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Approximation of maps of inverse limit
spaces by induced maps

by
M. K. Fort, Jr.t* and M. C. McCord (Athens, Georgia)

1. Introduction. We use the notation and terminology of [2] for
inverse limit systems. In particular, if (X,f) is an inverse limit system
over a (directed) index set /1, then we have the bonding maps f#: X;—+X,
(¢ < B in A) and the projection maps fo: Xoo—+X,. Reecall that a map ¢
from the inverse limit system (X,f) (indexed over ) to the inverse
limit system (¥, g) (indexed over M) consists of an order preserving
map ¢: M—A and a system of maps gm: Xpmy—Ym (all m e M) such
that if m < nin M, then g fiem = gmes. Thus p induces a map gu: oo Yoo
defined by the relation gmgpw = enfpm (all me M). A map Xep—>To i
called an induced map if it is of the form g, for some map ¢: (X, f)—
—+(Y, g). The following two questions are natural.

QuEsTIONS. (1) Under what conditions on the systems (X,f) and
(Y, 9) can every map F: XY be approvimated arbitrarily closely by
induced maps (for instance, when the space of maps Xew—Yw is given the
compact-open topology)?

(2) Under what conditions is every F homotopic to an induced map?

Question (1) i related to a question asked by J. Mioduszewski ([6],
p. 40). Partial answers to these questions are given in Theorems 1 and 2
below.

2. Terminology and statements of theorems. By a polyhedron
we mean & finitely triangulable space.

DEriNiTioN 1. A solenoidal sequence (¥, g) of polyhedra is an inverse
limit sequence (the index set M is the positive integers), each ¥n, being
a polyhedron, so that each bonding map gi" ¥m—+Y; is a regular covering
map.

* The first anthor died in August, 1964, This research was partially supported
by the National Science Foundation under Grants G-23790 and G-11665 while the
second author was at the University of Wisconsin. Part of the work was presented
to the American Mathematical Society in January, 1964 (see {3D.
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For basic facts on covering maps, see [4], Chapter 6. The (charac-
terizing) property of a regular covering map p: Z—Z which we shall uge
is that whenever 2,2 ¢ 7 and p(z) = p(2'), there exists a covering trans-
formation h: Z—Z (2 homeomorphism with ph = p) such that h(z) =
(see [4], p. 260.) It iy an immediate consequence in Definition 1 that
each bonding map gn: Yn—Ym is also a regular covering map. Solenoidal
sequences have been studied in [5].

If ¢ and o' are maps of a space A into a metric space (B, d), we let
a(p, v') = sup {d(p(a), w’(a))= aecA)l. We find it convenient to write
homotopies in the form A': 4B, meaning of course that ¢ varies over
the unit inverval I and the function H: A X I-—B defined by H{a,t)
= h(a is continuous. We call 1 an &-homotopy if d(R°, h) <e Whenever
s,tel.

TerEoREM 1. Let (X, f) be an inverse limit system of compact, connected,
Hausdorff spaces with all bonding maps onto. Let (Y, g) be a solenoidal
sequence of polyhedra. Then for any map F: XYooy any metric do on Yy,
and any &> 0, there exist an induced Map Pt Xoo—>Yoo and an e- homotopy
heot Koo Yoo from ge to F. In particular, de(pe, F) < s.

Note that under these circumstances, the topology on the space of
maps Xe—>Ye defined by the metric dy is equal to the compact-open
topology.

According to K. Borsuk [1], an 7-map ¢: A —B is a map for which
there exists a right inverse y: B—A (py = 1).

DEFINITION 2. An mverse limit sequence (Y, g) is called reiractive
if each bonding map gm Ypi1—+Yn is an r-map.

THEOREM 2. Let (X,f) be an inverse limit system of compact Haus-
dorff spaces, and let (Y, g) be a redractive inverse limit sequence of polyhedra,

Then every map F: XYoo can be approximated arbitrarily closely by
tnduced maps.

3. Preliminaries. The following lemma is well known. See for
instance [4], pp. 262-264.

Levwma 1. Suppose that p: Y->Yisa co'uewng map, where Y is a poly-
hedron with a given triangulation. Then ¥ can be tr tangulated so that p is
stmplicial. With this done, then for each vertem v of ¥, p-l(smr (v)) s the
disjoint union of the closed stars of the vertices of ¥ lying over v, each of
which is mapped isomorphically onto star (v) by p.

DermviTioN 8. If Y is a polyhedron with a given triangulation,
2 e¥, and v is a vertex of ¥, let () be the baryecentric coordinate of
with respect to v. Deﬁne the baryceniric metric d on Y by

2 {aw)—

d(z,y)= y()]: v a vertex of ¥}.
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Note that if o and 7 ave disjoint closed simplexes and « ¢ o, ¥ € 7, then
d(z,y) = 2.

It will be assumed throughout this paper that triangulated polyhedra
are given the barycentric metrie.

The following lemma is straightforward to verify.

LevMA 2. If p: ¥Y—~Z is o simplicial map, then d(p(z), ply))
< d(z,y) whenever @,y e Y.

In particular, every isomorphism Y--Z is an isometry. Thus in
Lemma 1, one may add to the conclusion that for each vertex » in ¥
and each ¥ in p~Y(v), p maps the closed star of ¥ isometrically onto the
closed star of ».

4. Lemmas on solenoidal sequences. Throughout this section,
let (¥, g) be a solenoidal sequence of polyhedra. Choose a triangulation
of ¥;; and by Lemma 1, triangulate all ¥, so that all bonding maps
gm: Yu—Yp (m << n) are simplicial covering maps.

Choice of %'. Choose a positive number %’ such that every subset
of ¥, of diameter <%’ is contained in some open star in ¥, (see for
example [2], p. 65).

LeEMMA 3. Suppose that m<mn, 0<e<un’, A is a space, and
hﬁn. A—>Y, and hn A-+Y, are homotopies such that gmhib = hﬁn, where B,
s an s-homotopy. Thm, (i) B, is an e-homotopy; and (ii) if y: A—>Yn,
A, ) < 2, and gmp = b, then p = hy.

Proof. By Lemma 2, the homo‘ropy B = gPRt: AT, is also an
&= homotopy And g, hn= grghh, = hl. Hence we may assume that

=1. Let a be any point of A, and let paths y;: I+¥; (j=1,n) be
defined by wi(t) = Ri(a). Thus g’fyn = yp, and diamy,(I) < &. For part (i), it
suffices to show that diamyn(I) < e. Now since diamy,(I) <#’, there
exists a vertex v of ¥, such that y,(I) C star(v). Let (@7 (W) = {o1y ey Vrh
By Lemma 1, (97)” (—sﬁff (v)} is the disjoint union of the sets star (vy)
(j=1,..,7), each of which iy mapped isometrically onto ‘star (v) by gi-
Now 'yn( ) Dbeing connected, is contained in some star (v;). Thus diam yu(I)
= diamy,(I) < &. This completes part (i). Suppose that v is given as in
part (ii). Since glep( )= pi(1 ) € star (v), »(a) must be in some star (vg).
However, d(yn yp(a)) < 2. Thus j=F. Since ¥ is 1-1 on star (v;) and
Pip(a) = glya(l), we see that y(a) = ya(1) = hu(a). This completes the
proof.

LEMMA 4. There emists a positive number ' such that for any space A
and any maps @,y: A—>Yy with dip,v) <1, there is an 7' - homotopy
from ¢ to y.

This result is well known. It can be seen by imbedding ¥, in a Eu-
clidean space and taking an open set that retracts onto Y.
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Choiee of . Let ¢ be chosen as in the preceding lemma, and
let 5 = min(y’, ", 1).

Lmmnia 5. For any space A, any n =1, and any maps ¢, p: 47,
such that d(p, p) <, we gel ¢ ~ .

Proof. By Lemma 2, d(4Tp, giy) <#n<9”. Then by Lemma 4
there exists an n’-homotopy hi: A—¥, such that A = glpand hi= gy
Since the covering map ¢7 has the covering homotopy property, there
exists & homotopy hb: A —Y, such that ¢rhl = ! and hS = @. Then
d(hy, v) < 1< 2. Hence by part (i) of Lemma 3, 9 = hs,. Thig completes
the proof.

Lmmma 6. Suppose that 0 < e=Cy, m<n, and there are given com-
mutative diagrams

1771 ]-Yﬂ
A
7 / ot ] / ot
4 » ‘l’
A Yy A —¥,

where 4 is a connected space, and there is given an &-homotopy Rk » =y
Then there ewist a covering transformation o: Yo—Y, and an &- homotopy
Wi 0% = P such that guhh = Rl,.

Proof. By the covering homotopy property, choose a homotopy
Th: A—Y, such that ghkl=1! and ki=9. By Lemma 3, Biis an
e-homotopy. Choose a point a4, in 4. Since ghF(a) = @ (@) = T (ay)
= gnhn(a,), and since g, is regular, there exists a covering transformation
0: Yy Y, such that % (a,) = ha(a,). Since 4 is connected, it is easy to
see from the usual open-closed argument that ¢%(a) = Tin(a) for all ain A.
This completes the proof. .

5. Completion of the proof of Theorem 1. Let now (X, 0,
(¥Y,9), Pt XYoo, deoy and ¢ >0 be given ag in the statement of Theo-
rem 1. Let A be the index set for (X, f). We retain the considerations
of the preceding section for (¥, g), in particular the choice of . Clearly
We may assume s < /2. Since Y is a compact metric space, if we prove
the result for some metric on Y., it is true for any other metric. Hence
we may assume that de given by

(5.1) Qealy, y') = 2, 27" d(guly), guly’).

by
n=1
(Recall that we use the barycentric metric on each Ya.)

A slightly weaker version of the following lemma was used by J. Mio-

duszewski [6]. The lemma, requires only a slight modification of the proof
of Theorem 11.9 in [2], p. 287.
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Lemma 7. For cach positive integer 1 and each 8 > 0 there is a e .1
such that for each =2 (Be A), there exist a map w: XX, and
a 8-homotopy 't Xeo—>Ty so that 1 = yfy and W = g, F. In particular,
d{yfs, g F) < é.

The following lemma is the recursive step in the proof of the
Theorem. ’

LeMya 8. Suppose that m and n are positive integers, m < n, we A,
omi Xg—Ym, and Byt Xoo—Yo 18 an e-homotopy from gumfs to gul. Then
there exist (1) an index B in A such that § > a, (i) a map gn: XYy such
that euft = gmon, and (i) an &-homotopy Wy Xeo—Tn from gufs to guF
such that gihl = hhy. .

The reader is urged to draw the appropriate mapping diagrams.

Proof. From the fact that A is directed, and from Lemma 7, we
see that there ig an index >« and a map y: Xz->Y, sueh that
A(pfs, gul') < e. Hence by Lemma 2, we have
(5.2) d(gnT, g:ﬁ’fﬁ) = d(g‘vrbngnpi g%xw.fﬁ) <e.

Nince there is an e-homotopy from eufy to guF, d{gnfs, gnk) < e.
Hence

(5.3) W omfifs, gnF) <.

The triangle inequality applied to (5.2) and (5.3) gives

(3.4) d(gnfifss guwfs) < 2 <1 -
By [2], Corollary 3.9, p. 218, f5 is onto. Hence (5.4) gives d(qo,zlff, gr) < 1.
Therefore, by Lemma 5, gmyp = ¢m. f2. Since gy, has the coverm% h’omotopﬁy
property, then there exists a map u': Xp—Y, such that gmy' = qym];‘;.
By [2], p- 229, X is connected. Hence we may apply Lemma 6 to the
two commutative diagrams

‘ Y, Yn
/

.
V"}/ o gy g
Pufe / gnF v

X —> Y X — ¥

Thus theve e‘xist 2 covering transformation g: Yn—ﬂ;,, ;md an e-homot
b Wi Xo—>Y, from pp'fs to goF such that ghhn=lhn. We let
o e KT B gy = g% oy’ = g, and the proof of
o= oy’ Xg->¥,. Then gmfo = gn¥' = Ju oy = Gu@n
the lemma is complete. }

Now we oconstruct a map ¢:(X,f)—>(¥,q) and a ljiomottggr
hs: Xao—>Yoo by recursion. First, by Lemma 7, we get an index a(l),
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a map ¢;: X,—~Y;, and an e-homotopy hi: Xoo-+Y, from Pufary to g, 1.
Applying Lemma 8 recursively, we get an increasing sequence a(l)
< a(2) < ... of indices from 4, sequences p = (g1, py, ...) and (AL, A, ...)

such that for each n, @y is & map Xum—>Ta, hh: Xew—Ty is an e-homo.
topy from (Pnfa(n) to !]nF7 ‘an:(%ﬂ) = g;+l¢n+1y and gﬁ+1hzb+l = h:w- Thus @
is a map (X, f)—(Y, ) and induces 8 Map @u: Xeo-+Yo by the relation
GnPoo= pnfam - Similarly, the homotopies %;, define a homotopy hlo: Xo—7¥,,
by the relation g, Blo= L. Clearly, hl = Poo and hlo=T. Finally, by (5.1),
hie is an s-homotopy; for if s, I, then

Aoo(Booy o) = D) 27" A(HE, By) < D)2 e = ¢ .
This completes the proof of Theorem 1.

6. Proof of Theorem 2. Let (X,f), (Y, g), and F: KoYy
be given as in the statement of the Theorem. Again, we may take the
metric de on Y, to be given by (5.1).

Clearly a map y: 4—B is an r-map if and only if for every map
#: C—B there exists a map §: C—A such that y§ = ¢.

Choose = positive integer n such that } 27™ < ¢/2. By uniform

m=n

continuity, there exists a 6 > 0 such that if d(y,y') <6 in ¥,, then
a(gmy, gmy’) < &2 for all m < n. Now from Lemma 7 (which is also
applicable in the present situation) we get an index Band a map gy: X3—7T,
such that d(gnfs, guF) < 8. For m < n define gn: Xg—>Yp DY @m = gnon.
Hence d(nfs, gnF) < £/2 for m < n. Now, using the fact that each gt
is an r-map, choose maps gm: Xg—Ypm, m >n, such that g P = pn
for m > n. Thus ¢ = (¢, @,, ...) induces a map goot Xeo—>Yo. Recall that
diam ¥,, < 2. Hence

deelooy F) = D37 " d(pmfs, guF) < 3, 27" (ef2) D22 <efa b o2 =0,

mEn M>n
This completes the proof.

Remark. In case the index set A for (X,f) is the positive integ-
ers, we can clearly alternately choose the maps ¢m, so that for m = n,
Pm: Xﬁ-}—m-n —Yn.
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