

Approximation of maps of inverse limit spaces by induced maps

by

M. K. Fort, Jr. †*, and M. C. McCord (Athens, Georgia)

1. Introduction. We use the notation and terminology of [2] for inverse limit systems. In particular, if (X,f) is an inverse limit system over a (directed) index set Λ , then we have the bonding maps $f_a^{\beta}\colon X_{\beta}{\to} X_a$ ($a\leqslant \beta$ in Λ) and the projection maps $f_a\colon X_{\infty}{\to} X_a$. Recall that a map φ from the inverse limit system (X,f) (indexed over Λ) to the inverse limit system (Y,g) (indexed over M) consists of an order preserving map $\varphi\colon M{\to}\Lambda$ and a system of maps $\varphi_m\colon X_{\varphi(m)}{\to} Y_m$ (all $m\in M$) such that if $m\leqslant n$ in M, then $\varphi_m f_{\varphi(m)}^{\eta(n)}=g_m^n\varphi_n$. Thus φ induces a map $\varphi_\infty\colon X_\infty{\to} Y_\infty$ defined by the relation $g_m\varphi_\infty=\varphi_m f_{\varphi(m)}$ (all $m\in M$). A map $X_\infty{\to} Y_\infty$ is called an induced map if it is of the form φ_∞ , for some map $\varphi\colon (X,f)\to (Y,g)$. The following two questions are natural.

QUESTIONS. (1) Under what conditions on the systems (X, f) and (Y, g) can every map $F: X_{\infty} \to Y_{\infty}$ be approximated arbitrarily closely by induced maps (for instance, when the space of maps $X_{\infty} \to Y_{\infty}$ is given the compact-open topology)?

- (2) Under what conditions is every F homotopic to an induced map? Question (1) is related to a question asked by J. Mioduszewski ([6], p. 40). Partial answers to these questions are given in Theorems 1 and 2 below.
- 2. Terminology and statements of theorems. By a polyhedron we mean a finitely triangulable space.

DEFINITION 1. A solenoidal sequence (Y, g) of polyhedra is an inverse limit sequence (the index set M is the positive integers), each Y_m being a polyhedron, so that each bonding map $g_1^m: Y_m \to Y_1$ is a regular covering map.

^{*} The first author died in August, 1964. This research was partially supported by the National Science Foundation under Grants G-23790 and G-11665 while the second author was at the University of Wisconsin. Part of the work was presented to the American Mathematical Society in January, 1964 (see [3]).

M. K. Fort, Jr., and M. C. McCord

For basic facts on covering maps, see [4], Chapter 6. The (characterizing) property of a regular covering map $p: \widetilde{Z} \to Z$ which we shall use is that whenever $z, z' \in \widetilde{Z}$ and p(z) = p(z'), there exists a covering transformation $h: \widetilde{Z} \to \widetilde{Z}$ (a homeomorphism with ph = p) such that h(z) = z'(see [4], p. 260.) It is an immediate consequence in Definition 1 that each bonding map $g_m^n: Y_n \to Y_m$ is also a regular covering map. Solenoidal sequences have been studied in [5].

If ψ and ψ' are maps of a space A into a metric space (B, d), we let $d(\psi, \psi') = \sup \{d(\psi(a), \psi'(a)) : a \in A\}$. We find it convenient to write homotopies in the form $h^t: A \to B$, meaning of course that t varies over the unit inverval I and the function $H: A \times I \rightarrow B$ defined by H(a,t) $=h^t(a)$ is continuous. We call h^t an ε -homotopy if $d(h^s, h^t) < \varepsilon$ whenever $s, t \in I$.

THEOREM 1. Let (X, f) be an inverse limit system of compact, connected. Hausdorff spaces with all bonding maps onto. Let (Y, g) be a solenoidal sequence of polyhedra. Then for any map $F: X_{\infty} \to Y_{\infty}$, any metric d_{∞} on Y_{∞} , and any $\varepsilon > 0$, there exist an induced map $\varphi_{\infty} \colon X_{\infty} \to Y_{\infty}$ and an ε -homotopy $h_{\infty}^{t}: X_{\infty} \to Y_{\infty}$ from φ_{∞} to F. In particular, $d_{\infty}(\varphi_{\infty}, F) < \varepsilon$.

Note that under these circumstances, the topology on the space of maps $X_{\infty} \to Y_{\infty}$ defined by the metric d_{∞} is equal to the compact-open topology.

According to K. Borsuk [1], an r-map $\varphi: A \to B$ is a map for which there exists a right inverse $\psi \colon B \to A(\varphi \psi = 1)$.

DEFINITION 2. An inverse limit sequence (Y, q) is called retractive if each bonding map $g_m^{m+1}: Y_{m+1} \to Y_m$ is an r-map.

THEOREM 2. Let (X, f) be an inverse limit system of compact Hausdorff spaces, and let (Y, g) be a refractive inverse limit sequence of polyhedra. Then every map $F: X_{\infty} \rightarrow Y_{\infty}$ can be approximated arbitrarily closely by induced maps.

3. Preliminaries. The following lemma is well known. See for instance [4], pp. 262-264.

LEMMA 1. Suppose that $p: \widetilde{Y} \to Y$ is a covering map, where Y is a polyhedron with a given triangulation. Then \widetilde{Y} can be triangulated so that p is simplicial. With this done, then for each vertex v of Y, $p^{-1}(\overline{\text{star}}(v))$ is the disjoint union of the closed stars of the vertices of \widetilde{Y} lying over v, each of which is mapped isomorphically onto star (v) by p.

DEFINITION 3. If Y is a polyhedron with a given triangulation, $x \in Y$, and v is a vertex of Y, let x(v) be the barycentric coordinate of x with respect to v. Define the barycentric metric d on Y by

$$d(x, y) = \sum \{|x(v) - y(v)| : v \text{ a vertex of } Y\}.$$

Note that if σ and τ are disjoint closed simplexes and $x \in \sigma$, $y \in \tau$, then d(x, y) = 2.

It will be assumed throughout this paper that triangulated polyhedra are given the barycentric metric.

The following lemma is straightforward to verify.

LEMMA 2. If $p: Y \rightarrow Z$ is a simplicial map, then d(p(x), p(y)) $\leq d(x, y)$ whenever $x, y \in Y$.

In particular, every isomorphism $Y \rightarrow Z$ is an isometry. Thus in Lemma 1, one may add to the conclusion that for each vertex v in Y and each \tilde{v} in $p^{-1}(v)$, p maps the closed star of \tilde{v} isometrically onto the closed star of v.

4. Lemmas on solenoidal sequences. Throughout this section, let (Y, q) be a solenoidal sequence of polyhedra. Choose a triangulation of Y_1 ; and by Lemma 1, triangulate all Y_n so that all bonding maps $q_m^n: Y_n \to Y_m \ (m \le n)$ are simplicial covering maps.

Choice of η' . Choose a positive number η' such that every subset of Y_1 of diameter $\leqslant \eta'$ is contained in some open star in Y_1 (see for example [2], p. 65).

LEMMA 3. Suppose that m < n, $0 < \varepsilon \leqslant \eta'$, A is a space, and $h_m^t \colon A \to Y_m$ and $h_n^t \colon A \to Y_n$ are homotopies such that $g_n^n h_n^t = h_m^t$, where h_m^t is an ε -homotopy. Then, (i) h_n^t is an ε -homotopy; and (ii) if $\psi: A \to Y_n$, $d(h_n^0, \psi) < 2$, and $g_m^n \psi = h_m^1$, then $\psi = h_n^1$.

Proof. By Lemma 2, the homotopy $h_1^t = g_1^m h_m^t : A \to Y_1$ is also an ε -homotopy. And $g_1^n h_n^t = g_1^m g_m^n h_n^t = h_1^t$. Hence we may assume that m=1. Let a be any point of A, and let paths $\gamma_j: I \to Y_j \ (j=1,n)$ be defined by $\gamma_i(t) = h_i^t(a)$. Thus $g_1^n \gamma_n = \gamma_1$ and diam $\gamma_1(I) < \varepsilon$. For part (i), it suffices to show that $\operatorname{diam} \gamma_n(I) < \varepsilon$. Now since $\operatorname{diam} \gamma_1(I) < \eta'$, there exists a vertex v of Y_1 such that $\gamma_1(I) \subset \text{star}(v)$. Let $(g_1^n)^{-1}(v) = \{v_1, ..., v_r\}$. By Lemma 1, $(g_1^n)^{-1}(\overline{\text{star}}(v))$ is the disjoint union of the sets $\overline{\text{star}}(v_i)$ (j=1,...,r), each of which is mapped isometrically onto $\overline{\text{star}}$ (v) by g_1^n . Now $\gamma_n(I)$, being connected, is contained in some $\overline{\text{star}}$ (v_i) . Thus diam $\gamma_n(I)$ = diam $\gamma_1(I) < \varepsilon$. This completes part (i). Suppose that ψ is given as in part (ii). Since $g_1^n \psi(a) = \gamma_1(1) \epsilon \overline{\text{star}}(v)$, $\psi(a)$ must be in some $\overline{\text{star}}(v_k)$. However, $d(\gamma_n(0), \psi(a)) < 2$. Thus j = k. Since g_1^n is 1-1 on $\overline{\text{star}}(v_j)$ and $g_1^n \psi(a) = g_1^n \gamma_n(1)$, we see that $\psi(a) = \gamma_n(1) = h_n^1(a)$. This completes the proof.

Lemma 4. There exists a positive number η'' such that for any space A and any maps $\varphi, \psi: A \rightarrow Y_1$ with $d(\varphi, \psi) < \eta''$, there is an η' -homotopy from φ to ψ .

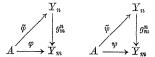
This result is well known. It can be seen by imbedding Y_1 in a Euclidean space and taking an open set that retracts onto Y_1 .

Choice of η . Let η'' be chosen as in the preceding lemma, and let $\eta = \min(\eta', \eta'', 1)$.

LEMMA 5. For any space A, any $n\geqslant 1$, and any maps φ , ψ : $A\rightarrow Y_n$ such that $d(\varphi,\psi)<\eta$, we get $\varphi\simeq\psi$.

Proof. By Lemma 2, $d(g_1^n \varphi, g_1^n \psi) < \eta \leqslant \eta''$. Then by Lemma 4 there exists an η' -homotopy $h_1^t \colon A \to Y_1$ such that $h_1^0 = g_1^n \varphi$ and $h_1^1 = g_1^n \psi$. Since the covering map g_1^n has the covering homotopy property, there exists a homotopy $h_n^t \colon A \to Y_n$ such that $g_1^n h_n^t = h_1^t$ and $h_n^0 = \varphi$. Then $d(h_n^0, \psi) < \eta < 2$. Hence by part (ii) of Lemma 3, $\psi = h_n^1$. This completes the proof.

Lemma 6. Suppose that $0 < \varepsilon \le \eta$, m < n, and there are given commutative diagrams



where A is a connected space, and there is given an ε -homotopy $h_m^t: \varphi \simeq \psi$. Then there exist a covering transformation $\varrho: Y_n \to Y_n$ and an ε -homotopy $h_n^t: \varrho \widetilde{\varphi} \simeq \widetilde{\psi}$ such that $g_m^n h_n^t = h_m^t$.

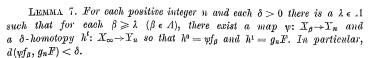
Proof. By the covering homotopy property, choose a homotopy $h_n^t\colon A\to Y_n$ such that $g_n^nh_n^t=h_m^t$ and $h_n^1=\widetilde{\psi}$. By Lemma 3, h_n^t is an ε -homotopy. Choose a point a_0 in A. Since $g_m^n\widetilde{\varphi}(a_0)=\varphi(a_0)=h_m^0(a_0)=g_m^nh_n^0(a_0)$, and since g_m^n is regular, there exists a covering transformation $\varrho\colon Y_n\to Y_n$ such that $\varrho\widetilde{\varphi}(a_0)=h_n^0(a_0)$. Since A is connected, it is easy to see from the usual open-closed argument that $\varrho\widetilde{\varphi}(a)=h_n^0(a)$ for all a in A. This completes the proof.

5. Completion of the proof of Theorem 1. Let now (X,f), (Y,g), $F\colon X_\infty \to Y_\infty$, d_∞ , and $\varepsilon > 0$ be given as in the statement of Theorem 1. Let Λ be the index set for (X,f). We retain the considerations of the preceding section for (Y,g), in particular the choice of η . Clearly we may assume $\varepsilon < \eta/2$. Since Y_∞ is a compact metric space, if we prove the result for some metric on Y_∞ , it is true for any other metric. Hence we may assume that d_∞ given by

(5.1)
$$d_{\infty}(y, y') = \sum_{n=1}^{\infty} 2^{-n} d(g_n(y), y_n(y')).$$

(Recall that we use the barycentric metric on each Y_n .)

A slightly weaker version of the following lemma was used by J. Mioduszewski [6]. The lemma requires only a slight modification of the proof of Theorem 11.9 in [2], p. 287.



The following lemma is the recursive step in the proof of the Theorem.

LEMMA 8. Suppose that m and n are positive integers, m < n, $a \in A$, $q_m \colon X_a \to Y_m$, and $h_m^t \colon X_\infty \to Y_m$ is an ε -homotopy from $q_m f_a$ to $g_m F$. Then there exist (i) an index β in A such that $\beta \geqslant a$, (ii) a map $q_n \colon X_\beta \to Y_n$ such that $q_m f_\beta^a = g_m^b q_n$, and (iii) an ε -homotopy $h_n^t \colon X_\infty \to Y_n$ from $q_n f_\beta$ to $g_n F$ such that $g_m^n h_n^t = h_m^t$.

The reader is urged to draw the appropriate mapping diagrams. Proof. From the fact that Λ is directed, and from Lemma 7, we see that there is an index $\beta \geqslant a$ and a map $\psi \colon X_{\beta} \to Y_n$ such that $d(\psi f_{\beta}, g_n F) < \varepsilon$. Hence by Lemma 2, we have

(5.2)
$$d(g_m F, g_m^n \psi f_{\beta}) = d(g_m^n g_n F, g_m^n \psi f_{\beta}) < \varepsilon.$$

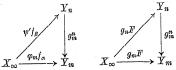
Since there is an ε -homotopy from $\varphi_m f_a$ to $g_m F$, $d(\varphi_m f_a, g_m F) < \varepsilon$. Hence

$$(5.3) d(\varphi_m f_a^{\beta} f_{\beta}, g_m F) < \varepsilon.$$

The triangle inequality applied to (5.2) and (5.3) gives

$$d(\varphi_m f_a^{\beta} f_{\beta}, g_m^n \psi f_{\beta}) < 2\varepsilon < \eta.$$

By [2], Corollary 3.9, p. 218, f_{β} is onto. Hence (5.4) gives $d(\varphi_m f_{\beta}^{\beta}, g_m^{n} \psi) < \eta$. Therefore, by Lemma 5, $g_m^{n} \psi \simeq \varphi_m f_{\beta}^{\beta}$. Since g_m^{n} has the covering homotopy property, then there exists a map $\psi' \colon X_{\beta} \to Y_n$ such that $g_m^{n} \psi' = \varphi_m f_{\beta}^{\beta}$. By [2], p. 229, X_{∞} is connected. Hence we may apply Lemma 6 to the two commutative diagrams



Thus there exist a covering transformation $\varrho \colon Y_n \to Y_n$ and an ε -homotopy $h_n^t \colon X_\infty \to Y_n$ from $\varrho \psi' f_\beta$ to $g_n F$ such that $g_m^n h_n^t = h_m^t$. We let $\varphi_n = \varrho \psi' \colon X_\beta \to Y_n$. Then $\varphi_m f_a^\beta = g_m^n \psi' = g_m^n \varrho \psi' = g_m^n \varphi_n$, and the proof of the lemma is complete.

Now we construct a map $\varphi: (X, f) \to (Y, g)$ and a homotopy $h_{\infty}^t: X_{\infty} \to Y_{\infty}$ by recursion. First, by Lemma 7, we get an index $\alpha(1)$,

a map $\varphi_1\colon X_{a(1)}\to Y_1$, and an ε -homotopy $h_1^t\colon X_\infty\to Y_1$ from $\varphi_1f_{a(1)}$ to g_1F . Applying Lemma 8 recursively, we get an increasing sequence $a(1)\leqslant a(2)\leqslant \ldots$ of indices from Λ , sequences $\varphi=(\varphi_1,\varphi_2,\ldots)$ and (h_1^t,h_2^t,\ldots) such that for each n,φ_n is a map $X_{a(n)}\to Y_n$, $h_n^t\colon X_\infty\to Y_n$ is an ε -homotopy from $\varphi_nf_{a(n)}$ to g_nF , $\varphi_nf_{a(n)}^{a(n+1)}=g_n^{n+1}\varphi_{n+1}$, and $g_n^{n+1}h_{n+1}^t=h_n^t$. Thus φ is a map $(X,f)\to (Y,g)$ and induces a map $\varphi_\infty\colon X_\infty\to Y_\infty$ by the relation $g_n\varphi_\infty=\varphi_nf_{a(n)}$. Similarly, the homotopies h_n^t define a homotopy $h_\infty^t\colon X_\infty\to Y_\infty$ by the relation $g_nh_\infty^t=h_n^t$. Clearly, $h_\infty^0=\varphi_\infty$ and $h_\infty^1=F$. Finally, by (5.1), h_∞^t is an ε -homotopy; for if $s,t\in I$, then

$$d_{\infty}(h_{\infty}^s, h_{\infty}^t) = \sum 2^{-n} d(h_n^s, h_n^t) < \sum 2^{-n} \varepsilon = \varepsilon$$
.

This completes the proof of Theorem 1.

6. Proof of Theorem 2. Let (X, f), (Y, g), and $F: X_{\infty} \to Y_{\infty}$ be given as in the statement of the Theorem. Again, we may take the metric d_{∞} on Y_{∞} to be given by (5.1).

Clearly a map $\gamma\colon A\to B$ is an r-map if and only if for every map $\varphi\colon C\to B$ there exists a map $\widetilde{\varphi}\colon C\to A$ such that $\gamma\widetilde{\varphi}=\varphi$.

Choose a positive integer n such that $\sum_{m\geqslant n} 2^{-m} < \varepsilon/2$. By uniform continuity, there exists a $\delta>0$ such that if $d(y,y')<\delta$ in Y_n , then $d(g_m^ny,g_m^ny')<\varepsilon/2$ for all $m\leqslant n$. Now from Lemma 7 (which is also applicable in the present situation) we get an index β and a map $\varphi_n\colon X_\beta\to Y_n$ such that $d(\varphi_nf_\beta,g_nF)<\delta$. For $m\leqslant n$ define $\varphi_m\colon X_\beta\to Y_m$ by $\varphi_m=g_m^n\varphi_n$. Hence $d(\varphi_mf_\beta,g_mF)<\varepsilon/2$ for $m\leqslant n$. Now, using the fact that each g_m^{m+1} is an r-map, choose maps $\varphi_m\colon X_\beta\to Y_m$, m>n, such that $g_m^{m+1}\varphi_{m+1}=\varphi_m$ for $m\geqslant n$. Thus $\varphi=(\varphi_1,\varphi_2,...)$ induces a map $\varphi_\infty\colon X_\infty\to Y_\infty$. Recall that diam $Y_m\leqslant 2$. Hence

$$d_{\infty}(\varphi_{\infty}, F) = \sum_{m} 2^{-m} d(\varphi_{m} f_{\beta}, g_{m} F) < \sum_{m \leq n} 2^{-m} (\varepsilon/2) + \sum_{m > n} 2^{-m} \cdot 2 < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

This completes the proof.

Remark. In case the index set Λ for (X,f) is the positive integers, we can clearly alternately choose the maps φ_m , so that for $m \ge n$, φ_m : $X_{\beta+m-n} \to Y_m$.

References

- K. Borsuk, On the topology of retracts, Ann. of Math. (2) 48 (1947), pp. 1082-1094.
 S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, N. J., 1952.
- [3] M. K. Fort, Jr., and M. C. McCord, Approximation of maps of inverse limit spaces by induced maps, Notices Amer. Math. Soc. 11 (1964), p. 99.

[4] P. J. Hilton and S. Wylie, Homology theory, Cambridge 1960.

[5] M. C. McCord, Inverse limit sequences with covering maps, Trans. Amer. Math. Soc. 114 (1965), pp. 197-209.

[6] J. Mioduszewski, Mappings of inverse limits, Colloq. Math. 10 (1963), pp. 39-44.

THE UNIVERSITY OF GEORGIA Athens, Georgia

Reçu par la Rédaction le 8. 12. 1965