If X #0 then inP (X v {point}) = inP X,

4.9. CoROLLARY. Suppose that P is c-monotone and Fy-constant, wnd
n>inPO. If inP X' < n and X' C X then each point of X has arbitrarily
small neighborhoods in X whose boundaries B hawe inP B ~ X' < n—1.

4.10. CorOLLARY. Suppose that P is c-monotone and Fs-constant, and
n>nPO. If nPX <{n then X = X,u X; where inP X, < n—1 and
dim X, < 0.

Next, we prove a decomposition theorem which involves both inP
and dimension.

4.11. THEOREM. Suppose that P is c-monotone and Fy- constant. Let n
be such that co>n = 0. Then InP X < n if and only if X is the union
of n+1 subsets X; (i = 0,1,2,..., %) such that in P X, < 0 and dim X, <0
(i=1,2,..,0).

W
Proof. If X = ’_L_.J‘)Xi where iInPX,<0 and dimX;<0
(¢=1,2,..,n), then by theorem 4.1, we have inP X <inP X,
+dim |J Xi4+1 < n.

t=ml

Suppose inP A" < ». Then by repeated application of corollary 4.10,
n

we have X = iU Xy where inP X, < 0 and dimX; <0 (i=1,2,...,n).
=0

Later, we will prove another decomposition theorem (theorem 4.21)
which involves the inductive invariant only.

4.12. THEOREM. Suppose that P is c-monotone and Fy-constant, and
inP@=—1. Let nPX=n< oo If a,f>—1 and a+p+1=mn then
there ewist two subsets A and B of X such that X = AU B, inP A=«
and inP B = p.

Proof. fu= —1lorf = —1then welet A=@and B= XorAd =X
and B = @. Hence, we assume a # —1 5 8. With the aid of theorem 4.11,
we can find two sets A’ and B’ such that X = A’ U B’,inP A’ < « and
dimB’ < f. By theovem 4.1, we have n=inP X <inP A'+dimB'+-
+1 < a4 f+41=n. Hence inP 4’ = a and dimB’ = §. Since n is finite,
there is a closed subset ¢ of X such that inP ¢ = . (See corollary 2.2.)
Consequently, ¢-monotone and corollary 4.7 imply inP ¢ u B’ = § sinee
Theorem 1.8 gives in P B’ < dim B’. Hence welet A = A’ and B= 0 v B'.
The theorem is proved.

We next investigate the following sum theorem for dimension:

dim4d v B<dimA-}-dimB4-1 .
18%
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The proof of this theorem is a straight forward induction and begins
with the fact that @ v @ = @. That is, the family {@} is additive. Thus,
we give the following definition.

413. DEFINTTION. A family P is called additive (c-additive) it
X=AuUB (4 and B closed in X) and 4,BeP imply X e P.

The inequality dim4 v B < dim A+ dimB+1 is much akin to the
subadditive condition u(4 v B) < u(4)+u(B) for outer measures .
The extra term of the first inequality reflects the fact that dimX > —1
instead of u(X) >0 for outer measures u. Consequently, we define the
following:

414. DEFINITION. An extended real-valued function f on the col-
lection of separable metrizable spaces is called inductively subadditive
(c-subadditive) it X = A v B (4 and B closed in X) implies f(X) < f(4)+
+f(B)+1.

415. Remarks. A family which is additive is e-additive. A family
which is F,-constant is c-additive. An inductively subadditive function
is also inductively ¢-subadditive. Of course, the converses of the above
statements are false. If in P is inductively subadditive then P is additive.
The corresponding statement is true for inductively c-subadditive and
c-additive. The converses are discussed below. '

4.16. THEEOREM. Suppose that P is c-monotone. Then P is c-additive
if and only if inP is inductively c-subadditive.

Proof. The theorem follows immediately from the next theorem.

4.17. TrrorEM. Suppose that P ic c-monotone and c-additive. If

(1) A and B are closed in A v B,

(2) inPA<n and inPB<Ln,

(8) mPAA~B<Km,
then

inPAuvB<Ln+mt+1l.

Proof. If inP@ =0 then inP X = dimX 1. Hence, the theorem
follows for this case since the theorem holds for dim X. Thus we assume
inP@ = —1. The proof is by induction on # and m. The case n= co
or m== oo is trivial.

The proposition is true for n = m = —1. Suppose that the proposition
is true for m= —1 and 2 (n> —1). Let inP 4 < n-1, inP B << n+1
and nP A ~B=—1. Since A and B are closed in 4 v B, we have
(ANB) v (B\A) to be open. Hence each point of (A\B)u (B\A) has
arbitrarily small neighborhoods whose boundaries have inP < n. (See
proposition 3.6.) Consider next a point @ of 4 ~ B. By theorem 3.5, we
can find an arbitrarily small neighborhood U of # such that the boundary €
of U has inP ¢ ~ 4 <. Also, we can find a neighborhood V of # such
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that ¥ C U and the boundary (' of Vhas inP ¢' ~B<<n. Let W=V u
o (U\B). Then W is a neighborhood of #, W C U and the boundary ¢’
of W is a closed subset of M = (C~ 4)v (4 nB)u (0~ B). Now,
inP M < . Since inP is c-monotone, in P ¢’ < n. Thus we have shown
that each point of .A v B has arbitrarily small neighbourhoods whose
boundaries have inP < n. That is, inP A4 v B n+l.

Next, suppose the proposition is true for m (m > —1) and all % > m.
Let mP A<, mPB<n and inP A4~ B=m+1l. Again, (A\B) v
v (B\A) is open in 4 v B and hence each point of (4A\B) v (B\A4) has
arbitrarily small neighborhoods whose boundaries have inP <<n—1
< n+m41. (Note: » > m-+1 and m > —1. Consequently, n—1 > —1.)
Let 2 be a point of 4 ~ B. 8ince m+1> —1 = inP @, by theorem 3.5,
there are arbitrarily small neighborhoods U of # whose boundaries ¢
have inPC~A ~B<m. Also, C ~ A and C ~ B are closed in O and
inP0n~A<n and inP 0 ~ B< n. Hence we have inP 0 < n+m-1.
Thus we have that inP 4 v B < n+4m--2. The induction is completed
and the theorem follows.

4.18. PROPOSITION. There exists a c-additive fomily P which is not
c-monotone such that inP is not inductively c-subadditive.

Proof. See example P of proposition 4.5.

4.19. TEEOREM. Suppose that P 4s c-monotone and Fg-constant.
Then P is additive if and only if inP is inductively subadditive.

Proof. Only one implication must be proved due to remark 4.15.
We need only consider the case where inP@ = —1 sinee inP@ =0
implies inP X = dim X +1. The proof is by induction. We prove the
proposition inP 4 < » and inP B < m imply inP 4 v B < nt+m+1.

The proposition is trivial if # = —1 = m. Hence, assume that the
proposition is true for # = —1 and m (m > —1). Let inP 4 = —1 and
inP B< m+1. By corollary 4.10, B = B, B, where inP B, < m and
dim B; < 0. Hence

inPAUB=inP[(4dvB)uBl<mtl,

by theorem 4.1. Thus we have shown the proposition holds whenn = —1
or m = —1.

Next, suppose the proposition holds for inP A < n and inP B < m—1
or inPA<n-1 and nPB<m (m>0,n>=0). Let inP 4 <n and
inP B < m. Bach point of 4 has arbitrarily small neighborhoods U whose
boundaries ¢ have inP 0 ~ A <n—1. Also inP ¢ ~n B < m. Hence,
inP ¢ < n-+m. By a symmetrical argument, each point of B has arbi-
trarily small neighborhoods whose boundaries have inP < n+m. Hence
inP 4 v B<nt+mtl. The induction is now complete.

The theorem follows easily.
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4.20. PROPOSITION.

(1) There exists an additive family P which is not ¢-monotone hug
P,-constant such that in P not inductively subadditive.

(2) There exists an additive family P which is c-monotone but not
F,-constant such that in P is not inductively subadditive.

(8) There exists an additive family P which is neither c-monotone
nor Fy-constant such that inP is not inductively subadditive.

Proof. (1) The family P of proposition 4.5 is an example.

(2) Example P, of section 7.3 below i an example. For consider
the subspace X = {z| lz| <1} v {(0,1)} of the cartesian product &2
with the usual norm. It is not difficult to show inP, X = 1, in P, {z| |z
<1}=0 and inP; {(0,1)}= —1. Hence inP; is not inductively sub-
additive. .

(8) Let P be the family of nonempty finite spaces. Then, clearly,
P is not c-monotone nor F;-constant. P iy additive. The subspace
X =1[0,1]w {2} of the real line has inP X =1 since inP@ = 0. Also,
inP[0,1]= 0 and inP {2} = —1. Hence, inP is not inductively sub-
additive.

We now establish a decomposition theorem in terms of inductive
invariants alone.

4.21. THEOREM. Suppose that P is c-monotone, Fy-constant and
additive. Furthermore, suppose that inP@ = —1 and oo>mn >=0. Then
P X <0 if and only if X is the union of n+1 subspaces of inP < 0.

Proof. The sufficiency follows from theorem 4.19. The necessity
follows from theorems 4.11 and 1.8. )

4.22. Remark. In theorem 4.21, it is not possible to let —1 < 7 < oo
unless inP X = dimX. Alyo, we remark that there are families other
than P = {@} which satisfy the hypotheses of theorem 4.21. (See section 7.)

In summary, we have the following theorem which isolates some
properties found in dimension theory that are due to the inductive nature
of the definition and not the particular family P = {0}

4.23. THEOREM. A family P is F,-constant, additive and

1. monotone

2. Fy~monotone
3. c-monotone

if and only if inP is Fy-constant ,

1. monotone

inductively subadditive and | 2. I’,-monotone],

3. ¢-monotone

o 5. Se]lrarat‘ion theor'el'n.s. For separable metrizable spaces, there
axe several equivalent _deflmtlons for dimension. (See [3], introduction
and appendix for a discussion.) These ' definitions are interrelated by
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certain separation theorems. Of course, such separation theorems need
not be valid for arbitrary families P. Hence, it would be of interest to

~ investigate the analogues in the present setting (if any exist) of the various

definitions of dimension.

Tn this section we prove two theorems on separation. (See [3] B)
and C), pages 34-35.)

5.1. THEOREM. Suppose that P is c-monotone and Is-constant, and
n>inP@. Let €, and C, be two disjoint closed subsets of X, A C X and
inP A < n. Then there ewists a closed subset B of X which separates Oy
and C, in X and nP A ~ B <n—1.

Proof. By corollary 4.10, we can find 4, and 4, such that
A=A, A, inP 4, < n—1 and dim4, <0. By [3] F), page 16, there
ig a closed subset B of X which separates ¢; and C;in X and B ~ 4, = 0.
Clearly, inP A ~ B =inP 4, ~ B <n—1. Thus the theorem is proved

5.2. TaEORBM. Suppose that P is c-monotone and Fg-constant, and
inP@= —1. Let inP X <n—1 and Ci, C; be a pair of disjoint closed
subsets of X (i = 1,2, ..., n). Then there ewist closed seis B which separate C;

n
and Ciin X (6=1,2,...,n) such that inPiﬂ By = —1.
=1
Proof. This follows from theorem 5.1.

6. Product theorems. We next discuss product theorems. The
main product theorem in dimension theory is the logarithmie inequality:
dimA X B < dim A+ dimB where 4 #@. Of course, one cannot hope
for such an inequality for arbitrary families P. But the difficulty lies
even deeper, for the logarithmic inequality is not valid when both factors 4
and B ave empty. Hence the fact that a family is closed under product
(ie., 4, B e P implies A X B ¢ P) does not lead to a logarithmic inequality.
We will give two positive results on products in this seetion which will
be useful in section 7 below.

6.1. DEFINITION. Let ¥ be a closed subset of X and f be a continuous
real-valued function on X such that f> 0 and f1(0) =Y. By the triple
[X,Y,f] we mean the subset

{(m’ t)l t=f(w), we -X} - {(wv t)‘ t=—f(), 2 e X}
It is clear that [X, ¥, f] and [X, Y, ¢] are homeomorphic. Hence we
write [X, ¥, f1as [X, Y. We call the pair (X, ¥] the double of X modulo ¥.

6.2. LEMMA. Suppose thai P is c-monoione and c-additive. If Y is
a closed subset of X, then inP[X,¥Y]=inP X.

Proof. Consider the triple [X, ¥,f]. Suppose inP X = —1. Then
inP {(w, )|t = f(a), ® e X} = —1. Hence inP [X, T, f]=—1 gince P is
c-additive. Suppose that the equality holds whenever mPX<n
(3> ~1) and let inP X = n+1. Since {(z,t)|t=f(2),t>0,2 e X} is

of XxR.
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homeomorphic to X\Y, each point (#,?)e[X, Y, f] with 150 hag
arbitrarily small neighborhoods in [X, Y,f] whose boundaries have
inP < n Let (#,0)e[X,Y,f]. In X, 2 has arbitrarily small neighhor-
hoods U whose boundaries B have inP B < n. Then [B, B~ Y, f] hag
inP<n Now [U,Un~Y,f] is a neighborhood of (#,0) in [X,¥,0
and its boundary is [B, B~ Y,f]. Hence each point of [X, ¥, f] has
arbitrarily small neighborhoods whose boundaries have inP < n. That
is, nP[X,Y,f]<n+1. The lemma now follows, since n+1 <inP ¥
<inP[X,Y,fl -

6.3. THEOREM. Suppose that P is c-monotone and c-additive. Then
InPAXxE'<inP A+n.

Proof. We consider 4 x B. By lemma 6.2, each point (z,#)e 4 x R
has arbitrarily small neighborhoods whose boundaries have inP <inP 4.
Hence inP A X R <inP A--1. The theorem now follows from induction.

Suppose that P is a family with inP 0 = —1. We define p to be
an extended real-valued function on the extended integers (n>0)
such that

1) p(n+1) = p(n)41;

(2) inP 4= —1 and inP B < »n imply inP 4 xB < p(n)—1.

6.4. THEOREM. Suppose that P s c-monotone and Fg-constant, and
inP@=—1. Then iInPA<n and inPB< m (n=0,m>=0) imply
inP AxB< p(ntm).

Proof. Suppose n=0=m. If inP A= —1 and inP B < 0, then
inP AxB<p(0)~1<p(0) Suppose inP 4 =0 and inP B = 0. Then
AxB#@. Let (a,b)e AxB. Now a has arbitrarily small neighbor-
hoods U whose boundaries ¢! have inP ¢ = —1, and b has arbitrarily
small neighborhoods ¥ whose boundaries D have inP D = —1. The
boundary of UxV is (T x D) w (0 x7) where U and 7 are the closures
of U and V respectively. Now, inP U < 0 and inP ¥ < 0. Hence by
theorem 4.6, in P [(T x D) u (0 x 1< p(0)—1. Consequently, each point
of A xB has arbitrarily small neighborhoods whose houndaries have
inP < p(0)—1. This is, nPAxB< 2(0).

Suppose that the Proposition is true for # = 0 and m (m = 0).

HinPA=—-landinPB= m+1 then clearly in P A x B < p (m-+1)—
—1 <p(m-1). Suppose inP A = 0 and inP B — m+1. Then 4 X B #@.
Let (a,b) ¢ A xB. We can find arbitrarily small neighborhoods U xV
of (a, b) such that the boundary € of U haginP ¢ = —1 and the boundary
D of ¥V has inP D < m. Hence, by theorem 4.6, we have

ImP(UxD) o (Cx7)] < max{inP UxD,inP Ox7}

Smax {p(m), p(m+1)—1} = p(m+1)—1.
Hence, nP A x B < p(m41).
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Next, assume that the proposition holds forin P 4 <nandinP B <m
or nPA<mn and mPB<m (nz=1,m>1). Let inPA4=mn and
inP B=m. Then 4 X B #@. As in the calculations above, we can show
that each point of A x B has arbitrarily small neighborhoods whose
boundaries have inP < p(n-+m—1). But, p(m-+n—1)< p(n+m)—L.
Hence we have inP 4 x B < p(n+m). The induction is complete.

The case wherein P 4 = coorinP B = oois obvious since p(co) = .
Thus the theorem is proved.

7. Examples. In this section we give various examples which
serve to emphasise the distinction between the various types of families.

7.1. The families 8, (n= —1,0,.., c0). Let §, be the family
of spaces X for which dimX < «.

7.1.1. If n<< oo then

Sy X =—1 if and only if dimX < n;
inSp X==5% if and only if dimX = k+a+1 (k> 0);
inSe X=—1 for all X.

7.1.2. 8, is monotone and I,-constant.

7.1.3. 8z 8 not additive when —1 < n < oco.

714, inSp A XB<inS, A+inS, B+n+1 (—1 <2< o).

Proof. The proof is an immediate consequence of the logarithmic
inequality for dimension.

7.1.5. in8, R™ = max(m—n—1, —1) (n < 00). in8x B™ = —1.

7.2. The families 7,7, T and Ty (n=10,1,..). Let Ty, be the
family of spaces with at most n points.

Let T be the family of finite spaces.

Let T be the family of spaces which are countable.

Let T Dbe the family of spaces which are at most zero dimensional
and o-compact.

7.21. TyC T, C Tpy CTCTCTC8,. Hence,

UMYX =inTy, X >inTy X >inTpy X > T X >inTX >inTX
> in§,X = max {dimX —1, —1} .
Thus the range of each of the above functions is {—1,0,1, ..., co}.

722. T, T and T, are monotone. T is c-monotone but not monotone.

7.23. T, T and T, are F,-constant and additive. Tn (n=1,2,..)
are not additive. T is additive but not Fy-constant.

7.24. nT AxB<inT A+inT B-+1.

Proof. We prove by induction the proposition: inT A= —1 and
inT B <m imply inT A x B < p(m)—1 where p(m)=m-1.
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Suppose m = —1. Then clearly A x B is countable, and hence
inTAxB= ~1. Assume that the proposition is true for all integers < 4,
(m > 0). Let inT B = m. Then each point of A x B has arbitrarily small
neighborhoods U xV such that its boundary is of the form (Tx D).
v (@xV) where inTD<m. Hence inl'UxD< p(m)—1. That ig
inT A x B < p(m)—1. The induction is completed.

By theorem 6.4, inT A>0,in7 B>0imply nT AxB <inT 4+
+inT B+1. Checking the formula above for in7 A = —1, we find the
inequality true for all 4 and B.

72.5. inTAxB<inT A+inT B+1.
The proof is similar to that of 7.2.4.

726. m—1>inT, F">mTR">inTR™">inTR" > in8, R™ =
m—1 (n = 2).

Proof. We need only prove the first inequality. It is clear that
inTy R =0 for n > 2. Hence the inequality is valid ‘when m = 1. Now
for m>1, R"=RxR™" Hence by theorem 6.3, we have inT,R™
<04 (m—1) = m—1.

7.3. The families P, and P,. Let P, be the family of compact
spaces. Let P, be the family of ¢-compact spaces. The family P, has
been investigated to some extent in [1] and [2].

7.3.1. T,C P, CP,. If we show the range of in P, X is {~1,0,1, ..., co},
then we have that the range of inP; is also the same set. We will use
totally imperfect spaces to show the existence of an X, with inP, X, =n
for each n. A space X i3 fotally imperfect if every compact subspace M
of X is countable.

‘We prove

TEEOREM. Suppose that

(i) X is a cantor manifold,

(i) dmX > a,

(i) X=X,0X,where X; and X, are disjoint totally imperfect sels.

Then nP, Xy >n—2 (i=1,2).

Pl:qof. .I.f 7 =1, then the proposition is obvious. Assume that the
pl:opom.tmn is true for all integers < # and let X be a.cantor manifold.
with dlm.X >-n and X,, X, be disjoint totally imperfect subsets of X
‘whose union s X. Let #« X, and U be any neighborhood of @ whose
bonm}ary B disconnects X. Then dimB > n—1 and B is compact. Now, B
eontains & cantor manifold X' with dim X’ = dim B > n—1. Since X' i
u.u'countable and compact, we have X'~ X; %@ (i=1,2). Olealy,
X'~ X, and X' A X, are digjoint totally imperfect sets. Hence inP, X'~
~ X, >n—3. Consequently, inP,B ~ X, >inP, X' ~ X, > n—3. That
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is, inP, X, > n—2. By symmetry, inP, X, >n—2. The theorem is
proved.

COROLLARY. Suppose that Aim X = n < oo and X 18 a cantor manifold.
If X=Xy v X, where X, and X, arve disjoint totally imperfect sets, then
n>inP, X, = inP, X, > n—2. Thus the existence problem is solved for P,
and P,.

‘We remark that each cantor manifold has a decomposition satisfying
condition (iii) of the above theorem (see [7], Bernstein’s Theorem, p. 422).

7.3.2. P, is c-monotone but not I'y-monotone. P, is Fo-monotone but
not monotone.

7.3.3. P, is additive but not Fy-constant. P, is additive and F,- constant.

7.3.4. inP, "= 0, inP, B" = —L1.

7.4. Remarks. All the example 7.1-7.3 have some sort of monotone
property. The examples @, and R, of sections 2.3 and 2.4 are not monotone
in any sense when m > 0. inQ, R™ and inR, B™ are easily computed.
Qn is Fy-constant for all n, whereas R, is not for all n.

Of course, there are many more examples. We refer the reader to the
references for other examples and their applications.

8. A characterization theorem. We have already given a char-
acterization of dimension in section 3 in terms of inductive invariants.
Now, we will give an axiomatic characterization of the dimension funetion
in the spirit of inductive invariants.

Let us begin with a definition.

8.1. DEFINITION. An extended real-valued function f on the collection
of separable metrizable spaces is called pseudo-inductive if for each space X
and % ¢ X there are arbitrarily small open neighborboods U of # such
that the boundary B of U has f(B) < f(X)—1. (We agree that co —1 = co.)

An extended real-valued function f on the collection of separable
metrizable spaces is called topological if X homeomorphie to ¥ implies
(&) = f(X).

Clearly, induective dimension is psendo-inductive and topological.

Returning to theorem 4.23, we find that monotone, F,-constant
and induetively subadditive are desirable conditions in an axiomatic
characterization of the inductive dimension function. Finally, from
theorem 3.7, we find that f({&}) = 0 is also desirable.

Now, it would be pleagant if the six conditions mentioned above
would characterize dimension. But, unfortunately, this _is not the case
as the following example shows: f(@) = —1, f(X) =inT X+1, X #0,
where T is as in example 7.2. )

To find our last condition, we go to a characterization of dimension
given by K. Menger [6] for subspaces of the plane.
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8.2. TreorEM (K. Menger). Let f be a real-valued function on the
collection of subspaces of the plane. Then f is the dimension function if and
only if f satisfies the following five conditions:

(a) f is ‘monotone.

(b) f is Fy-constant.

te) f is topological.

() f s compactifiable; that ds, every space X is homeomorphic o
o subspace of a compact space Y for which f(X)= f(¥).

(e) f is mormed; that ds, f(@)= —1, f({point})= 0, f(line)=1
f(plane) = 2.

The five conditions are independent.

In our discussion of inductive invariants, the condition (d) was not
considered. It seems that this compactifiability condition is not so much
a property of inductive dimension but more a property of dimension
defined in terms of finite open covers. The conditions (a), (b), and (c)
are definitely related to inductive invariants as we have discovered. The
remaining condition (e) can be derived by elementary means from in-
ductive dimension without the use of the covering theorems of dimension,
Analysis of inductive invariants shows we only need the condition
J({point}) = 0. Consequently, we will take condition (d) as our last con-
dition.

Now we can state our characterization.

8.3. THEOREM. Suppose that f is an extended real-valued Sfunction on
the collection of separable metrizable spaces. Then f is the dimension Sfunction
if and only if f satisfies the following seven conditions:

(1) 1 is topological.

(2) f is monotone.

(3) f is F,-constant.

(4) f is inductively subadditive.

(5) 1 is compactifiable.

(6) fis pseudo-inductive.

(M fi{@Y) =o.

Furthermore, the seven conditions are independent.

Proof. Clearly, the dimension function satisfies the conditions (1)-(7).
We prove the converse in five parts. Suppose that f satisfies the seven
conditions of the theorem.

Part . f(X)= —1 if and only if X =@.

Proof. Conditions (6) and (7) imply f(@) < —1. Using conditions (4)
and (7), we have

0=71{0) = 1{B} » ) < F({B)) +§(0)+1 = £(B) +1 .
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Hence, f() = —1. Now, suppose X = @. Then'by (1), (2), and (7), we
nave f(X) = f({0}) = 0 > —1. Thereby, part 1 is proved.

Part II. dimX = 0 dmplies f(X)= 0.

Proof. By conditions (1), (3), and (7) we have tha?; the set of ration?,l
numbers @ has f(Q) = 0. Conditions (5) and (2) 1'3hen 1m,p1y that there is
a nonempty, compact dense-in-itself space X' with _]f(X )’= 0. Let X be
a zero-dimensional space. Then X can be embedded in X' Iﬂ"rom (1), @),
and part I, we have 0 = f(X’) > f(X) > 0. Thus, part I is proved.

Part TIL. For each extended integer n (n > —1), we have

n=dimX  dmplies n>f(X).
Proof. Suppose dimX < n < oco. Then there is a decomposition

X=0X¢, where dimX; <0 (i=0,1,..,n) ([3], Theorem IIL3).

=0
n
By (4) and part II, we have f(X) Q.Z()f(Xt)—i—fiz: n. Part IIT is now

proved. v
Part IV. For each extended integer m (n > —1), we have

n 2= f(X) implies n>dimX.

Proof. The proposition is true for n=—1 by partLand condition (2).
Suppose that the proposition is true for n (n < o) ?,nd let f(X) < fn,lj—l.
By (6), each point of X hag arbitrarily small open neighborhoods U whose
boundaries B have f(B) < f(X)—1 < n. Hence dimB < n. Thus we have
shown that dim X < n-+1. The induction is completed and part IV now
follows.

Part V. f(X) = dimX for oll X.

Proof. This follows from parts IIT and IV. .

The proof of the converse is now completed. Wg prove the inde-
pendence of the seven conditions in the next subsection.

8.4. Independence of conditions (1)-(7). In each of the ;(;11—
lowing examples, we negate exactly one of the seven conditions. The
verification in each cage is straight forward. . -

8.4.1. Negation of condition (1). Let f 1.)e defined asxfo]lov‘;z.
F(@) = —1; f({@}) = 0; f(X) = inP, X if and only if X %0 or X # {

8.4.2. Negation of condition (2)..Let f be defined as follows:
F©) = —1; f(X)=inT X+1 if and only it X 8. .

8.43. Negation of condition (3). Let f be def.med asnfloﬂgfwfz.
f(X) = @im X if and only if X is finite; f(X)=inP, X if and only
is infinite.
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8.4.4, Negation of condition (4). Let f be defined as follows:
f(X)=damX if and only if dimX < 0; f(X)= inPy X it and only if
dimX > 0.

8.4.5. Negation _of condition (). Let f be defined as follows:
f(©)= —1; f(X)=inT X+1 if and only if X =@,

8.4.6. Negation of condition (6). Let f be defined as follows:
f10)= —1;f(X) = Aim X/in P, X if and only if —1 < dimX < oco; f(X) = 1
if and only if dimX = co.

8.4.7. Negation of condition (7). Let f(X) = inPy X for all X,
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On some numerical constants
associated with abstract algebras
by
K. Urbanik (Wroclaw)

1. Introduection. Tor the terminology and notation used here,
see [5]. In particular, for a given abstract algebra U= (4;F), where A
is a non-void set and F is a class of fundamental operations, by A()
or A(F) we shall denote the eclass of all algebraic operations, i.e. the
smallest class, closed under the composition, containing all fundamental
operations and all trivial operations & (h=1,2,..,n; n=1,2,..)
defined by the formula

8Ny, gy ey ) = @y -

The subclass of all n-ary algebraic operations in 2 will be denoted by
AP or A™(F) (n > 0). Two algebras (4;F,) and (4;X,) having the
same class of algebraic operations will be treated here as identical. If
a non-void subset B of A is closed with respect to F, then the algebra
(B; F) is called a subalgebra of the algebra (4; F). An algebra (4; G) is
called a reduct of the algebra (4; F) if A(G)C A(F). Further, by A we
shall denote the algebra of all n-ary algebraic operations in the algebra 2.

In his study of certain numerical constants associated with abstract
algebras, B. Marczewski introduced the ovder of enlargeability (called
by him the degree of extendability) of abstract algebras (see [7], p. 182).
We recall his definition of this concept. Let A= (4;F). We say that
a non-negative integer n Dbelongs to the set N () if for every family G
of operations in the set A the equation A™(F) = A™(G) implies the
inclusion A(F)D A(G). In other words, @ e N() if and only if for every
family G satisfying the condition A™(F) = A®(G) the algebra (4;G)
is a reduct of the algebra (4; F). Further, let £() be the smallest integer
belonging to N () if the set N () is non-void and let £(A) = oo in the
opposite cage. The quantity (%) is called the order of enlargeability. of
the algebra 9. It is evident that

(i) For an algebra %= (4;F) the inequality &) >k holds if and
only if there ewists an operation f in A such that ABF) = ABE O )
and § ¢ A(F).
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