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Singular homology of n-cell-like continua *
by
Michael C. McCord (Athens, Georgia)

1. Introduction. A compactum is a compact, metrizable space.
A continuum is a connected compactum. If « is an open cover of a com-
pactum X, a map f of X onto a compactum ¥ is called an a-map provided
that for each y in ¥, f'(y) is contained in some member of a. Let C be
a class of compacta. Following Mardedié and Segal [6], we say a com-
pactum X is C-like if for every open cover a of X, there exists an a-map
of X onto a member of C. If all the members are continua, it follows that X
is a continuum. By [6], a continuum is 7-eell-like if and only if it is the
limit of an inverse sequence of n-cells with bonding maps onto. Also
(for example, by [7]) a continuum X is n-cell-like if and only if every
open cover of X can be refined by an open cover whose nerveis an =-cell.
Thus 1-cell-like, or arc-like, continua are the snake-like, or chainable
continua studied by R. H. Bing [3] and others.

‘What homology properties do n-cell-like continua have? Of course
they arve aeyclic in Cech homology. But we shall see that the singular
homology can be quite complicated. Let H,(X; &) denote the g-dimen-
sional singular homology group of X, with coefficients in a group G,
reduced in dimension 0.

Consider the following two questions for each = > 1.

Qn: If X is an arbitrary n-cell-like continuum and @ is any coefficient
group, is Hy(X; G)= 0 for all ¢ >n?

Qn: If X is an arbitrary n-cell-like continuum and @ is any coefficient
group, 18 Hy(X; Gy= 0 for all ¢ >n?

The main theorem of the paper gives a strong negative answer to Q,
(hence also to Q) for n = 3. Let @ denote the group of rational numbers.

THEOREM 1. For each n > 3, there exists an n-cell-like continuum X
such that for all q = 0 the group H,(X; Q) i uncountable.

In view of the fact that X can be given as an inverse limit of #-cells,
theorem 1 shows how extremely discontinuous singular homology can be.
The resultis based on a theorem due to M. G. Barratt and John Milnor [1].

* This research was parially supported by National Science Foundation Grant
GP 3915.
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In contrast to Theorem 1, the following theorem (whose proof is
short) answers Q (hence also Q) affirmatively.

THEOREM 2. If X s an orc-like continuum, then Hy(X; G) =0 for
all ¢=>1.

The questions Q, and @ remain unanswered by this paper.

ConveNTION. Throughout Sections 2 and 3, we will assume & fixed
but arbitrary coefficient group @ for singular homology groups, which
will be suppressed from the notation.

2. Methods for costructing n-cell-like continua. If X i
a space, let Cov(X) denote the collection of all open covers of X. If D
is an n-cell, let Bd.D denote the boundary (n—1)-sphere of D.

DEFINITION. A closed subset A of an n-cell-like continnum X ig
called exiremal (in X) if for each a e Cov(X) there exists an a-map f of X
onto an n-cell D which carries A homeomorphically into Bd.D.

An important special case is when 4 is an extremal (n—1)-sphere.
Of course then f must map 4 homeomorphically onto Bd.D.

The union of two extremal sets does not have to be extremal. For
instance, in the (arc-like) “sinz—1-continuum?”

(2.1) {(#,sing): 0 <z <1} w{(0,y): -1 <y <1},

one may consider the extremal 0-spheres {(0,1), (1, sinl)} and {(0, —1),
(1,sinl)}

It is not hard to show (using, for example, the methods of proof
in [7]) that in the special case n =1, the notions extremal point and
extremal 0-sphere are equivalent to the mnotions end point and (pair of)
opposite end points, respectively, investigated by R. H. Bing in [3].

Lemma 2.1. Let X be an n-cell-like continuum with extremal (n—1)-
sphere A, and let D be any n-cell. Then for each homeomorphism ¢ of A
onto BAD and for each a e Cov(X), there exists an a-map f of X onto D
-such that fl4 = g.

Proof. Choose an a-map ¢ of X onto an n-cell D' which carries A
homeomorphically onto BdD'. Now ¢(g]4)* is a homeomorphism of
Bd D' onto BdD; extend it to a homeomorphism % of D’ onto .D. Then
f=hg is the required a-map.

Next we define an operation on spaces which will be useful in con-
strueting new n-cell-like continua. A doubly based space is a triple (X, », &)
where X is a space, and » and 4’ are points of X. If (¥, y, y’) is another
doubly based space we define a new doubly based space

(2.2) (Z,2,#)= (X, 0,) @(Y,y,97,

called the arc join of (X, w, #') and (¥, y, y'), as follows. Form the disjoint
union X+4-10,1]+Y, and let Z be the quotient space formed by identi-
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fying & with 0 and y with 1. We consider X, ¥, and [0, 1] as subsets
of Z. Then we let the base points of Z be 2 = x and 2’ = y’. It should
be noted that the operation of “are join” is associative (up to home-
omorphism), but not commutative. The next lemma follows from the
use of a (reduced) Mayer-Vietoris sequence {[4], p- 39) and two deformation
retractions.

Levma 2.2. In equation (2.2) we have Hy(Z) ~ Hy(X) @ H(Y) for

-all integers q.

We call a doubly based space (X,x, ') and n-cel-like continuum
with extremal pair if X is n-cell-like, # &', and {z, '} is extremal in X.
Levwa 2.3. In equation (2.2), if (X, 2, a") and (¥, y, ¥’) are n-cell-like
continua with extremal pairs, then so is (Z,z,2').
Before beginning the proof, let us establish the following notation.
n
Let R" denote Euclidean n-space, with the norm [ = ( 3 #3"2. 1t 7, ¢ R
i=1
and 0> 0, let Ny(ro) = {reR":|r—rl <d}. Let D"= N,(0) and let
8" = Bd D" Let I" = [0, 1]

Proof. Choose a metric on Z. Let ¢ > 0 be given. Choose a partition
0=t <h<..<l=1 of [0,11CZ such that diam [t;,, &] < ¢/2 for
all é=1,..., k. We shall produce an e-map F of Z onto the n-cell
[0, k2] 1"

Choose an (s/4)-map f of X onto D" such that f(z) and f(z') are
distinet points of §”7*. It is easy to see by compactness that there exists
a 8, > 0 such that if HC D" and diam(E) < &, then diamf '(B) < ¢/2.
Hence we may find a number 8 > 0 such that diamjf™ 1(N.,(f(a:’)) nD"’)
< ¢/2 and f(x) ¢ No(f(#")). Now choose a homeomorphism % of D" onto
[0, 1] xI"™" such that B{Na(f(z) ~ S’”“l) = {1} xI"™. Let g = hf. Obvi-
ously ¢ is an (s/4)-map of X onto [0, 1] xI"™" such that g(a') € {1} xI"?,
@(®) e BA([0, 1] % I"Y) — {1} xI"™, and diam¢ ({1} xI"™Y) < £/2. Similarly,
we obtain an (s/4)-map y of ¥ onto [k+1,%+2]xI*" such thab

p(@) e B+ <I", () e BA(h+1, b+ 2] 21" — -1} 1™,
and ‘
damy ({1} < I"™") < ¢/2 .
Applying the Hahn-Mazurkiewicz theorem to each interval [t;_, t;]
(1 <4< %), we obtain a map 7 of [0,1] onto [1, k-+1]xI"" such that
7(0) = p(#'), v(1) = p(y), and for each i (1 <i< k)
T([fima,y 8]) = [4, i-+1] x I
Now we define the map F on Z to be ' = g Uz uy. This map is
obviously continuous and maps Z onto [0, k2] xI"™*. Clearly also
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F(g)=F(z)=g(w) and F(z')=F(y')=vw(y’) arve distinct points of
BA([0, k+2] xI™™). Let us check then that F is an e-map. Suppose
v= (8, 7) [0, k+2] xI"""
Case I: 0 <<s< 1. Then F () = ¢ '(v), which has diameter < /4.
Case II: s =1. Then

Fw) =97 (0) o v (0) Co ({1} xI") w [0, 4] .

The two sets in the latter union intersect (in ') and each have diameter

< ¢/2. Hence the union has diameter < s.

Case ITL: 1 < § < k-+1. Then F~'(v) = v~ '(v). From the choice of 7,
t-i(v) is certainly contained in the union of two adjacent intervals of
the partition (%, ..., fx), hence has diameter < e.

Case IV: s = k-+1. Similar to Case II.

Case V: k+1 < s<k+2. Similar to Case I. This completes the
proof.

Lemva 2.4. If X and Y are respectively m and n-cell-ike continua
with extremal subsets A and B, then X X Y is an (mn)-cell-like continuum
having A xB as an extremal subset.

Proof. Straightforward.

We find it convenient to write the suspension S(X) of a space X
as the quotient space formed from X x[—1,1] by identifying X x {1}
to a point and identifying X x {—1} to a point. Let » = vx: X X [—1, 1]—
—8(X) be the quotient map. We shall often write [@, s] for »(», s). If 4
is a subset of X, we think of §(4) as a subset of §(X). If f: XY is
& map, the suspension §(f): §(X)—8(¥) is defined by 8(f)[#, s]= [f(«), s].
The n-fold suspension §"(X) is defined recursively by

SE)=X, 8"X)=S8(8""X) (n>0).

Levma 2.5. If X is an n-cell-like continuum having A as an extremal
subset, then 8(X) is an (n+1)-cell-like continuum having S(A) as an
extremal subset.

Proof. (In [8] the obvious generalization of part of the result to
C-like continua is given.) Let a be an open cover of §(X). Clearly there
exigts an open cover 8 of X such that for each U in g and each ¢ in [—1, 1],
there is a V in a with yx(U x {s}) CV. Choose a B-map f of X onto an
n-cell D which takes 4 homeomorphically into BdD. Now 8 f) maps 8(X)
onto §(D) and takes S(4) homeomorphically into §(BdD). However,
S(D) is an (n+1)-cell with boundary § (Bd D). Clearly, for each point
[y, s10t 8(D), (S(f) "Iy, s1= vx(f () x {s}). By choice of 8, then, 8(f) is
an a-map. This completes the proof. : ‘
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If B is a cardinal number, let G° denote the direct sum of B copies
of the coefficient group G (G°= 0).

Levma 2.6. Let 0 <m < n and let B be a cardinal number which is
finite, o, or ¢ (the cardinal number of the continuwum). Then there ewists
an - cell-like continuum (Y, y, y') with extremal pair such that Hn(Y) ~ GF
and Hy(Y)= 0 for q % m.

Proof. First we produce an arclike continuum (X,2,2’) with
extremal pair such that Hy(X)~ G° and Hy(X)= 0 for ¢ > 0 (the latter
is of course true for any arc-like continuum, by Theorem 2). In case 8 = 0,
we take X = [0, 1]. In case 0 < f < &y, we fake X to be an arc join of §
copies of the sing~!-continuum. Similarly, if 8 = 8,, we can construct
a “countable arc join’’ (in an obvious sense) of copies of the sinz--con-
tinuum. In case of f = ¢, we can take X to be the pseudo-arc ([5], [9], [2])-
Since the pseudo-arc is hereditarily indecomposable, its arc-components
are simply its points. Hence X has the required homology. Furthermore,
by [2], proof of Theorem 1, X possesses extremal pairs (any two points
in different composants).

Now we let ¥ = §™(X)xI"™ " By Lemmas 2.4 and 2.5, ¥ is an
n-cell-like continuum possessing an extremal pair. By the iterated sus-
pension isomorphism, ¥ has the required homology.

3. A generalization of the concept of deformation retract.
A deformation f; of a space X is a homotopy fi: X —X (0 <t < 1) such that
fo = 1x (the identity on X).

DEerFINITION. Let C be a class of topological spaces. We say that
a subset A of a space X iz a C-deformation retract of X provided that for
every subset K of X with K e C, there exists a deformation f; of X such
that fi(K)C 4 and fi(x) = = for all # in A. If we can always choose f;
so that fi(») = « for all £ and all # in A4, then 4 is a strong C-deformation
retract of X.

Note that in case C iz the class of all spaces, the notion of C-defor-
mation retract coincides with the usual notion of deformation retract.

Let £C denote the class of locally connected compacta.

Levmwma 3.1, Let X be a Hausdorff space and let A be an LC-deformation
retract of X. Then the inclusion i: A ->X induces isomorphisms on singular
homology groups.

Proof. Let Cy(X)= (C{X)); be the singular chain complex of X.
For each o Cy(X), let [¢| denote the carrier of ¢— the union of the
images of the singular simplexes appearing in e. Since X is Hausdorff,
cleLC.

i To show that 4.: Hy(A)->Hy(X) is onto, suppose that z is a singular
q-cycle in X. Choose fi: X =X as in the above definition for K = |#| C X.
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By [4], p. 195, there exists a chain homotopy D between the chain maps
induced by fy=1 and f,. Thus z—f;2 = Dy2, so that 2 is homologous
to the cycle fiz in 4.

Suppose that 2 iy a g-cycle in A that bounds a (¢+41)-chain ¢ in X,
Choose f; as in the definition for K = le|. Then 2= fiz = f,0¢ = df;¢,
50 that 2 bounds in 4. Thus keré, = 0.

4. Iterated suspensions of a modified sing'-continum.
Let C denote the union of the are {(z, —1}: —1 < # < 0} and the sing-1-
continnum (2.1). Define a 1-1 correspondence ¢:[—2, 11— as follows:

(¢+1,—-1) for 2L -1,
p@) =1 (0,2241) for —-1<L2<0,
(2, sing-1)  for l<o<l.

Throughout this section and Section 6, let B denote the interval
[—2,1] endowed with the topology making ¢ a homeomorphism. Thus B
is simply another version of ¢ with a simpler notation which we find
convenient. In B consider the following subspaces, each of which clearly
has the ordinary topology as a subset of the real line:

B ={-2,1}, B'=[-2,0]v{1}.

Lemma 4.1. For each n >0, S*(B) i3 an (n-+1)-cell-like continuum
having S™(B") as an extremal n-sphere.

Proof. This follows from Lemma 2.5, induction, and the fact that B
is arc-like with extremal pair {—2,1}= B,

LeMua 4.2, For each n > 0, the n-sphere S*(B") is a strong deformation
retract of §*(B').

Proof. Obviously B is a strong deformation retract of B’. Then
the result follows by induction and the general fact that if 4 is a strong
deformation retract of X, then S(4) is a strong deformation retract of
8(X).

Lemma 4.3. For each n > 0, 8(B’) is a strong LC- deformation retract
of 8™(B).

Remark. 8%(B’) is of course not a deformation retract of SY(B)
since §"(B') has the Cech homology of an n-gphere, whereas S"(B) is
acyelic in Jech homology.

Before Eeginning the proof let us set the following notation. Let
I = [—1_, 11% J°* = (—1,1)" (usual topology). For any space X, S8"(X)
can be viewed as a quotient space of X xJ®. We define the quotient map

v=p: X »J" 8" X)
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recursively: » has already been defined. If », is defined, let v,., be given by
Yns1(By (815 vory Snpa)) = vl(v,,(.x, (815 +eny 8n)), snﬂ) .

Again we find it econvenient to write [2, §]= »(z, s) for (=, s) e X xJ"
Note that » maps X xJ°" homeomorphically into S%(X). If s eJ", let
8] = max {[s,], ..., |sa}-

Proof of Lemma 4.3. For each ¢ in (0,1] we wish to define
a certain homotopy fi: B—B (0 <t < 1). Let &= (1—t)e+1. Then ff is
the identity on [—2, &/2]; ff maps [¢/2, £] linearly onto [¢/2, &]; and f7
maps [e, 1] linearly onto [e;, 1]. Note that fi(z), # in B, is continuous
simultaneously in «, ¢, and e. For each &,

(4.1) fo=13p,
(4.2) filwy=a for all # in B’ and all ¢,
(4.3) fi maps [—2,0]v [e,1] onto B”.

Now suppose that K is a locally connected compactum in S™(B).
Using the quotient map »: BxJ"—8"(B), we get the compact subset
v Y(E) of BxJ" We claim that for each number » in [0,1), there exists
an ¢ in (0, 1) such that

Y HE) A {2, 8) e BT 0 <o <s, s|<r}=0.

Suppose that no such s can be found. Then, by the compactness of »(K)
and the definition of the topology of B, there exists a sequence of points
(@1, 8%) (i=0,1,2,..) of v(K) such that #,e[—1,0], 0 < 2; < 1/i for
i=1, [¢f <7, and ({2, s'), (2, §?), ...) converges to (zy,s%) in B xJ™
It is clear then that every (sufficiently small) neighborhood of (g, s%)
in »(K) is disconnected. However, since » is a homeomorphism on
BxJ v"(K) is locally connected at (,, s°).

Thus we obtain a sequence 1> g > g > ..
mz=1,

(4.4)

. >0 such that for all

Y HE) A {(#,8) e BXI™ 0 < & <em, 8| <1—m =0
Clearly there exists a map u:J°"—(0,1) such that

(4.5) p(s) <e&m whenever [s|<<1—m™.

Now define the homotopy g:: 8%(B)->8"(B) by

(%), 5] i |s|<1;

(4.6) [2,8] it Js|=1.

otz 51 = |
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It is clear that g¢ is continuous. By (4.1), ¢ is the identity on S™(B).
By (4.2), g{®,s]=[»,s] whenever [z,s]e8"(B’'). Finally, we claim
that ¢, maps K into §%(B’). For suppose that [, s] e K. If |s| = 1, then
al®,s]=[z,s] is in the n-fold suspension of any subset of B. If
ls| <1, then for some m >1, [s] <1—m™. Hence by (4.4), ve[—2,0]u
wlem,1]. Then by (4.5), #e[—2,0]w [p(s),1]). Thus by (4.3) and (4.6),
gile, 5] 8"(B).

We shall actually need a lemma a little stronger than Lemma 4.3.
It is clear from the second paragraph of the proof that the same proof
actually gives the following result:

Levma 4.4. Let K be a compact subset of S"(B) which is locally con-
nected at each point it has in common with the subset »([—1, 0]1xJ°") of
S™(B). Then there exists a deformation g; of S™(B) leaving S™(B') pointwise
fized such that ¢,(K)C 8™(B').

5. The example of Barratt and Milnor. In R"™ (n>0),
for each i>1, let 87 denote the sphere with the center (27%0, ..., 0)

and radius 27% and let M" = ’U 8%,
=1

TEEOREM. (Barratt and Milnor [1].) For n > 2, Hy(M"; Q) is un-
countable when ¢ =1 (mod(n—1)) and ¢ > 1.

We now describe another continuum N"** having the same homotopy
type as M" (so that the above theorem also lholds for N"*"). In the unit
disk D" with center at the origin, for each ¢ >1 let B denote the open
disk with center (27°427%%,0,...,0) and radius 27*% Then let

N prEl_ GEi .

=1
It can be seen that N™™ in fact are deformation retracts onto M™

6. Completion of the proof of Theorem 1. We construct
an (n+1)-cell-like continuwum X™* obtained from N™ by filling in
each hole with a copy of the (n--1)-cell-like continuum S™(B) (see Sec-
tion 4). Let us describe X™** more precisely.

Let P denote the positive integers with the discrete topology. For
each i e P choose a homeomorphism ¢; of the n-sphere §™(B°) onto the
n-sphere BdB;. Let X" be the quotient space formed from the
disjoint wnion (S*(B)xP) v N™* by identifying (z,) with gi(x) for each
z ¢ S*(B). Let ‘

i (8"(B)x P} w Ny
be the quotient map, and for each i e P, let the imhedding
uiz SM(B)-+X"?
be defined by ui(z) = u(z, 7).
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LeMma 6.1. X" is an (n-11)-cell-like continuum.

Proof. Let aeCov(X"™). For each i ¢ P, define ai e Cov(8"(B)) to
be {47'(U): U ¢ a}. By Lemma 4.1 and Lemma 2.1, we get an ag-map f; of
§™(B) onto the (n+41)-cell B; such that

(6.1) FilS*(B%) = ¢ .

Now define a map f of X" onto D" as follows: If y e N™™, let fu(y) = y;
if (2,14) e 8(B) x{i}, let fu(w,4) = fi(#). The map f is well-detined and
continuous, because of condition (6.1). Finally, fis an a-map. For sup-
pose that y ¢ D",

Case I: y is in mo H;. Then f™'(y) = u(y) (a single point).

Case II: y e B;. (This can happen for at most one 4.) Since f; is an
a;-map, there exists a member U of a such that f7'(y)C u7(U). Then
) = wfiy) C pupi*(U) C U. This completes the proof.

Remark. It is clear from the proof that x(BdD™™) is an extremal
n-sphere in X"**,

For the next two lemmas, we introduce the following notation.
If 4 is a subset of B, let

N'4) = p((S"(4)x P) v N*) C X",
Then clearly

Nﬂ+1 = Nﬂ+1(B0) ClVTn+1(B’) C N’L+1(B) — Xn+l .

LummA 6.2. N™*(B°) is a sirong deformation retract of N"'(B’).

Proof. Lemma 4.2 says that S"(B°) is a strong deformation retract
of §%(B'). Hence choose the appropriate deformation f: §(B")—S8"(B").
Then we define the required deformation g: N**'(B)—N""(B) by
Gen(®y4) = p(fuw), 4) it © < SYB') and gu(y) = ply) i y e N**,

LeMwa 6.3. N"™(B') is a strong LC-deformation retract of N"T(B)
=,Xﬂo+1.

Proof. Let K be a locally connected compactum in X', For each
i ¢ P, let K; be the compact subset ui*(ud(S"(B)) ~ K| of §"(B). Then K;
satisfies the hypotheses (replacing X) in Lemmsa 4.4. This is so because
the imbedding ps: §"(B)—+X"*" obviously maps »([—1, 0]xJ°") into the
interior of puy(S"(B)) C X™*. Thus by Lemma 4.4, choose a deformation g%
of §%(B) leaving S™(B’) pointwise fixed such that gi(K;)C S"(B’). Then
we define the required deformation gi: X"*'—>X"*" by giui(x) = pi(gi(a))
for each 4¢P and each z ¢ S"(B), and g:u(y) = p(y) for each y e N™'™.
Clearly g: leaves N""(B’) pointwise fixed and ¢,(K)C N"*(B’).

COROLLARY 6.4. The (singular) homology groups of X*** are isomorphic
to those of M™. In particular, Hy(X"*';Q) is uncountable for ¢ =1 (mod (n—1)),
q>1.
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Proof. This follows from Lemmas 6.3, 3.1, 6.2, and the fact that
N = N"Y{(BY) deformation retracts onto M".
In particular, for the 3-cell-like continuum X3, we have

(6.2) H,(X3; Q) is uncountable for all ¢ > 2.

Now X3 possesses an extremal 2-sphere (see the remark following
Lemma 6.1). In particular, X? possesses an extremal pair {»,a'}. By
Lemma 2.6, choose 3-cell-like continua (¥2,y,y’) and (2%, %,2') with
extremal pairs such that

(6.3) H(Y3; Q) and H,(Z% @) are uncountable .
Then let W* be the continunm formed by taking the are join
(X3,8,0") @ (Y3,y,y') ®(2%%,2).

By Lemmsa 2.3, W3 ig 3-cell-like. And from Lemma 2.2, (6.2), and (6.3)
it follows that Hy(W3; @) is uncountable for all ¢ > 0. By Lemma 2.5,
for each n3>3, the continunum W"= W’xI"® is n-celllike. And
H(W" @)~ H(W’; Q) by a deformation retraction. This completes
the proof of Theorem 1. '

7. Proof of Theorem 2. The proof depends on the following
lemma.

LeMmMA 7.1. Bvery non-degenerate locally connected subcontinuum of
an arc-like continuum is an are.

Proof. It ig clear (for instance, from the «-map definition) that
every non-degenerate subcontinnum of an arelike continunm is itself
arc-like. If X is a locally connected arc-like continuum, then X contains
no simple closed curves and no triods (since these are not arc-like), so
that X is a dendrite containing no triods. From [10], p. 88, (1.1) (ii), it
follows that such a dendrite is an arc. See also [6], p. 163.

A stronger result than Theorem 2 holds; namely, if X iy an arec-like
continuum, then the homotopy groups my (X, z,) (¢ > 0, any base point w,)
are zero. For by Lemma 7.1, if fis a map of a ¢-sphere into X, the image
of f must be an arc or a point. One may also easily argue directly for the
homology.
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