

Stable points of a polyhedron

by

W. Kuperberg (Warszawa)

DEFINITION 1. A point a of a space M is labile (see [3], p. 159, definition of a homotopically labile point) if for each neighbourhood U of a there exists a continuous function $h\colon M\times \langle 0,1\rangle \to M$ (a homotopy) which satisfies the following four conditions:

- (1) h(x, 0) = x for every $x \in M$;
- (2) h(x, t) = x for every $x \notin U$, $t \in (0, 1)$;
- (3) $h(x, t) \in U$ for every $x \in U$, $t \in (0, 1)$;
- (4) $h(x,1) \neq a$ for every $x \in M$.

A point a is stable if it is not labile.

The term "lability" is used in paper [4] in an other sense.

DEFINITION 2. A point $a \in M$ is almost-labile (see [4], definition of a labile point) if it satisfies Definition 1, condition (4) being replaced by

(4') there exists an $a' \in U$ such that $h(x, 1) \neq a'$ for every $x \in M$.

It is obvious that if a is a labile point, then it is almost-labile, but not conversely; the set of all almost-labile points in M is closed; on the other hand, the set of all labile points in M is not necessarily closed.

Let P be a polyhedron, T its triangulation. The simplex $\Delta \in T$ is said to be a *free face* of P if there exists exactly one simplex Δ' in T such that Δ is a proper face of Δ' . It is easy to see that the property "to have a free face" does not depend on the triangulation; it is also clear that if a polyhedron has a free face, then it contains a labile point. Moreover, if the dimension of the free face is >0, then all the points lying in the interior of that free face are labile.

H. Hopf and E. Pannwitz showed (see [4], p. 446) that for every integer $n \ge 2$ there exists a homogeneously n-dimensional polyhedron which has no free faces but contains two almost-labile points (certainly, for n < 2 it is impossible). However, by Theorem 1 (see § 1 of this paper) it follows that the examples given by Hopf and Pannwitz contain no labile points.

In § 1 of this paper it is shown that for every integer $n \ge 3$ there exists a homogeneously n-dimensional polyhedron which has no free

faces but contains (at least) two labile points, and that for n < 3 such a situation is impossible.

In paper [3] K. Borsuk and J. W. Jaworowski raised the following question: "Is the stability of points invariant under Cartesian multiplication?" In § 2 a negative answer to this question is given; namely two polyhedra A and B are constructed such that the Cartesian product $A \times B$ contains a labile point the coordinates of which are both stable in the corresponding factors; in that example B is a segment.

§ 1. An example of a homogeneously *n*-dimensional polyhedron $(n \ge 3)$ without free faces but with labile points. Let CX be the *cone* over a space X, i.e. the factor-space $X \times \langle 0, 1 \rangle / X \times \langle 0 \rangle$. Each point $[(x, t)] \in CX$, where $t \ne 0$ may be identified with the point $(x, t) \in X \times (0, 1)$, whence we can write $X \times (0, 1) \subset CX$.

The point $c = [X \times \{0\}] = [(x, 0)]$ is called the vertex of the cone, the set $X \times \{1\}$ is said to be the basis of the cone.

The space X is called *contractible* if there exists a retraction of the cone over X onto its basis.

LEMMA 1. The vertex of the cone CX over a compact space X is labile if and only if X is contractible.

Proof. 1. Let the vertex $c \in CX$ be labile. Since the set $U = CX - X \times \{1\}$ is a neighbourhood of c, there exists a homotopy $h \colon CX \times X \times \{0,1\} \to CX$ satisfying conditions (1)-(4) (Definition 1) with respect to c. Let us write f(z) = h(z,1) for each $z \in CX$. The function f has two properties:

- (*) $f(z) \neq c$ for every $z \in CX$ (this follows from (4));
- (**) f(z) = z for every $z \in X \times \{1\}$ (this follows from (2)).

By (*) we can write $f\colon CX\to CX-\{e\}$. Now, let $\pi\colon CX-\{e\}\to X\times\{1\}$ be the projection given by $\pi(x,t)=(x,1)$. By (**) we infer that the composition $\pi\circ f\colon CX\to X\times\{1\}$ is a retraction; consequently X is contractible.

2. Now, let X be contractible; this means that there exists a retraction $r : CX \to X \times \{1\}$. Let U be a neighbourhood of the vertex c of CX.

Let U_{ε} (for every positive real number $\varepsilon \leqslant 1$) denote the set $\{[(x,t)] \in \mathrm{C}X \colon t \leqslant \varepsilon\}$ and let $\varphi_{\varepsilon} \colon \mathrm{C}X \to U_{\varepsilon}$ be the homeomorphism given by the formula $\varphi_{\varepsilon}[(x,s)] = [(x,\varepsilon\cdot s)]$. Furthermore, let U_{0} be the empty set. Since the space X is compact, there exists a $\lambda > 0$ such that $U_{\lambda} \subset U$. This implies that the homotopy $h \colon \mathrm{C}X \times \langle 0,1 \rangle \to \mathrm{C}X$ given by the formula

$$h(z,t) = egin{cases} z & ext{for every} & z
otin U_{\lambda \cdot t}, \ arphi_{\lambda \cdot t} \circ r \circ arphi_{\lambda \cdot t}^{-1}(z) & ext{for every} & z
otin U_{\lambda \cdot t}, \end{cases}$$

satisfies conditions (1)-(4) with respect to the vertex c; consequently it is labile.

Remark. The lability (and almost-lability) is a local property, i.e. if U is a neighbourhood of a point $x \in X$, V is a neighbourhood of $y \in Y$ and there exists a homeomorphism of U onto V which sends x onto y, then the lability (or almost-lability) of x in X implies the lability (or almost-lability) of y in Y. Hence if a point $x \in X$ has a neighbourhood U which is (homeomorphic to) a cone with the vertex x over a compact set C, then x is labile if and only if C is contractible. Now, let us suppose that P is a polyhedron, and x an (arbitrary) point of it. Let us choose a triangulation T of P such that x is a vertex. Let S_x be the star of the vertex x, i.e. the union of all simplexes $A \in T$ such that $x \in A$; let S_x be the boundary of S_x , i.e. the union of all simplexes $A \in T$ such that $A \subset S_x$ and $x \notin A$. Let us remark that S_x is a neighbourhood of x and that S_x is a cone with the vertex x over S_x .

The above remark and Lemma 1 imply:

THEOREM 1. A vertex x of a triangulation T of a polyhedron P is labile if and only if the boundary of the star of x is contractible.

Let SX be the suspension of a space X, i.e. the factor-space $(X \times (-1,1)/X \times \{-1\})/X \times \{1\}$. The space SX is homeomorphic to the space formed by two cones X disjoint apart from the common basis. The points $[X \times \{-1\}]$ and $[X \times \{1\}]$ are called the vertices of the suspension; the set $X \times \{0\}$ is called the basis of the suspension.

Let us observe the following four simple properties of the operation of suspension:

- (i) If X is contractible then so is SX.
- (ii) The vertices of the suspension SX are labile if and only if X is contractible (see Lemma 1).
- (iii) Suspension of a polyhedron without free faces is also a polyhedron without free faces.
- (iv) Suspension of a homogeneously n-dimensional polyhedron is a homogeneously (n+1)-dimensional polyhedron.

COROLLARY 1. There are no labile points in the polyhedra constructed by Hopf and Pannwitz in [4] on page 446.

Proof. The examples given by Hopf and Pannwitz are constructed in the following manner: Let Q^n be the n-cube and S^{n-1} its boundary; let p_0 be a fixed point of S^1 . Let B^{n-1} be the subset $(S^{n-2} \times S^1) \cup (Q^{n-1} \times \{p_0\})$ of the product $Q^{n-1} \times S^1$ (for $n \ge 2$) and let $P^n = SB^{n-1}$ (the suspension of B^{n-1}). The polyhedron P^n is homogeneously n-dimensional, it has no free faces and the vertices of the suspension are almost-labile (see [4], p. 446). But B^{n-1} is not contractible which implies by (ii) that the vertices of the suspension are stable. Now, let x be an other point

in P^n . If $x \in S(S^{n-2} \times \{p_0\})$ then S_x^* is formed by three (n-1)-cubes which are disjoint apart from the common boundary; such a polyhedron is not contractible. If $x \notin S(S^{n-2} \times \{p_0\})$ then S_x^* is an (n-1)-sphere.

Therefore, by Theorem 1, P^n contains no labile points.

COROLLARY 2. If P is a polyhedron of dimension at most 2 without free faces then each point of it is stable.

Proof. On the contrary, let us suppose that $v \in P$ is labile.

We can suppose that v is a vertex, changing the triangulation if needed. Then S_v^* , i.e. the boundary of the star S_v of v, is a contractible (in particular non-empty) polyhedron of dimension at most 1.

In fact: $\dim S_v^{\bullet} = \dim S_v - 1 \leq \dim P - 1 = 1$. Hence S_v^{\bullet} is a single point or a tree, depending of whether the dimension of P at the point v is equal to 1 or 2. If S_v^{\bullet} is a point then S_v is the only 1-simplex for which v is an end-point. In this case the 0-simplex v is a free face of P. If S_v^{\bullet} is a tree then it contains a point P which is a free face in S_v^{\bullet} (namely one of the points of order 1 in S_v^{\bullet}) and then the 1-simplex which joins the points P and P0 is a free face in P1; therefore in both cases we obtain a contradiction.

COROLLARY 3. For every integer $n \ge 3$ there exists a homogeneously n-dimensional polyhedron without free faces but with label points.

Proof. Let P_2 be an arbitrary homogeneously 2-dimensional contractible polyhedron which contains no free faces (for example the homogeneously 2-dimensional contractible polyhedron which is not a union of two contractible polyhedra different from it; the construction of such an example was given by K. Borsuk in [2]).

Now we define P_n by induction as the suspension of P_{n-1} (for $n \ge 3$). Let p_n and q_n denote the vertices of the suspension $SP_{n-1} = P_n$. P_2 being contractible, by (i) P_3 is also contractible; by induction all the P_n are contractible. Thus by (ii) the points p_n and q_n are labile in P_n (for each $n \ge 3$). P_2 contains no free faces, and therefore by (iii) P_3 and further all the P_n contain no free faces. Since P_2 is homogeneously 2-dimensional, each P_n (for $n \ge 2$) is by (iv) and by induction homogeneously n-dimensional, which completes the proof.

§ 2. A Cartesian product of two polyhedra which contains a labile point with both coordinates stable in the correspondent factors. By the $join\ X \land Y$ of two spaces X and Y we mean the subset

$$CX \times (Y \times \{1\}) \cup (X \times \{1\}) \times CY$$

of the product $CX \times CY$, where CX and CY are cones over X and Y respectively. If Y is a two-point-space, then $X \wedge Y$ is homeomorphic to the suspension SX of the space X.

LEMMA 2. The spaces $CX \times CY$ and $C(X \wedge Y)$ are homeomorphic; moreover, there exists a homeomorphism $\varphi \colon CX \times CY \to C(X \wedge Y)$ such that

$$\varphi([X \times \{0\}], [Y \times \{0\}]) = [(X \land Y) \times \{0\}].$$

Proof. If $z \in OX \times OY$ then z is a pair (u, v), where $u \in OX$, $v \in OY$; further u = [(x, t)], v = [(y, s)], where $x \in X$, $y \in Y$, s and $t \in (0, 1)$.

The function $\varphi: CX \times CY \rightarrow C(X \land Y)$ obtained by the formula

$$arphi(z) = egin{cases} [(X \wedge Y) imes \{0\}] & ext{for} & s = t = 0 \ , \ [([x,t/s],[y,1]),s] & ext{for} & t \leqslant s
eq 0 \ , \ [([x,1],[y,s/t]),t] & ext{for} & s \leqslant t
eq 0 \end{cases}$$

is the required homeomorphism.

THEOREM 2. There exists a polyhedron A containing a stable point a such that pair (a,0) is a labile point in the product $A \times \langle -1,1 \rangle$ of A and the closed interval $\langle -1,1 \rangle$.

Proof. Let K be an arbitrary polyhedron which satisfies the following two conditions:

- (I) K is not contractible;
- (II) the suspension of K is contractible.

For example, let K be the polyhedron constructed by E. G. Begle (see [1], p. 386) in the following manner: Let P be a Poincaré sphere, i.e. a 3-dimensional polyhedron with the homology group of a 3-sphere and with a non-vanishing fundamental group (see [5], p. 245); K is the polyhedron obtained by removing an open 3-simplex from P.

E. G. Begle shows in [1] that K satisfies conditions (I) and (II). Now, let A be the cone CK over K and let a be the vertex of that cone. Naturally, by (I) and by Lemma 1, a is stable in A.

The interval $\langle -1, 1 \rangle$ is a cone with the vertex 0 over its two-point-subset $D = \{-1\} \cup \{1\}$, whence by Lemma 2 the product $A \times \{-1, 1\} = CK \times CD$ is (topologically) a cone with the vertex (a, 0) over the join $K \wedge D$, i.e. over the suspension SK of K. Therefore, by (Π) and by Lemma 1, the point (a, 0) is labile in the product $A \times \langle -1, 1 \rangle$.

COROLLARY 4. The stability of points is not invariant under Cartesian multiplication.

In fact: the points a and 0 are both stable in A and in $\langle -1, 1 \rangle$ resp.

References

[1] E. G. Begle, Intersections of contractible polyhedra, B. A. M. S. 49 (1943) pp. 386-387.

[2] K. Borsuk, Über das Phänomen der Unzerlegbarkeit in der Polyedertopologie, Comm. Math. Helv. 8 (1935), pp. 142-148.

W. Kuperberg

[3] K. Borsuk and J. W. Jaworowski, On labil and stabil points, Fund. Math. 39 (1952), pp. 159-175.

[4] H. Hopf, E. Pannwitz, Über stetige Deformationen von Komplexen in sich,

Math. Ann. 108 (1933), pp. 433-465.

48

[5] R. L. Wilder, Topology of manifolds, New York 1949.

Recu par la Rédaction le 3.6.1965

A structure theory for a class of lattice ordered semirings*

by

F. A. Smith (Columbus, Ohio)

Introduction. A semiring S is a set of elements which is closed under two binary associative commutative operations (+) and (\cdot) such that a(b+e)=ab+ac for all $a,b,c \in S$, containing elements 0 and 1 such that s+0=s and $s\cdot 1=s$ for all $s\in S$. A semiring S will be called positive if 1+s has a multiplicative inverse for all $s\in S$.

The theory of semirings is relatively new. Bourne in [1] and Bourne and Zassenhaus in [2] have presented some partial results generalizing the Jacobson structure theory for semirings. In 1955, Słowikowski and Zawadowski in [7] studied the structure space of commutative positive semirings. Although they did not attempt to present an algebraic structure theory, their work seemed to indicate that a structure theory was possible for this class of semirings.

If S is a semiring, let $T(S) = \{x \in S : x + x = x\}$ and $K(S) = \{x \in S : x + a = x + b \text{ implies } a = b\}$. These elements will be called respectively the a-idempotent and a-cancellable elements. In Section 1 we prove that every positive semiring is a-idempotent or contains a copy of the nonnegative rational numbers.

On every semiring S there is a natural quasi-order defined by letting $a \le b$ if a+x=b is solvable in S. A semiring S will be called an l-semiring if S is lattice ordered under the natural quasi-order and $a+(b\vee c)=(a+b)\vee (a+c)$ and $a+(b\wedge c)=(a+b)\wedge (a+c)$ for all $a,b,c\in S$. A semiring S will be called archimedian if $nx\le a$ for n=1,2,... implies $x\in T$. In Section 3, we show that in a positive archimedian l-semiring S, then $K(S)=\{x\in S:x\wedge T=\{0\}\}$ and that if $\{1\wedge k:k\in K\}$ has a supremum in K, then $S=K+\{x\in S:x\wedge K=\{0\}\}$. In Section 4, we show that both T and K are an intersection of prime l-ideals but that even under very strong hypothesis, the same is not true for T+K.

^{*} This research was supported by the National Science Foundation on contract no. 3335 and is part of the author's doctoral dissertation written under the direction of Professor Melvin Henriksen.