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Expansive automorphisms
of finite-dimensional vector spaces

by
Murray Eisenberg* (Amherst, Mass.)

1. Introduction. We call an automorphism = of a topological
vector space B expansive if there exists a neighborhood U of 0 in & such
that © ¢ B and # # 0 implies aui¢ U for some integer i. Such an auto-
morphism is expansive in our sense if and only if it is expansive in the
sense of Bryant [1] with respect to the uniform structure which B possesses
as an abelian topological group.

For example, let B be a finite-dimensional euclidean space, let 2
be a nonzero real number, and let % be the homothety # -4z of E. Then u
is expansive iff 4] s 1. In this paper we establish the following stronger
result.

TuEOREM 1. Let B be a separated finite-dimensional real or complex
topological vector space and let w be an automorphism of E. Then w is ex-
pansive iff |A| £ 1 for each characteristic root i of u.

We shall deduce Theorem 1 as a special case of our main result (Theo-
rem 2) in which the scalars are no longer restricted to real or complex
numbers.

2. Definitions and statement of main result. All fields con-
sidered below are assumed to be commutative.

Let E be a finite-dimensional vector space over a field K and let
be an auntomorphism of K. If T is an extension field of K, we say that «
has its characteristic roots in L provided that the characteristic polynomial
of % can be written as a product of linear factors over K.

Let K be a field provided with a topology. A subset § of K is said
to be bounded in K if for every neighborhood U of 0 in K there exists
a neighborhood V of 0 in K such that VSC U, and § is said to be un-
bounded in K if it is not bounded in K.

* The results of this paper were obtained while the author was a National Science
Foundation Cooperative Graduate Fellow at Wesleyan University and are contained
in a doctoral dissertation written under the supervision of Professor W. H. Gottschalk.
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Let B be a vector space over a topological field K. By B* we denote
the set of all KX-linear maps of E into K. If 2 ¢ F and y* ¢ B*, we denote
the value of y* at z by <(z, y*>. By the K-linear topology of B is meant
the least topology of E with respect to which each element of E* is con-
tinuous. Then F provided with its K-linear topology is a topological
vector space over K, and any algebraic automorphism of E is home-
omorphic for this topology. :

In the absence of any other topology given a priori on a vector
space F over a topological field K, we always provide F with its K -linear
topology. In particular, if L is an extension field of a topological field X,
then we consider L in the usual way as a vector space over K and accord-
ingly provide L with its K-linear topology.

If K is a field and if 2 ¢ K with 4 5= 0, then Z(A) denotes the set of
all integral powers of A )

TarEoREM 2. Let K be a nondiscrete topological field, let B be a nonzero
finite-dimensional vector space over K, and let w be an automorphism of E.
Then the following statements are equivalement:

(1) The automorphism w 8 expansive.

(2) There exists an emtension field L of K such that L is of finite degree
over K, u has ils characteristic roots in L, and for each characteristic root A
of v in L the set Z() is unbounded in L.

(3) If L is any extension field of K and if A is a characteristic root
of w in L, then the set Z(1) is unbounded in L.

3. Proof of main result. Our first lemma requires no assumption
regarding the dimension of E.

Lreuma 1. Let B be a topological vector space over a nondiscrete topo-
logieal field, let u be an expansive automorphism of B, and let A be a proper
value of w. Then Z(1) is unbounded in K.

Proof. There exists a neighborhood U of 0 in E such that ze U
and z # 0 implies #u’*¢ U for some integer ¢ = 0. Let y ¢ B with y 0
and yu = 2y, and choose a neighborhood V of 0 in K with Vy C U.

Suppose that Z(1) is bounded in K. There exists a neighborhood W
of 0 in K such that Z*W CV for each integer 7 5 0. Choose e WAV
with z 7 0, and let # = uy. Then # ¢ U and & » 0, but auf e U for each
nonzero integer 4.

For the remainder of this section let K. , B, and % be as in the hypo-
theses of Theorem 2.

Levma 2. Let u have its characieristic roots in K, and let Z(4) be
unbounded in K for each proper value i of uw. Then u ds expansive.

Proof. Let B have dimension #. With respect to a suitable base
(e =1, ..,n) of B the matrix of 4 is a triangular matrix 4 = (iy)
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whose diagonal entries Ay, ..., Au, are just the proper values of u. For
each 1 <7< n there exis_ts a neighborhood ¥; of 0 in K such that
WoZ(Au) @ Vi for each neighborhood W, of 0 in K. Let V — M Vi, let W
be a neighborhood of 0 in K with W2CV, let (¢f[i=1, ..., n) be the
base of B* dual to (e i=1,...,n), and let

U={z|lccE& <z ef>eW (t=1,.,n)},
whence U is a neighborhood of 0 in E.

Let ¢ U with # 5 0. We show that zu* ¢ U for some integer & 5= 0.
Choose 1 < m < n such that <z, e},> 5 0 and {x, &> = 0 for 1 <4 < m.
Let W, = W{x, eh>, whence W, is a neighborhood of 0 in K. There exists
an integer % 7 0 with WyAk, ¢ V. Since 4” is a triangular matrix having
M, .., M on its principal diagonal, direct computation yields (zu, >
= {z, e*>2E.,.. Hence zuk ¢ U, for otherwise <z, e>A%., ¢ W, and so
Wolan C V.

Given an extension field L of K, we denote by By the vector space
L ®x B over L; if L is a topological field, then Fy, is of course provided
with its L-linear topology.

Levma 3. Let L be a topological field containing K as a topological
subfield, and let f be the cannonical injection z—1 ® @ of B into Hy. Then f
is homeomorphic.

Proof. Let ¢ be the canonical map of (F*); into (Er)*, whence
pel, ye B, AeL, and z* ¢ B* implies

e ® Y, (A®a*)g> = Auy, 2*> .
Since F is finite-dimensional, g is bijective.
We show that f is continuous. Let y* e (B5)*. It is enough to show
that fy*: B—L is continuous. We may write y* = (3 4 ® a})g for some
7

My ey Ape Land af, ..., 2} € B*. Then 2 ¢ B implies <zf, y*> = 3wk, w3,
7

and the continuity of fy* follows at once.

‘We show that f is an open map of ¥ onto Ef. Let 2* ¢ B* and let U

be a mneighborhood of 0 in X, whence

{x) 2 ¢ B & <z, 2*) ¢ U}
is a typical neighborhood of 0 in E. Let V be a neighborhood of 0 in I
such that ¥V ~A K = U, and let y*= (1 ® 2*)g. If x ¢ B and <af, y*> ¥,
then <&,a*) = <af, y*> e VA K=T.

Let I be an extension field of K which is of finite degree over K.
Then L provided with its K-linear topology is a topological field con-
taining K as a topological subfield. This fact is proved by Hinrichs [2]
tor L a simple algebraic extension of K, and our assertion follows easily
from Hinrichs’ result.
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Proof of Theorem 2. Assume (1). We show (3). Let L De an
extension of K and let 1 be a characteristic root of » in L. Let ¥ Dbe the
subfield XK (4) of L, and let ur be the automorphism of Er induced by u,
whence y ¢ and o ¢ B implies (¢ ® #)ur = p ® #u. Then ¥ is of finite
degree over K and 1 is a proper value of uz. Now the K -linear topology
of L induces on F the K -linear topology of F. In order to show that Z(1)
is unbounded in I it is therefore enough to show that Z(4) is unbounded
in F. In view of Lemma 1 it is enough to show that wp is an expansive
automorphism of Er.

We show that uz is expansive. By (1) there exists a neighborhood ¥
of 0 in E such that # ¢ B and # = 0 implies #u”¢ N for some integer r.
We may assume that N has the form

N={z|zcB&w,af>elU (j=1,..,m)}

wheve #¥, ..., whe B* and U is a neighborhood of 0 in K. Fox j =1, ...,m,
let % be that element of (Er)* such that u ¢« F and @ « B implies {4 ® @, yf>
= uda, w¥>. Let (ui] i =1, ..., ) be a base of F over K, let (uf| i =1, ...,n)
be the dual base of F™, let

Wr={:“]:“EF&<‘“7:"‘2‘t>5 U(i=1,..,0)},
and let
V={2|2¢Br& &z, y5>eW (j=1,...,m)}.

Let 2 e Er with 2z 5 0. Suppose that sup eV for every integer 7.

Choose 7y, ..., p €F and %y, ..,ype B with 2= ;’17;, ® ¥x. Defining
g

b= 2(%, whye  ({i=1,..,n),
k

we have # = 2 pi® ;. There exists 1< ¢< n such that a 54 0. Then
i
for each integer » we have

D u@ el = m eV,
i

Ve :
2wt > e W
7

(G=1,..,m),

{mwy o3> e U (j=1,..,m),

and au ¢ N, which is impossible. Hence wuyr is expansive.

By taking for L a field of roots of the characteristic polynomial
of %, (2) follows at once from (3).

Assume (2). We show (1). The automorphism uz of By induced by u
has its characteristic roots in L. Then w; is expansive by Lemma 2, and
consequently « is expansive by Lemma 3.
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4. Specialization to valued fields. Recall that a valued field
is a field K provided with a map z—>|¢| of K into the nonnegative
reals such that |#| =0 ift 2=0, |[o+y|<l|o|]+|y], and |wy| = |2|-|y]
(@,y e K). If K is a valued field, we provide K with the metric (z,y)—
—|¢—y| under which K is a topological field.

Remark. A subset 8 of a nondiscrete valued field K is bounded
in K iff there is a real number ¢ > 0 such that |2] < ¢ for all z € S.

THROREM 3. Let K be a complete nondiscrete valued fidld, let L be an
algebraie closure of I, and provide L with its unique absolute value which
extends the absolute value on K. Let B be a nonzero separated finite-dimen-
sional topological vector space over K, and let u be an aulomorphism of B.
Then a necessary and sufficient condition for w 1o be expansive is that |4] =1
for each characteristic root A of w in L.

Proof. Since F is homeomorphically isomorphic with the product
space K", where » is the dimension of B, the topology of E is its K -linear
topology. Similarly, if # is any subfield of L containing K and of finite
degree over K, then the topology of F' induced by the absolute value
on L is just the K-linear topology of #. Now use Theorem 2 and the
preceding Remark.

Theorem 1 i3 an immediate consequence of Theorem 3.

5. Example. As an application of Theorem 2 in which K is not
o valued field, let K be a simple transcendental extension of the field 0
of complex numbers. Williamson [3] has shown that there exists a metriz-
able topology B on K for which K is a topological field containing ¢
(with its usual topology) as a topological subfield. Now B cannot be
induced by an absolute value on K, for otherwise K would be a normed
division algebra over € and hence by the Gelfand-Mazur theorem would
be isomorphic to C. Provide K with G, let E be the vector space Kx K
over K, and provide ¥ with its product toplogy. Then the antomorphism u
of B such that (1, 0)u = (2,1) and (0,1)u = (0, 1/2) is expansive.

6. Remarks. Trivial modifications in our arguments yield neces-
sary and sufficient conditions for # to be positively empamsive, that is,
for the existence of a neighborhood U of 0 in E such that # ¢ B and # # 0
implies wu? ¢ U for some nonnegative integer i. Statements of these con-
ditions are obtained by redefining Z(A) in Theorem 2 to be the set of all
nonnegative powers of 1 and by replacing the inequality || 51 in Theo-
rems 1 and 3 by the inequality |4| > 1.

It would be desirable to extend Theorem 1 in two directions:
(1) replace the single automorphism u by a group of automorphisms of F;
(2) remove the assumption that % has finite dimension and use the
weak topology of H.
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Expansive transformation semigroups of endomorphisms

by
Murray Eisenberg* (Amherst, Mass.)

1. Introduction. A number of examples of expansive homeo-
morphisms [1] on compact uniform Spaces are actually automorphisms
of topological groups: the symbolic flows (4], 12.24), a homeomorphism
on the dyadic solenoid constructed by Williams [7], expansive homeo-
morphisms of tori ([5], [6]). We formulate and study below notions
of a semigroup heing expansive when it acts on g uniform space and of
a semigroup being regionally expansive when it acts with fixed points
on a topological space; these two notions coincide in the cage of a semi-
group of endomorphisms of a topological group.

In section 4 we generalize the example of Williams by showing how
to manufacture an expansive automorphism out of a “positively expansive”
endomorphism.

In section 5 we apply the general considerations of sections 2 and 3
in order to characterize completely the expansive automorphisms of
finite-dimensional toral groups: they are the automorphisms induced
by unimodular matrices whose eigenvalues have modulus different from
unity. We show that the toral groups are the only compact connected
Lie groups which admit expansive groups of automorphisms, and that
& compact connected group @ is toral if and only if the power map -k
of ¢—@ is positively expansive.

2. Expansive transformation semigroups. A topological space
T provided with an associative binary operation for which T has
a bilateral identity 1 is called a topologized semigroup and, if T' is discrete,
a discrele semigroup.

A transformation semigroup (tsg) is a triple (X, T, n) where X is
a topological space, T is a topologized semigroup, and = is & continuous
map of X x T into X such that, if »* denotes the map &z, )z of XX
for-each i e T, then =' is the identity map of X and a#* = atar for all 1,

* These vesults were obtained while the author was a National Science Foundation
Cooperative Graduate Fellow at ‘Wesleyan University and are contained in a doctoral
dissertation written under the supervision of Professor W. H. Gottschalk.
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