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Stable points of a polyhedron
by

W. Kuperberg (Warszawa)

DerFINITION 1. A point a of a space M is labile (see [3], p. 159, def-
inition of a homotopically labile point) if for each neighbourhood U of a
there exists a continuous funetion h: M x {0, 1>—3 (a homotopy)
which satisfies the following four conditions:

(1) h(z,0)=2 for every xzelM;
(2) hiz,t)=a for every ax¢U, te0,1>;
(3) h(x,t)eU  for every wmeU, te40,1);
(4) h(r,1)#*a for every wmell.
A point a is stable if it is not labile.
The term “lability” is used in paper [4] in an other sense.
DErFINITION 2. A point a € M is almosi-labile (see [4], definition of
a labile point) if it satisfies Definition 1, condition (4) being replaced by

(4') there exists an a’e U such that h(z,1) £ a’ for every z e M.

It is obvious that if a is a labile point, then it is almost-labile, but
not conversely; the set of all almost-labile points in M is closed; on the
other hand, the set of all labile points in M is not necessarily closed.

Let P be a polyhedron, 7' its triangulation. The simplex A e T is
said to be a free face of P if there exists exactly one simplex A" in T
such that 4 is a proper face of A’. It is easy to see that the property
“to have a free face” does not depend on the triangulation; it is also
clear that if a polyhedron has a free face, then it contains a labile point.
Moreover, if the dimension of the free face is >0, then all the points
lying in the interior of that free face are labile.

H. Hopf and E. Pannwitz showed (see [4], p. 446) that for every
integer » > 2 there exists a homogeneously #n-dimensional polyhedron
which has no free faces but contains two almost-labile points (certainly,
for n < 2 it is impossible). However, by Theorem 1 (see § 1 of this paper)
it follows that the examples given by Hopf and Pannwitz contain no
labile points.

In § 1 of this paper it is shown that for every integer # > 3 there
exists a homogeneously #-dimensional polyhedron which has no free
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faces but contains (at least) two labile points, and that for n < 3 such
a situation is impossible.

In paper [3] K. Borsuk and J. W. Jaworowski raised the following
question: “Is the stability of points invariant under Cartesian multi-
plication?” In § 2 a negative answer to this question is given; namely
two polyhedra 4 and B are constructed such that the Cartesian prod-
net A XB contains a labile point the coordinates of which are both
stable in the corresponding factors; in that example B is a segment.

§1. An example of a homogeneously n-dimensional pol-
yhedron (n > 3) without free faces but with labile points.
Let CX Dbe the cone over a space X, i.e. the factor-space A7 X <0, 13/X x
% {0}. Bach point [(#, )] € OX, where ¢ 5= 0 may be identified with the
point (z, t) e X x (0,1, whence we can write X x (0,1>CCX.

The point ¢ =[X X {0}] =[(», 0)] is called the werfexr of the cone,
the set X x {1} is said to be the basis of the come.

The space X is called contractible if there exists a retraction of the
cone over X onto its basis.

LemMa 1. The vertew of the cone CX over a compact space X is labile
if and only if X 4is contractible.

Proof. 1. Let the vertex ¢ e CX be labile. Since the set U = X —
—X x {1} is a neighbourhood of ¢, there exists a homotopy h: OX x
X (0,1>—0X satisfying conditions (1)-(4) (Definition 1) with respect
to ¢. Let us write f(2) = h(z, 1) for each z ¢ CX. The function f hasg two
properties:

(%) f(2) # ¢ for every zeCX (this follows from (4));
(**) f(2) == for every ze¢ X x {1} (this follows from (2)).

By (%) we can v@ite f: 0X ->CX —{c}. Now, let n: CX —{o}-+X x {1}
be the .1:5).1'03601310;1 (g}lXYen by ®(x,t) = (#,1). By (xx) we infer that the
composition 7o f: —X x {1} is a retraction; cons i -
composit ; consequently X is con

2. Now, let X be contractible; this means that there exists a re-
tlf'a(ét;m 7 CX—>Xx{1}. Let U be a neighbourhood of the vertex ¢
o .

. Let U, (for every positive real number & < 1) denote the set {[(z, 0]
€CX: 1< ¢} and let @: CX—U, be the homeomorphism given by the
fqrmula ¢,[($,8)j='[(m,s~8)]. Furthermore, let U, be the empty set.
21}111.% .thelspace X is compact, there exists a 1> 0 guch that U, CU

18 implies that : i .
P~ p. at the homotopy h: CX X (0,1>-+0X given by the

for every 2¢U,.,

Ze Uz.t

hie,t) =1 7

@iorogrilz)  for every
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satisfies conditions (1)-(4) with respect to the vertex ¢; consequently
it is labile. :

Remark. The lability (and almost-lability) is a local property,
ie. if U is a neighbourhood of a point ¢ X, V is a neighbourhood of
y e Y and there exists a homeomorphism of U onto V which sends @
onto y, then the lability (or almost-lability) of # in X implies the lability
(or almost-lability) of ¥ in ¥. Hence if a point « ¢ X has a neighbour-
hood U which is (homeomorphic to) a cone with the vertex » over a com-
pact set C, then x is labile if and only if ¢ is contractible. Now, let us
suppose that P is a polyhedron, and % an (arbitrary) point of it. Let us
choose a triangulation T of P such that & is a vertex. Let S be the star
of the vertex =z, i.e. the union of all simplexes 4 €T such that z e4;
let 82 be the boundary of Sz, i.e. the union of all simplexes 4 €T such
that AC S8z and » ¢ 4. Let us remark that 8 is a neighbourhood of #
and that S, is a cone with the vertex x over S:.

The above remark and Lemma 1 imply: ‘

THEOREM 1. A vertex « of a triangulation T of a polyhedron P s
labile if and only if the boundary of the star of » i8 contractible.

Let SX be the suspension of a spaee X, i.e. the factor-space (Xx
x {(—1,13/X x {—1})/X x {1}. The space SX is homeomorphic to the
space formed by two cones X disjoint apart from the common basis.
The points [X x {—1}] and [X x {1}] are called the vertices of the sus-
pension; the set X x {0} is called the basis of the suspension.

Let us observe the following four simple properties of the operation
of suspension:

(i) ¥ X is contractible then so is S8X.

(ii) The vertices of the suspension SX are labile if and only if X is
contractible (see Lemma 1).

(iil) Suspension of a polyhedron without free faces is also a poly-
hedron without free faces.

(iv) Suspension of a homogeneously n-dimensional polyhedron is
a homogeneously (n-1)-dimensional polyhedron.

CoROLLARY 1. There are no labile points in the polyhedra consiructed
by Hopf and Pannwitz in [4] on page 446.

Proof. The examples given by Hopf and Pannwitz are constructed
in the following manner: Let ¢" be the n-cube and 8! its boundary;
let p, be a fixed point of §*. Let B"™" be the subset (82 84 u (@ x
% {po}) of the product @*'x 8" (for n>2) and let P" =SB"" (the
suspension of B*1). The polyhedron P" is homogeneously n-dimensional,
it has no free faces and the vertices of the suspension are almost-labile
(see [4], p. 446). But B™! is not contractible which implies by (i) that
the vertices of the suspension are stable. Now, let « be an other point
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in P* If & € S(8" % X {p,}) then 83 is formed by three (1 —1)-cubes which
are disjoint apart from the common boundary; such g polyhedron is not
contractible. If @ ¢ S(8"*x {p,}) then S is an (n—1)-sphere.

Therefore, by Theorem 1, P" contains no labile points.

COROLLARY 2. If P is a polyhedron of dimension at most 2 without
free faces then each point of it 4s stable.

Proof. On the contrary, let us suppose that » e P is labile.

We can, suppose that v is a vertex, changing the triangulation it
needed. Then S, i.e. the boundary of the star Sy of o, is a contractible
(in particular non-empty) polyhedron of dimension at most 1.

In fact: dim§; = dim&,—1 < dimP—1 =1. Hence 85 is a single
point or a tree, depending of whether the dimension of P at the point v
is equal to 1 or 2. Tf §7 is a point then S, is the only 1-simplex for which
v is an end-point. In this case the 0-simplex » is a free face of P. If Sy is
a tree then it contains a point p which is a free face in S; (namely one
of the points of order 1 in S;) and then the 1-simplex which joins the
poits p and v i3 a free face in P; therefore in both cases we obtain
a contradiction. .

- COROLLARY 3. For every integer n >3 there emists a homogeneously
n-dimensional polyhedron without free faces but with labile points.

Proof. Let P, be an arbitrary homogeneously 2-dimensional con-
tractible polyhedron which contains no free faces (for example the homo-
geneously 2-dimensional contractible polyhedron which is not a union
of two contractible polyhedra different from it; the construction of guch
an example was given by K. Borsuk in [2].

Now we define P, by induction as the suspension of P,_; (for n > 3).

"Let p» and gn denote the vertices of the suspension SP,_, = P;.
P, being contractible, by (i) P, is also contractible; by induction all the
Py are contractible. Thus by (ii) the points p, and g, are labile in P,
(for each n = 3). P, contains no free faces, and therefore by (iii) P, and
further all the P, contain no free faces. Since P, is homogeneously
2-dimensional, each Py (for u > 2) is by (iv) and by induction homo-
geneously »-dimensional, which completes the proof.

§2. A Cartesian product of two polyhedra which contains
a labile point with both coordinates stable in the corre-
spondent factors. By the join X A ¥ of two spaces X and Y we
mean the subset

CXX(¥X{1) v (XTx{1)YxCY

of the produet CX X C¥, where CX and CY are cones over X and ¥

respectively. If ¥ is a two-point-space, then X A ¥ is homeomorphic
to the suspension SX of the space X.
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LevmMa 2. The spaces OX X CY and C(X A Y) are homeomorphic;
moreover, there exists @ homeomorphism @: CX X CY —C(X A X) such that
e([Xx {031, [¥ X {0}]) =[(X A ¥)x {0}].

Proof. If ze CX X CY then z is & pair (u, v), where u € CX, ve CY;
further u = [(#, f)], v = [(¥, 8)], where 2 ¢ X, ye ¥, s and te<0,1.
The function p: CX X CY—-C(X A Y) obtained by the formula

[(X A X)x{0}] for s=t=0,
o2) — | (2, s1, [y, 1D), 8] for  t<s 0,
([, 11,1y, sfe]), 1] for s<i#0

is the required homeomorphism.

THEOREM 2. There exists a polyhedron A containing a stable point
a such that pair (a,0) is a labile point in the product Ax (—1,1> of 4
and the closed interval (—1,1).

Proof. Let K be an arbitrary polyhedron which satisfies the follow-
ing two conditions:

(I) K is not contractible;

(IT) the suspension of K is contractible.

For example, let K be the polyhedron constructed by E. G. Begle
(see [1], p. 386) in the following manner: Let P be a Poinearé sphere,
i.e. a 3-dimensional polyhedron with the homology group of a 3-sphere
and with a non-vanishing fundamental group (see [5], p. 248); K is the
polyhedron obtained by removing an open 3-simplex from P.

E. G. Begle shows in [1] that K satisfies conditions (I) and (II).

Now, let 4 be the cone CK over K and let a be the vertex of that
cone. Naturally, by (I) and by Lemma 1, a is stable in A.

The interval {<—1, 1) is a cone with the vertex 0 over its two-point-
subset D = {—1} w {1}, whence by Lemma 2 the product 4 x {-1, 1.>
= K x CD is (topologically) a cone with the vertex (a, 0) over the join
K A D, ie. over the suspension SK of K. Therefore, by (II) and by
Lemma 1, the point (a, 0) is labile in the produet 4 X {—1,15.

COROLLARY 4. Thhe stability of points is not invariant under Cartesian
multiplication.

In fact: the points a and 0 arve both stable in 4 and in {—1,1) resp.
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A structure theory for a class
of lattice ordered semirings *

by
F. A. Smith (Columbus, Ohio)

Introduction. A semiring 8 is a set of elements which is closed
under two binary associative commutative operations (<) and (-) such
that a(b+-¢) = ab+ac for all a,b,ce S, containing elements 0 and 1
such that s+0 = s and s-1 = s for all s ¢ 8. A semiring 8 will be called
positive if 1--s has a multiplicative inverse for all s e S.

The theory of semirings is relatively new. Bourne in [1] and Bourne
and Zassenhaus in [2] have presented some partial results generalizing
the Jacobson structure theory for semirings. In 1955, Slowikowski and
Zawadowski in [7] studied the structure space of commutative positive
semirings. Although they did not attempt to present an algebraic struc-
ture theory, their work seemed to indicate that a structure theory was
possible for this class of semirings.

If § is a semiring, let T(8) ={wxeS: o+2 = 2} and K(8) = {weS:
£+4a = x+b implies @ = b}. These elements will be called respectively
the a-idempotent and a-cancellable elements. In Section 1 we prove that
every positive semiring is a-idempotent or contains a copy of the non-
negative rational numbers.

On every semiring § there is a natural quasi-order defined by letting
a < bif a+o = b is solvable in §. A semiring § will be called an 1-sems-
ring if § is lattice ordered under the natural quasi-order and a—(b V ¢)
= (a+0d) V(a+¢) and a4+ (b Ac)=(a+b) A (a+c) for all a,b,ceS.
A semiring § will be called archimedian if ne < a for n=1,2,.. im-
plies # ¢ T'. In Section 3, we show that in a positive archimedian I-semi-
ring 8, then K(8)={wef: s A T = {0} and that if {1 A %: keK}
has & supremum in K, then 8§ = E+{ze¢8: 2 A K = {0}}. In Section 4,
we show that both 7' and K are an intersection of prime I-ideals but
that even under very strong hypothesis, the same is not true for 7K.

* This research was supported by the National Science Foundation on contract
no. 3335 and is part of the author’s doctoral dissertation written under the direction
of Professor Melvin Henriksen.
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