

Singular homology of n-cell-like continua*

by

Michael C. McCord (Athens, Georgia)

1. Introduction. A compactum is a compact, metrizable space. A continuum is a connected compactum. If a is an open cover of a compactum X, a map f of X onto a compactum Y is called an a-map provided that for each y in Y, $f^{-1}(y)$ is contained in some member of a. Let C be a class of compacta. Following Mardešić and Segal [6], we say a compactum X is C-like if for every open cover a of X, there exists an a-map of X onto a member of C. If all the members are continua, it follows that X is a continuum. By [6], a continuum is n-cell-like if and only if it is the limit of an inverse sequence of n-cells with bonding maps onto. Also (for example, by [7]) a continuum X is n-cell-like if and only if every open cover of X can be refined by an open cover whose nerve is an n-cell. Thus 1-cell-like, or arc-like, continua are the snake-like, or chainable continua studied by C. H. Bing [3] and others.

What homology properties do n-cell-like continua have? Of course they are acyclic in Čech homology. But we shall see that the singular homology can be quite complicated. Let $H_q(X;G)$ denote the q-dimensional singular homology group of X, with coefficients in a group G, reduced in dimension 0.

Consider the following two questions for each $n \ge 1$.

 Q_n : If X is an arbitrary n-cell-like continuum and G is any coefficient group, is $H_q(X; G) = 0$ for all q > n?

 Q'_n : If X is an arbitrary n-cell-like continuum and G is any coefficient group, is $H_q(X; G) = 0$ for all $q \ge n$?

The main theorem of the paper gives a strong negative answer to Q_n (hence also to Q'_n) for $n \ge 3$. Let Q denote the group of rational numbers.

THEOREM 1. For each $n \ge 3$, there exists an n-cell-like continuum X such that for all $q \ge 0$ the group $H_q(X; Q)$ is uncountable.

In view of the fact that X can be given as an inverse limit of n-cells, theorem 1 shows how extremely discontinuous singular homology can be. The result is based on a theorem due to M. G. Barratt and John Milnor [1].

^{*} This research was parially supported by National Science Foundation Grant GP 3915.

THEOREM 2. If X is an arc-like continuum, then $H_q(X; G) = 0$ for all $q \ge 1$.

The questions Q, and Q' remain unanswered by this paper.

Convention. Throughout Sections 2 and 3, we will assume a fixed but arbitrary coefficient group G for singular homology groups, which will be suppressed from the notation.

2. Methods for costructing n-cell-like continua. If X is a space, let Cov(X) denote the collection of all open covers of X. If D is an n-cell, let BdD denote the boundary (n-1)-sphere of D.

DEFINITION. A closed subset A of an n-cell-like continuum X is called *extremal* (in X) if for each $\alpha \in \text{Cov}(X)$ there exists an α -map f of X onto an n-cell D which carries A homeomorphically into Bd D.

An important special case is when A is an extremal (n-1)-sphere. Of course then f must map A homeomorphically onto $\operatorname{Bd} D$.

The union of two extremal sets does not have to be extremal. For instance, in the (arc-like) " $\sin x^{-1}$ -continuum"

$$(2.1) \{(x, \sin x^{-1}): 0 < x \le 1\} \cup \{(0, y): -1 \le y \le 1\},$$

one may consider the extremal 0-spheres $\{(0,1), (1, \sin 1)\}$ and $\{(0,-1), (1, \sin 1)\}$.

It is not hard to show (using, for example, the methods of proof in [7]) that in the special case n=1, the notions extremal point and extremal 0-sphere are equivalent to the notions end point and (pair of) opposite end points, respectively, investigated by R. H. Bing in [3].

LEMMA 2.1. Let X be an n-cell-like continuum with extremal (n-1)-sphere A, and let D be any n-cell. Then for each homeomorphism φ of A onto $\operatorname{Bd} D$ and for each $\alpha \in \operatorname{Cov}(X)$, there exists an α -map f of X onto D such that $f|_A = \varphi$.

Proof. Choose an α -map g of X onto an n-cell D' which carries A homeomorphically onto $\operatorname{Bd} D'$. Now $\varphi(g|A)^{-1}$ is a homeomorphism of $\operatorname{Bd} D'$ onto $\operatorname{Bd} D$; extend it to a homeomorphism h of D' onto D. Then f = hg is the required α -map.

Next we define an operation on spaces which will be useful in constructing new n-cell-like continua. A doubly based space is a triple (X, x, x') where X is a space, and x and x' are points of X. If (Y, y, y') is another doubly based space we define a new doubly based space

$$(2.2) (Z, z, z') = (X, x, x') \oplus (Y, y, y'),$$

called the arc join of (X, x, x') and (Y, y, y'), as follows. Form the disjoint union X+[0,1]+Y, and let Z be the quotient space formed by identi-

fying x' with 0 and y with 1. We consider X, Y, and [0,1] as subsets of Z. Then we let the base points of Z be z=x and z'=y'. It should be noted that the operation of "arc join" is associative (up to homeomorphism), but not commutative. The next lemma follows from the use of a (reduced) Mayer-Vietoris sequence ([4], p. 39) and two deformation retractions.

Lemma 2.2. In equation (2.2) we have $H_q(Z) \approx H_q(X) \oplus H_q(Y)$ for all integers q.

We call a doubly based space (X, x, x') and n-cell-like continuum with extremal pair if X is n-cell-like, $x \neq x'$, and $\{x, x'\}$ is extremal in X.

LEMMA 2.3. In equation (2.2), if (X, x, x') and (Y, y, y') are n-cell-like continua with extremal pairs, then so is (Z, z, z').

Before beginning the proof, let us establish the following notation.

Let R^n denote Euclidean n-space, with the norm $||r|| = \left(\sum_{i=1}^n r_i^2\right)^{1/2}$. If $r_0 \in R^n$ and $\delta > 0$, let $N_\delta(r_0) = \{r \in R^n : ||r - r_0|| \le \delta\}$. Let $D^n = N_1(0)$ and let $S^{n-1} = \operatorname{Bd} D^n$. Let $I^n = [0, 1]^n$.

Proof. Choose a metric on Z. Let $\varepsilon > 0$ be given. Choose a partition $0 = t_0 < t_1 < ... < t_k = 1$ of $[0,1] \subset Z$ such that diam $[t_{i-1},t_i] < \varepsilon/2$ for all i=1,...,k. We shall produce an ε -map F of Z onto the n-cell $[0,k+2] \times I^{n-1}$.

Choose an $(\varepsilon/4)$ -map f of X onto D^n such that f(x) and f(x') are distinct points of S^{n-1} . It is easy to see by compactness that there exists a $\delta_0 > 0$ such that if $E \subset D^n$ and $\operatorname{diam}(E) < \delta_0$, then $\operatorname{diam}f^{-1}(E) < \varepsilon/2$. Hence we may find a number $\delta > 0$ such that $\operatorname{diam}f^{-1}(N_{\delta}(f(x')) \cap D^n) < \varepsilon/2$ and $f(x) \in N_{\delta}(f(x'))$. Now choose a homeomorphism h of D^n onto $[0,1] \times I^{n-1}$ such that $h(N_{\delta}(f(x')) \cap S^{n-1}) = \{1\} \times I^{n-1}$. Let $\varphi = hf$. Obviously φ is an $(\varepsilon/4)$ -map of X onto $[0,1] \times I^{n-1}$ such that $\varphi(x') \in \{1\} \times I^{n-1}$, $\varphi(x) \in \operatorname{Bd}([0,1] \times I^{n-1}) - \{1\} \times I^{n-1}$, and $\operatorname{diam}\varphi^{-1}(\{1\} \times I^{n-1}) < \varepsilon/2$. Similarly, we obtain an $(\varepsilon/4)$ -map φ of Y onto $[k+1,k+2] \times I^{n-1}$ such that

 $\psi(y) \in \{k+1\} \times I^{n-1} \ , \quad \psi(y') \in \mathrm{Bd}([k+1,\,k+2] \times I^{n-1}) - \{k+1\} \times I^{n-1} \ ,$ and

$$\operatorname{diam} \psi^{-1}(\{k+1\} \times I^{n-1}) < \varepsilon/2.$$

Applying the Hahn-Mazurkiewicz theorem to each interval $[t_{i-1}, t_i]$ $(1 \le i \le k)$, we obtain a map τ of [0, 1] onto $[1, k+1] \times I^{n-1}$ such that $\tau(0) = \varphi(x'), \ \tau(1) = \psi(y),$ and for each $i \ (1 \le i \le k)$

$$\tau([t_{i-1}, t_i]) = [i, i+1] \times I^{n-1}$$
.

Now we define the map F on Z to be $F = \varphi \circ \tau \circ \psi$. This map is obviously continuous and maps Z onto $[0, k+2] \times I^{n-1}$. Clearly also

 $F(z) = F(x) = \varphi(x)$ and $F(z') = F(y') = \psi(y')$ are distinct points of Bd($[0, k+2] \times I^{n-1}$). Let us check then that F is an ε -map. Suppose $v = (s, r) \in [0, k+2] \times I^{n-1}$.

Case I: $0 \le s < 1$. Then $F^{-1}(v) = \varphi^{-1}(v)$, which has diameter $< \varepsilon/4$. Case II: s=1. Then

$$F^{-1}(v) = \varphi^{-1}(v) \cup \tau^{-1}(v) \subseteq \varphi^{-1}(\{1\} \times I^{n-1}) \cup [0, t_1].$$

The two sets in the latter union intersect (in x') and each have diameter $< \varepsilon/2$. Hence the union has diameter $< \varepsilon$.

Case III: 1 < s < k+1. Then $F^{-1}(v) = \tau^{-1}(v)$. From the choice of τ , $\tau^{-1}(v)$ is certainly contained in the union of two adjacent intervals of the partition $(t_0, ..., t_k)$, hence has diameter $< \varepsilon$.

Case IV: s = k+1. Similar to Case II.

Case V: $k+1 < s \le k+2$. Similar to Case I. This completes the proof.

LEMMA 2.4. If X and Y are respectively m and n-cell-like continua with extremal subsets A and B, then $X \times Y$ is an (m+n)-cell-like continuum having $A \times B$ as an extremal subset.

Proof. Straightforward.

We find it convenient to write the suspension S(X) of a space X as the quotient space formed from $X \times [-1, 1]$ by identifying $X \times \{1\}$ to a point and identifying $X \times \{-1\}$ to a point. Let $v = v_X$: $X \times [-1, 1] \rightarrow$ $\rightarrow S(X)$ be the quotient map. We shall often write [x, s] for $\nu(x, s)$. If A is a subset of X, we think of S(A) as a subset of S(X). If $f: X \to Y$ is a map, the suspension $S(f): S(X) \to S(Y)$ is defined by S(f)[x, s] = [f(x), s]. The *n*-fold suspension $S^n(X)$ is defined recursively by

$$S^{0}(X) = X$$
, $S^{n}(X) = S(S^{n-1}(X))$ $(n > 0)$.

LEMMA 2.5. If X is an n-cell-like continuum having A as an extremal subset, then S(X) is an (n+1)-cell-like continuum having S(A) as an extremal subset.

Proof. (In [8] the obvious generalization of part of the result to C-like continua is given.) Let a be an open cover of S(X). Clearly there exists an open cover β of X such that for each U in β and each s in [-1, 1], there is a V in α with $\nu_{X}(U \times \{s\}) \subset V$. Choose a β -map f of X onto an n-cell D which takes A homeomorphically into $\operatorname{Bd} D$. Now S(f) maps S(X)onto S(D) and takes S(A) homeomorphically into S(BdD). However, S(D) is an (n+1)-cell with boundary S(BdD). Clearly, for each point [y, s] of S(D), $(S(f))^{-1}[y, s] = \nu_X(f^{-1}(y) \times \{s\})$. By choice of β , then, S(f) is an a-map. This completes the proof.

If β is a cardinal number, let G^{β} denote the direct sum of β copies of the coefficient group G ($G^0 = 0$).

LEMMA 2.6. Let $0 \le m < n$ and let β be a cardinal number which is finite, κ_0 , or c (the cardinal number of the continuum). Then there exists an n-cell-like continuum (Y, y, y') with extremal pair such that $H_m(Y) \approx G^{\beta}$ and $H_q(Y) = 0$ for $q \neq m$.

Proof. First we produce an arc-like continuum (X, x, x') with extremal pair such that $H_0(X) \approx G^{\beta}$ and $H_0(X) = 0$ for q > 0 (the latter is of course true for any arc-like continuum, by Theorem 2). In case $\beta = 0$. we take X = [0, 1]. In case $0 < \beta < \kappa_0$, we take X to be an arc join of β copies of the $\sin x^{-1}$ -continuum. Similarly, if $\beta = \aleph_0$, we can construct a "countable arc join" (in an obvious sense) of copies of the $\sin x^{-1}$ -continuum. In case of $\beta = c$, we can take X to be the pseudo-arc ([5], [9], [2]). Since the pseudo-arc is hereditarily indecomposable, its arc-components are simply its points. Hence X has the required homology. Furthermore, by [2], proof of Theorem 1, X possesses extremal pairs (any two points in different composants).

Now we let $Y = S^m(X) \times I^{n-m-1}$. By Lemmas 2.4 and 2.5, Y is an n-cell-like continuum possessing an extremal pair. By the iterated suspension isomorphism. Y has the required homology.

3. A generalization of the concept of deformation retract. A deformation f_t of a space X is a homotopy $f_t: X \to X$ $(0 \le t \le 1)$ such that $f_0 = 1_X$ (the identity on X).

DEFINITION. Let C be a class of topological spaces. We say that a subset A of a space X is a C-deformation retract of X provided that for every subset K of X with $K \in \mathbb{C}$, there exists a deformation f_t of X such that $f_1(K) \subset A$ and $f_1(x) = x$ for all x in A. If we can always choose f_t so that $f_t(x) = x$ for all t and all x in A, then A is a strong C-deformation retract of X.

Note that in case C is the class of all spaces, the notion of C-deformation retract coincides with the usual notion of deformation retract.

Let CC denote the class of locally connected compacta.

LEMMA 3.1. Let X be a Hausdorff space and let A be an CC-deformation retract of X. Then the inclusion i: $A \rightarrow X$ induces isomorphisms on singular homology groups.

Proof. Let $C_*(X) = (C_q(X))_q$ be the singular chain complex of X. For each $c \in C_q(X)$, let |c| denote the carrier of c—the union of the images of the singular simplexes appearing in c. Since X is Hausdorff, c & CC.

To show that $i_*: H_q(A) \to H_q(X)$ is onto, suppose that z is a singular q-cycle in X. Choose $f_t: X \to X$ as in the above definition for $K = |z| \subset X$.

Singular homology of n-cell-like continua

By [4], p. 195, there exists a chain homotopy D between the chain maps induced by $f_0 = 1$ and f_1 . Thus $z - f_1 z = D_0 z$, so that z is homologous to the cycle $f_1 z$ in A.

Suppose that z is a q-cycle in A that bounds a (q+1)-chain c in X. Choose f_t as in the definition for K = |c|. Then $z = f_1 z = f_1 \partial c = \partial f_1 c$, so that z bounds in A. Thus $\ker i_* = 0$.

4. Iterated suspensions of a modified $\sin x^{-1}$ -continum. Let C denote the union of the arc $\{(x, -1): -1 \le x \le 0\}$ and the $\sin x^{-1}$ -continuum (2.1). Define a 1-1 correspondence $\varphi: [-2, 1] \to C$ as follows:

$$\varphi(x) = \begin{cases} (x+1, -1) & \text{for} & -2 \leqslant x \leqslant -1 \ , \\ (0, 2x+1) & \text{for} & -1 \leqslant x \leqslant 0 \ , \\ (x, \sin x^{-1}) & \text{for} & 0 < x \leqslant 1 \ . \end{cases}$$

Throughout this section and Section 6, let B denote the interval [-2,1] endowed with the topology making φ a homeomorphism. Thus B is simply another version of C with a simpler notation which we find convenient. In B consider the following subspaces, each of which clearly has the ordinary topology as a subset of the real line:

$$B^0 = \{-2, 1\}, \quad B' = [-2, 0] \cup \{1\}.$$

LEMMA 4.1. For each $n \ge 0$, $S^n(B)$ is an (n+1)-cell-like continuum having $S^n(B^n)$ as an extremal n-sphere.

Proof. This follows from Lemma 2.5, induction, and the fact that B is arc-like with extremal pair $\{-2,1\}=B^0$.

LEMMA 4.2. For each $n \ge 0$, the n-sphere $S^n(B^0)$ is a strong deformation retract of $S^n(B')$.

Proof. Obviously B^0 is a strong deformation retract of B'. Then the result follows by induction and the general fact that if A is a strong deformation retract of X, then S(A) is a strong deformation retract of S(X).

LEMMA 4.3. For each $n \ge 0$, $S^n(B')$ is a strong CC-deformation retract of $S^n(B)$.

Remark. $S^n(B')$ is of course not a deformation retract of $S^n(B)$ since $S^n(B')$ has the Čech homology of an *n*-sphere, whereas $S^n(B)$ is acyclic in Čech homology.

Before beginning the proof let us set the following notation. Let $J^n = [-1, 1]^n$, $J^{\circ n} = (-1, 1)^n$ (usual topology). For any space X, $S^n(X)$ can be viewed as a quotient space of $X \times J^n$. We define the quotient map

$$v = v_n : X \times J^n \to S^n(X)$$

recursively: v_1 has already been defined. If v_n is defined, let v_{n+1} be given by

$$\nu_{n+1}(x, (s_1, \ldots, s_{n+1})) = \nu_1(\nu_n(x, (s_1, \ldots, s_n)), s_{n+1}).$$

Again we find it convenient to write $[x, s] = \nu(x, s)$ for $(x, s) \in X \times J^n$. Note that ν maps $X \times J^{\circ n}$ homeomorphically into $S^n(X)$. If $s \in J^n$, let $|s| = \max\{|s_1|, ..., |s_n|\}$.

Proof of Lemma 4.3. For each ε in (0,1] we wish to define a certain homotopy $f_{\varepsilon}^{\varepsilon}: B \to B$ $(0 \le t \le 1)$. Let $\varepsilon_{t} = (1-t)\varepsilon + t$. Then $f_{\varepsilon}^{\varepsilon}$ is the identity on $[-2, \varepsilon/2]$; $f_{\varepsilon}^{\varepsilon}$ maps $[\varepsilon/2, \varepsilon]$ linearly onto $[\varepsilon/2, \varepsilon]$; and $f_{\varepsilon}^{\varepsilon}$ maps $[\varepsilon, 1]$ linearly onto $[\varepsilon_{t}, 1]$. Note that $f_{\varepsilon}^{\varepsilon}(x)$, x in B, is continuous simultaneously in x, t, and ε . For each ε ,

$$(4.1) f_0^{\varepsilon} = 1_R,$$

$$(4.2) f_t^{\epsilon}(x) = x for all x in B' and all t,$$

$$(4.3) f_1^{\varepsilon} \text{ maps } [-2, 0] \cup [\varepsilon, 1] \text{ onto } B'.$$

Now suppose that K is a locally connected compactum in $S^n(B)$. Using the quotient map $\nu: B \times J^n \to S^n(B)$, we get the compact subset $\nu^{-1}(K)$ of $B \times J^n$. We claim that for each number r in [0,1), there exists an ε in (0,1) such that

$$v^{-1}(K) \cap \{(x,s) \in B \times J^n : 0 < x < \varepsilon, |s| \leqslant r\} = \emptyset$$
.

Suppose that no such s can be found. Then, by the compactness of $v^{-1}(K)$ and the definition of the topology of B, there exists a sequence of points (x_i, s^i) (i = 0, 1, 2, ...) of $v^{-1}(K)$ such that $x_0 \in [-1, 0]$, $0 < x_i < 1/i$ for $i \ge 1$, $|s^i| \le r$, and $((x_1, s^1), (x_2, s^2), ...)$ converges to (x_0, s^0) in $B \times J^n$. It is clear then that every (sufficiently small) neighborhood of (x_0, s^0) in $v^{-1}(K)$ is disconnected. However, since v is a homeomorphism on $B \times J^{on}$, $v^{-1}(K)$ is locally connected at (x_0, s^0) .

Thus we obtain a sequence $1 > \varepsilon_1 > \varepsilon_2 > ... > 0$ such that for all $m \ge 1$,

$$(4.4) v^{-1}(K) \cap \{(x,s) \in B \times J^n : 0 < x < \varepsilon_m, |s| \leq 1 - m^{-1}\} = \emptyset.$$

Clearly there exists a map $\psi: J^{\circ n} \to (0, 1)$ such that

(4.5)
$$\psi(s) \leqslant \varepsilon_m \quad \text{whenever} \quad |s| \leqslant 1 - m^{-1}$$
.

Now define the homotopy $g_t: S^n(B) \to S^n(B)$ by

$$(4.6) g_t[x,s] = \begin{cases} \lceil f_t^{y(s)}(x),s \rceil & \text{if} \quad |s| < 1; \\ \lceil x,s \rceil & \text{if} \quad |s| = 1. \end{cases}$$

It is clear that q_t is continuous. By (4.1), q_0 is the identity on $S^n(B)$. By (4.2), $q_b[x, s] = [x, s]$ whenever $[x, s] \in S^n(B')$. Finally, we claim that q, maps K into $S^n(B')$. For suppose that $[x, s] \in K$. If |s| = 1, then $q_1[x,s] = [x,s]$ is in the n-fold suspension of any subset of B. If |s| < 1, then for some $m \ge 1$, $|s| \le 1 - m^{-1}$. Hence by (4.4), $x \in [-2, 0] \cup$ $\cup [\varepsilon_m, 1]$. Then by (4.5), $x \in [-2, 0] \cup [\psi(s), 1]$. Thus by (4.3) and (4.6). $g_1[x,s] \in S^n(B').$

We shall actually need a lemma a little stronger than Lemma 4.3. It is clear from the second paragraph of the proof that the same proof actually gives the following result:

LEMMA 4.4. Let K be a compact subset of $S^n(B)$ which is locally connected at each point it has in common with the subset $v(\lceil -1, 0 \rceil \times J^{\circ n})$ of $S^n(B)$. Then there exists a deformation g_t of $S^n(B)$ leaving $S^n(B')$ pointwise fixed such that $q_1(K) \subset S^n(B')$.

5. The example of Barratt and Milnor. In R^{n+1} $(n \ge 0)$, for each $i \ge 1$, let S_i^n denote the sphere with the center $(2^{-i}, 0, ..., 0)$ and radius 2^{-i} ; and let $M^n = \bigcup_{i=1}^{\infty} S_i^n$.

THEOREM. (Barratt and Milnor [1].) For $n \ge 2$, $H_q(M^n; Q)$ is uncountable when $q \equiv 1 \pmod{(n-1)}$ and q > 1.

We now describe another continuum N^{n+1} having the same homotopy type as M^n (so that the above theorem also holds for N^{n+1}). In the unit disk D^{n+1} with center at the origin, for each $i \ge 1$ let E_i denote the open disk with center $(2^{-i}+2^{-i-1},0,...,0)$ and radius 2^{-i-2} . Then let

$$N^{n+1} = D^{n+1} - \bigcup_{i=1}^{\infty} E_i.$$

It can be seen that N^{n+1} in fact are deformation retracts onto M^n .

6. Completion of the proof of Theorem 1. We construct an (n+1)-cell-like continuum X^{n+1} obtained from X^{n+1} by filling in each hole with a copy of the (n+1)-cell-like continuum $S^n(B)$ (see Section 4). Let us describe X^{n+1} more precisely.

Let P denote the positive integers with the discrete topology. For each $i \in P$ choose a homeomorphism φ_i of the n-sphere $S^n(B^0)$ onto the n-sphere $\operatorname{Bd} E_i$. Let X^{n+1} be the quotient space formed from the disjoint union $(S^n(B) \times P) \cup N^{n+1}$ by identifying (x, i) with $\varphi_i(x)$ for each $x \in \mathcal{S}^n(B)$. Let

$$\mu: (S^n(B) \times P) \cup N^{n+1} \to X^{n+1}$$

be the quotient map, and for each $i \in P$, let the imbedding

$$\mu_i \colon S^n(B) {\rightarrow} X^{n+1}$$

be defined by $\mu_i(x) = \mu(x, i)$.

LEMMA 6.1. X^{n+1} is an (n+1)-cell-like continuum.

Proof. Let $\alpha \in \text{Cov}(X^{n+1})$. For each $i \in P$, define $\alpha_i \in \text{Cov}(S^n(B))$ to be $\{\mu_i^{-1}(U): U \in a\}$. By Lemma 4.1 and Lemma 2.1, we get an a_i -map f_i of $S^{n}(B)$ onto the (n+1)-cell \overline{E}_{i} such that

$$(6.1) f_i|S^n(B^0) = \varphi_i.$$

Now define a map f of X^{n+1} onto D^{n+1} as follows: If $y \in N^{n+1}$, let $f\mu(y) = y$; if $(x, i) \in S^n(B) \times \{i\}$, let $f\mu(x, i) = f_i(x)$. The map f is well-defined and continuous, because of condition (6.1). Finally, f is an α -map. For suppose that $y \in D^{n+1}$.

Case I: y is in no \overline{E}_i . Then $f^{-1}(y) = \mu(y)$ (a single point).

Case II: $y \in \overline{E}_i$. (This can happen for at most one i.) Since f_i is an a_i -map, there exists a member U of α such that $f_i^{-1}(y) \subset \mu_i^{-1}(U)$. Then $f^{-1}(y) = \mu_i f_i^{-1}(y) \subset \mu_i \mu_i^{-1}(U) \subset U$. This completes the proof.

Remark. It is clear from the proof that $\mu(\operatorname{Bd} D^{n+1})$ is an extremal n-sphere in X^{n+1} .

For the next two lemmas, we introduce the following notation. If A is a subset of B, let

$$N^{n+1}(A) = \mu((S^n(A) \times P) \cup N^{n+1}) \subset X^{n+1}.$$

Then clearly

$$N^{n+1} \equiv N^{n+1}(B^0) \subset N^{n+1}(B') \subset N^{n+1}(B) = X^{n+1}$$
.

LEMMA 6.2. $N^{n+1}(B^0)$ is a strong deformation retract of $N^{n+1}(B')$.

Proof. Lemma 4.2 says that $S^n(B^0)$ is a strong deformation retract of $S^n(B')$. Hence choose the appropriate deformation $f_t: S^n(B') \to S^n(B')$. Then we define the required deformation $g_t: N^{n+1}(B') \to N^{n+1}(B')$ by $g_t\mu(x,i) = \mu(f_t(x),i)$ if $x \in S^n(B')$ and $g_t\mu(y) = \mu(y)$ if $y \in N^{n+1}$.

LEMMA 6.3. $N^{n+1}(B')$ is a strong CC-deformation retract of $N^{n+1}(B)$ $= X^{n+1}$.

Proof. Let K be a locally connected compactum in X^{n+1} . For each $i \in P$, let K_i be the compact subset $\mu_i^{-1}(\mu_i(S^n(B)) \cap K)$ of $S^n(B)$. Then K_i satisfies the hypotheses (replacing K) in Lemma 4.4. This is so because the imbedding $\mu_i : S^n(B) \to X^{n+1}$ obviously maps $\nu([-1, 0] \times J^{on})$ into the interior of $\mu_i(S^n(B)) \subset X^{n+1}$. Thus by Lemma 4.4, choose a deformation g_t^i of $S^n(B)$ leaving $S^n(B')$ pointwise fixed such that $g_1^i(K_i) \subset S^n(B')$. Then we define the required deformation $g_t: X^{n+1} \to X^{n+1}$ by $g_t \mu_i(x) = \mu_i(g_t^i(x))$ for each $i \in P$ and each $x \in S^n(B)$, and $g_t \mu(y) = \mu(y)$ for each $y \in N^{n+1}$. Clearly q_t leaves $N^{n+1}(B')$ pointwise fixed and $q_1(K) \subset N^{n+1}(B')$.

COROLLARY 6.4. The (singular) homology groups of X^{n+1} are isomorphic to those of M^n . In particular, $H_q(X^{n+1};Q)$ is uncountable for $q \equiv 1 \pmod{(n-1)}$, q > 1.

Proof. This follows from Lemmas 6.3, 3.1, 6.2, and the fact that $N^{n+1} \equiv N^{n+1}(B^0)$ deformation retracts onto M^n .

In particular, for the 3-cell-like continuum X^3 , we have

(6.2)
$$H_q(X^3; Q)$$
 is uncountable for all $q \ge 2$.

Now X^3 possesses an extremal 2-sphere (see the remark following Lemma 6.1). In particular, X^3 possesses an extremal pair $\{x, x'\}$. By Lemma 2.6, choose 3-cell-like continua (Y^3, y, y') and (Z^3, z, z') with extremal pairs such that

(6.3)
$$H_0(Y^3; Q)$$
 and $H_1(Z^3; Q)$ are uncountable.

Then let W^3 be the continuum formed by taking the arc join

$$(X^3, x, x') \oplus (Y^3, y, y') \oplus (Z^3, z, z')$$
.

By Lemma 2.3, W^3 is 3-cell-like. And from Lemma 2.2, (6.2), and (6.3) it follows that $H_q(W^3;Q)$ is uncountable for all $q\geqslant 0$. By Lemma 2.5, for each $n\geqslant 3$, the continuum $W^n=W^3\times I^{n-3}$ is n-cell-like. And $H_*(W^n;Q)\approx H_*(W^2;Q)$ by a deformation retraction. This completes the proof of Theorem 1.

7. Proof of Theorem 2. The proof depends on the following lemma.

LEMMA 7.1. Every non-degenerate locally connected subcontinuum of an arc-like continuum is an arc.

Proof. It is clear (for instance, from the α -map definition) that every non-degenerate subcontinuum of an arc-like continuum is itself arc-like. If X is a locally connected arc-like continuum, then X contains no simple closed curves and no triods (since these are not arc-like), so that X is a dendrite containing no triods. From [10], p. 88, (1.1) (ii), it follows that such a dendrite is an arc. See also [6], p. 163.

A stronger result than Theorem 2 holds; namely, if X is an arc-like continuum, then the homotopy groups $\pi_q(X, x_0)$ (q > 0, any base point x_0) are zero. For by Lemma 7.1, if f is a map of a q-sphere into X, the image of f must be an arc or a point. One may also easily argue directly for the homology.

References

- [1] M. G. Barratt and J. Milnor, An example of anomalous singular homology, Proc. Amer. Math. Soc. 13 (1962), pp. 293-297.
- [2] R. H. Bing, Concerning hereditarily indecomposable continua, Pacific Journ. Math. 1 (1951), pp. 43-51.
 - [3] Snake-like continua, Duke Math. Journ. 18 (1951), pp. 653-663.
- [4] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton, N. J., 1952.

- [5] B. Knaster, Un continu dont tout sous-continu est indécomposable, Fund. Math. 3 (1922), pp. 247-286.
- [6] S. Mardešić and J. Segal, ε-mappings onto polyhedra, Trans. Amer. Math. Soc. 109 (1963), pp. 146-164.
- [7] M. C. McCord, Universal T-like compacta, Mich. Journ. Math. 13 (1966), pp. 71-85.
 - [8] Embedding T-like compacta in manifolds, to appear in Can. Journ. Math.
- [9] E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math. Soc. 63 (1948), pp. 581-594.
- [10] G. T. Whyburn, Analytic topology, Amer Math. Soc. Colloq. Publications, Vol. 28, 1942.

Reçu par la Rédaction le 24, 12, 1965