

a weak equational compactification has such a compactification in the smallest equational class containing $\mathfrak A$ (16).

Beside the K-compactness $(K \subseteq L^{(r)})$, we can consider for every cardinal m, a weaker notion:

An algebraic system $\mathfrak A$ of type τ is called K-m-compact if the condition of compactness holds for sets of formulas having at most the cardinality $\mathfrak m$. This notion was considered in [11] and [12]; compare also [6]. I do not know whether $\mathfrak m^+$ -completeness for Boolean algebras ($\mathfrak m^+$ denotes the succesor of $\mathfrak m$) implies equational $\mathfrak m$ -compactness or conversely?

References

- S. Balcerzyk, Remark on a paper of S. Gaesúlyi, Publ. Math. 4 (1956), pp. 357-358.
- [2] On the algebraically compact groups of I. Kaplunsky, Fund. Math. 44 (1957), pp. 91-93.
 - [3] H. Cartan and S. Eilenberg, Homological algebra, Princeton 1956.
- [4] T. Frayne, A. C. Morel and D. S. Scott, Reduced direct products, Fund. Math. 51 (1962), pp. 195-228.
- [5] S. Gaosályi, On pure subgroups and direct summands of Abelian groups, Publ. Math. 4 (1955), pp. 88-92.
- [6] H. J. Keisler, Ultraproducts and saturated models, Indag. Math. 26 (1964), pp. 178-186.
- [7] R. C. Lyndon, Properties preserved under homomorphism, Pacyfic Journ. Math. 9 (1959), pp. 143-154.
- [8] J. Łoś, Abelian groups that are direct summands of every Abelian group which contain them as a pure subgroup, Fund. Math. 44 (1957), pp. 84-90.
- [9] Generalized limits in algebraically compact groups, Bull. Acad. Polon. Sci., Seriés sci. math., astr. et phys. 7 (1959), pp. 19-21.
- [10] E. Marczewski, Sur les congruences et les propriétés positives d'algèbres abstraites, Colloq. Math. 2 (1951), pp. 220-228.
- [11] Jan Mycielski, Some compactifications of general algebras, Colloq. Math. 13 (1964), pp. 1-9.
- [12] and C. Ryll-Nardzewski, Equationally compact algebras (II), Fund. Math. (in print).
 - [13] Z. Semadeni, Projectivity, injectivity and duality, Rozprawy Mat. 35 (1963).
- [14] A. Tarski and R. L. Vaught, Arithmetical extension of relational systems, Compositio Math. 13 (1957), pp. 81-102.
- [15] R. L. Vaught, The elementary character of two notions from general algebra, pp. 226-233, Essays on the Foundations of Mathematics, Jerusalem 1961.
- [16] B. Weglorz, Remarks on compactifications of abstract algebras, Colloq. Math. 14 (1966), Comptes Rendus, Conférence sur l'Algèbre Générale, Varsovie 1964, p. 372.
- [17] Compactness of algebraic systems, Bull. Acad. Polon. Sci., Scriés sci. math., astr. et phys. 13 (1965), pp. 705-706.
 - [18] Completeness and compactness of Lattices, Colloq. Math. (in print).

Reçu par la Rédaction le 8. 11. 1965

An addition to "On defining well-orderings"

b

E. G. K. Lopez-Escobar (Cambrigde, Mass.)

In the paper On defining well-orderings [2] we proved that the class **W** of well-orderings is not a \mathbf{PC}_d -class of any infinitary first-order language of the type $\mathbf{L}_{a\omega}$. The addition that we wish to make is to prove that **W** is not even a relativized \mathbf{PC}_d -class (i.e. that for all a, $\mathbf{W} \notin \mathbf{RPC}_d(\mathbf{L}_{a\omega})$; (cf. definition below).

The method used to show that for all a, $\mathbf{W} \notin \mathbf{RPC}(\mathbf{L}_{a\omega})$ (this clearly suffices in order to prove that for all a, $\mathbf{W} \notin \mathbf{RPC}_d(\mathbf{L}_{a\omega})$) is basically the same as that used in [2]. That is, from the assumption that $\mathbf{W} \in \mathbf{RPC}(\mathbf{L}_{a\omega})$ we obtain a sentence Θ of $\mathbf{L}_{a\omega}$ which has a model of cardinality greater (or possibly equal) to the Hanf-number for $\mathbf{L}_{a\omega}$ but which does not have arbitrary large models. (1)

DEFINITION. Suppose that **K** is a class of relational systems of the type $\langle A, R \rangle$ where $R \subset A^2$, then:

- (i) "**K** is a relativized **PC**_d-class of $\mathbf{L}_{a\omega}$ ", in symbols: $\mathbf{K} \in \mathbf{RPC}_{\perp}(\mathbf{L}_{a\omega})$, just in case that there exist a set T of sentences of $\mathbf{L}_{a\omega}$ such that \mathbf{K} consists exactly of those systems $\langle A, R \rangle$ for which there exists a set $B \supseteq A$ and relations S_{μ} on B such that $\langle B, A, R, S_{\mu} \rangle_{\mu < \eta}$ is a model of T;
- (ii) "**K** is a relativized **PC**-class of $\mathbf{L}_{a\omega}$ ", in symbols: $\mathbf{K} \in \mathbf{RPC}(\mathbf{L}_{a\omega})$, just in case that for some sentence $\theta \in \mathbf{L}_{a\omega}$, **K** consists exactly of those systems $\langle A, R \rangle$ for which there exists a set $B \supseteq A$ and relations S_{μ} on B such that $\langle B, A, R, S_{\mu} \rangle_{\mu \leq \eta}$ is a model of θ .

Note that if for all a, $\mathbf{W} \notin \mathbf{RPC}(\mathbf{L}_{a\omega})$, then for all a, $\mathbf{W} \notin \mathbf{RPC}_{d}(\mathbf{L}_{a\omega})$. Theorem. There does not exist a cardinal a such that $\mathbf{W} \in \mathbf{RPC}(\mathbf{L}_{a\omega})$.

Proof. Assume on the contrary that for some α , $\mathbf{W} \in \mathbf{RPC}(\mathbf{L}_{\alpha\omega})$. It is clear that we may assume that α is a successor cardinal, i.e. that for some cardinal π , $\alpha = \pi^+$. The assumption that $\mathbf{W} \in \mathbf{RPC}(\mathbf{L}_{\alpha\omega})$ means that there exists a sentence θ of $\mathbf{L}_{\alpha\omega}$ such that:

(1) to every (non-zero) ordinal ϱ there corresponds a set $B \supseteq \varrho$ and relations S_{μ} on B such that $\langle B, \varrho, S_{\varrho}, S_{\mu} \rangle_{\mu < \eta}$ is a model of θ ,

⁽¹⁵⁾ For equational compactifications the answer is affirmative. The proof of this fact will be published in my paper — Equationally compact algebras (III) — in Fundamenta Mathematicae.

⁽¹⁾ For undefined notation, see [2].

(2) every model of θ is isomorphic to a system of the form $\langle B, \varrho, \varepsilon_{\varrho}, S_{\mu} \rangle_{\mu < \eta}$ where ϱ is a (non-zero) ordinal.

Next let $\varkappa=2\exp\left(2\exp\left(2\exp n\right)\right)$ and $\mathfrak{m}=\mathbb{Z}_\varkappa$ and finally let δ be the ordinal $\mathfrak{m}+1$. In [2] we proved that the Hanf-number (for single sentences) of $\mathbf{L}_{\alpha\omega}$ is smaller than or equal to \mathfrak{m} . Let \mathbf{P} be the unary relation symbol occurring in θ whose interpretation is the well-ordered set, i.e. ϱ in (1) and (2). Then by essentially relativizing the quantifiers to the predicate \mathbf{P} we obtain by the methods used in [2] that there exists a sentence ψ of $\mathbf{L}_{\alpha\omega}$ such that:

- (3) there exists C, S_{μ} , R such that $\mathfrak{A}_{0}=\langle C, \delta, \varepsilon_{\delta}, S_{\mu}, R_{\xi} \rangle_{\mu < \eta, \xi < \lambda}$ is a model of $\theta \wedge \psi$,
- (4) any model of $\theta \land \psi$ must be isomorphic to a system of the form $\langle D, \varrho, \varepsilon_{\varrho}, U_{\mu}, V_{\xi} \rangle_{\xi < \lambda, \mu < \eta}$ where $|\varrho| \leq \mathfrak{m}$.

Let **F** be a binary relation symbol not occurring in $\theta \wedge \psi$ and let χ be a sentence which expresses the condition that (the interpretation of) **F** be a (1-1) function from the universe onto (the interpretation of) **P**, for example let χ be the sentence

$$(\nabla xy) (\mathbf{F}xy \to \mathbf{P}y) \wedge (\nabla x) (\mathbf{E}y) \mathbf{F}xy \wedge (\nabla_x yz) (\mathbf{F}xy \wedge \mathbf{F}xz \to y = z) ,$$

$$(\nabla xyz) (\mathbf{F}xy \wedge \mathbf{F}zy \to x = z) \wedge (\nabla y) (\mathbf{P}y \to (\mathbf{E}x) (\mathbf{F}xy)) .$$

Finally let Θ be the sentence $\theta \land \Psi \land \chi$. Suppose that $\langle B, A, ... \rangle$ is a model of Θ . Then from χ it follows that A and B are of the same cardinally. Thus it follows from (4) that Θ does not have arbitrarily large models. Thus in order to complete the proof of the theorem it suffices to show that Θ has a model of cardinallity \mathfrak{m} . Let \mathfrak{A}_0 be the model of $\theta \land \Psi$ mentioned in (3). Since $\max(\mathfrak{m}, \alpha) = \mathfrak{m}$, we can apply the downward Lowenheim-Skolem Theorem for $\mathbf{L}_{\alpha\omega}$ (cf. [1], Theorem 2, p. 34, modified for the languages $\mathbf{L}_{\alpha\omega}$) to obtain a subsystem \mathfrak{B} of \mathfrak{A}_0 whose universe includes δ and such \mathfrak{B} is a model of $\theta \land \Psi$ of cardinality \mathfrak{m} . It follows then that \mathfrak{B} is a model of $\theta \land \Psi$ of the form $\langle B, \delta, \varepsilon_{\varrho}, S'_{\mu}, R'_{\xi} \rangle_{\mu < \eta, \xi < \lambda}$ where δ and B are both of cardinality \mathfrak{m} . It is now clear how to add an extra relation to \mathfrak{B} in order to obtain a model of Θ .

References

[1] W. P. Hanf, Some fundamental problems concerning languages with expressive expressions of infinite length, Doctoral Dissertation, University of California, Berkeley, California.

[2] E. G. K. Lopez-Escobar, On defining well-orderings, Fund. Math. this volume, pp. 13-21.

Reçu par la Rédaction le 25. 11. 1965

Characterizations of weakly modular lattices *

b)

Iqbalunnisa (Madras)

This paper deals with the characterizations of weakly modular lattices. Defining ψ , the weakly modular congruence on a lattice L to be that congruence generated by its ineffective intervals, we show that the intersection of all maximal congruences on any lattice L contains ψ in general (theorem 2) and equals ψ when L is semidiscrete (theorem 8). As a consequence of theorem 2, we arrive at a characterization of semi-discrete weakly modular lattices (theorem 4). Next we prove that the quotient of a weakly modular lattice by a separable congruence is weakly modular (theorem 6). This enables us to give a characterization theorem for semi-discrete lattices—viz. theorem 7 which states that "any semi-discrete lattice is a subdirect union of simple lattices if and only if it is weakly modular". We next prove that L/ψ is weakly modular if the weakly modular congruence ψ on the lattice L is separable.

We start with

DEFINITION 1. Let L be any lattice and ψ be the join in $\theta(L)$ (the lattice of congruences on L) of all congruences generated by the ineffective intervals (cf. [3]) of L. ψ is called the weakly modular congruence on L.

The weakly modular congruence on a weakly modular lattice L is the $null\ congruence\ on\ L.$

LEMMA 1. Let L be a weakly modular lattice and I be a prime interval of L such that θ_I , the congruence generated by I, is a separable congruence on L. Then there exists a maximal congruence on L not annuling I.

Proof. As θ_I is separable and L weakly modular, θ_I is complemented (cf. [2]). Let Φ be the complement of θ_I . Also Φ is defined by $x \equiv y$ (Φ) if and only if the interval (x+y,xy) consists of single point congruence classes under θ_I (cf. [2]). That is, $x \equiv y$ (Φ) if and only if the interval (x+y,xy) contains no nontrivial interval J with the property J is a lattice translate of I. But then Φ is a maximal congruence on L. For if ζ strictly contains Φ , it annuls at least one J with the property that J

^{*} Forms a part of the Doctoral thesis submitted to the University of Madras in January 1964.