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o weak equational compactification has such a compactification in the
smallest equational class containing 2 (*°).

Beside the K -compactness (K CL™), we can consider for every
cardinal m, a weaker notion:

An algebraic system 2 of type 7 is called K-m-compact if the condition
of compactness holds for sets of formulas having at most the cardinality m.
This notion was considered in [11] and [12]; compare also [6]. I do not
know whether mt-completeness for Boolean algebras (nt+ denotes the
succesor of m) implies equational m-compactness or conversely?
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() For equational compactifications the answer is affirmative. The proof of this

fact will be published in my paper — EBquationally compact algebras (I11) — in Funda-
menta Mathemasticae. .
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An addition to ¢“On defining well-orderings”
. . by
E. G. K. Lopez-Escobar (Cambrigde, Mass.)

In the paper On defining well-orderings [2] we proved that the class W
of well-orderings is not a PC,-class of any infinitary first-order language
of the type Lgy,. The addition that we wish to make is to prove that W
is not even a relativiced PC,-class (ie. that for all o, W¢ RPCa(Lyy);
(¢f. definition below).

The method used to show that for all a, W ¢ RPC(L,,) (this clearly
suffices in order to prove that for all a, W ¢ RPCy(L,,)) is basically the
same as that used in [2]. That is, from the agsumption that W e RPC(L,,)
we obtain a sentence @ of L,, which has a model of cardinality greater
(or possibly equal) to the Hanf-number for Ly, but which does not have
arbitrary large models. (%)

DEFINITION. Suppose that K is a class of relational systems of the
type <4, R> where R C A%, then:

(i) “K is a relativized PCy-class of Ly,”, in symbols: K ¢ RPCi(Lgo),
just in case that there exist a set T of sentences of Lg, such that K consisis
exactly of those systems {4, B) for which there exists a set BD A and rela-
tions S, on B such that (B, A, R, 8 u<y 18 @ model of T;

(i) “K is a relativized PC-class of Lg,", in symbols: K e RPC(Lgy),
just in case that for some sentence 0 € Lqy, K consists exacily of those systems
(A, R> for which there ewisis a set BD A and relations S, on B such that
(B, A, R, Sy>ucy s a model of 0.

Note that if for all a, W ¢ RPC(Lyy), then for all ¢, W ¢ RPCu(Lqo)-

TeEmoREM. There does not exist a cardinal a such that W e RPC(Lgp)-

Proof. Assume on the contrary that for some a, W e RPC(Lgo)-
It is clear that we may assume that a is a successor eardinal, i.e. that for
some cardinal =z, «= a+. The assumption that W ¢ RPC(L,,) means
that there exists a sentence 6 of Ly, such that:

(1) to every (non-zero) ordinal g there corresponds a set BD g and
relations §, on B such that (B, g, &, Sudu<y is & model of 6,

(1) For undelined notation, see [2].


GUEST


300 E. G. K. Lopez-Escobar
(2) every model of 0 is isomorphic to a system of the form
¢B, 0, 60y Sudu<y Where ¢ is a (non-zero) ordinal.

Next let » = 2exp(2exp(2expm)) and m= 2, and finally let & be
the ordinal m-+1. In [2] we proved that the Hanf-number (for single
sentences) of Ly, is smaller than or equal to m. Let P be the unary relation
symbol occurring in 6 whose interpretation is the well-ordered set,
i.e. g in (1) and (2). Then by essentially velativizing the quantifiers to the
predicate P we obtain by the methods used in [2] that there exists
a sentence y of Ly, such that:

(3) there exists C, 8, B such that W= <0, d, &5, 8y, Beducnecs is
a model of HAwy,

(4) any model of Ay must be isomorphic to a system of the form
D, ¢y cgs Up; Vedg<anen Where o] <.

Let F be a binary relation symbol not occurring in 6Ay and let 4
be a sentence which expresses the condition that (the interpretation
of) F be a (1-1) function from the universe onto (the interpretation of) P,
for example let y be the sentence

(Vay) (Foy —-Py) A (V) (By) Fay A (Vayz) (Foy AFoz—y = 2) ,
(Vayz) (Foy AFzy —o = 2)A (Vy) (Py —(Bx) (Fzy)) .

Finally let © be the sentence 9A ¥ Ay Suppose that (B, 4,..)
is & model of @. Then from y it follows that 4 and B are of the same
cardinally. Thus it follows from (4) that © does not have arbitrarily
large models. Thus in order to complete the proof of the theorem it suffices
to show that O has a model of cardinallity m. Let 9, be the model of
6A ¥ mentioned in (3). Since max(m, a) = m, we can apply the downward
Lowenheim-Skolem Theorem for L, (cf. [1], Theorem 2, p. 34, modified
for the languages L,,) to obtain a subsystem B of U, whose universe
includes ¢ and such B is a model of A W of cardinality m. It follows then
that B is a model of OA Y of the form (B, §, &, Sy, Ridycnys<s Where &
and B are both of cardinality m. It is now clear how to add an extra
relation to B in order to obtain a model of @.
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Characterizations of weakly modular lattices *
by
Igqbalunnisa (Madras)

This paper deals with the characterizations of weakly modular
lattices. Defining ¢, the weakly modular congruence on a lattice I to be
that congruence generated by its ineffective intervals, we show that the
intersection of all maximal congruences on any lattice L contains y in
general (theorem 2) and equals p when I is semidiscrete (theorem 8).
As a consequence of theorem 2, we arrive at a characterization of semi-
discrete weakly modular lattices (theorem 4). Next we prove that the
quotient of a weakly modular lattice by a separable congruence iy weakly
modular (theorem 6). This enables us to give a characterization theorem
for semi-discrete lattices—viz. theorem 7 which states that “any semi-
discrete lattice is a subdirect union of simple lattices if and only if it is
weakly modular”. We next prove that Ljy is weakly modular if the weakly
modular congruence y on the lattice I is separable.

We start with

DEFINITION 1. Let L be any lattice and ¢ be the join in (L) (the
lattice of congruences on I) of all congruences generated by the ineffective
intervals (cf. [3]) of L. v is called the weakly modular congruence on L.

The weakly modular congruence on a weakly modular lattice L
is the null congruence on L.

LeMMA 1. Let L be a weakly modular lattice and I be a prime interval
of L such that 0r, the congruence generated by I, is a separable congruence
on L. Then there exists a mawimal congruence on L not annuling I.

Proof. As 6;is separable and L weakly modular, 6; is complemented
(cf. [2]). Let @ be the complement of 6r. Also @ is defined by = = y (P)
if and only if the interval (x4, #y) consists of single point eongruence
clagses under 67 (cf. [2]). That is, # =y () if and only if the interval
(z4y, 2y) contains no nontrivial interval J with the property J is
a lattice tranglate of I. But then & is a maximal congruence on L. For
if £ strietly contains @, it annuls at least one J with the property that J

* Forms a part of the Doctoral thesis submitted to the University of Madras
in January 1964.
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