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STUDIA MATHEMATICA, T. XXVI. (1966)

On the time optimal control in the case of non-uniqueness
by

K. MALANOWSKI (Warszawa)

1. Introduction. The problem of time optimal control of linear
systems has been solved by many authors using varions methods ([2],
[5]-[10], [12]-[14], [18]). But almost in all those papers the problem
has been solved under the assumption that the time optimal control
is unique. The only exceptions are papers [12] and [14]. In paper [12]
only qualitative results are given, and in [14] one method of finding
time optimal control in the case of non-uniqueness is proposed. The pur-
pose of this paper is to give a possibly exhaustive description of the prob-
lem of non-unique time optimal control of linear systems. It will be based
on the methods given in papers [1], [2], [5]-[10], [13]-[15], and so the
basic results of those papers are presented below.

2. The basic results of application of functional analysis to the time
optimal control problem. There is given a physical system described by
the linear differential equation

1) #(1) = F(t)a(?)+ G (@) (i),

where F(t) and G () are matrices n Xn-dimensional and n X m-dimensional
respectively. Elements of these matrices are meagurable and almost
everywhere bounded functions of .

An n-dimensional space X will be called a state space and an n-di-
mengional vector z(t)e X will be called the state of system (1) at the time 1.
The m-dimensional vector u(f) belonging to the space F will be called
the control of system (1).

In the space E there is given a set U(tf) which will be called the
control region. We will assume that U(t) is a closed compact and convex
polyhedron spanned on p not necessarily different vectors, which are
measurable bounded functions of parameter f.

Moreover, it will be required that there exist a positive number
a > 0 not depending upon %, such that %(t)e U(?) implies — au(f)e U(1).

The vector function % defined on some interval [t,, 7] will be called
an admissible control on that interval if 4 (¢) e U (1) for almost every te[t,, T].
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There is given an initial state of system (1) #(f) = %, and a required
terminal state ;.

Our purpose is to find the time optimal control, i.e. such an admis-
sible control function which transfers the trajectory of the system from
the state @, to #, in minimum time.

The solution of equation (1) satisfying the initial condition @(f) = =,
is [3] given by

i
@) a(t) = B, )+ [ B, 7)E()u(r)dr,
ty
where ®(i,1,) is a fundamental matrix solution of the equation &(2)
= F(i)a(t) satisfying the initial condition @ (f,1%,) = I.
After simple rearrangement we obtain from equation (2)

t
(2a) o(t) = [A(r)u(r)dr,
¢
where ’
o(t) = P(ty, )@ () — 2o,
(3)
A(t) = By, G (D).

Note that the dependence between c¢(t) and #(¢) is biunique. Let
the minimum time of control be ¢, —7?,; then system (1) is transferred
from the state z(t,) = @, to x(t,) = o, if and only if it is transferred from
6(ty) = 0 to o(ty) = e1(ts) = Dby, 1)1 — .

Further we will investigate system (1) in the coordinates ¢(#) only.
To determine the time optimal control first we must find the minimum
time of control ¢,—?,. This will be done by the method given by Kra-
sovskil [6], [7].

The control region U(t) can be treated as a unit sphere inducing
at the time  the Minkowskian norm |-| in the space E; spanned on U (%)
(4], [14], [15]. :

Now we assume that the time of control is fixed and equals T—1,,
and we introduce the function space B[, T] = L%,[#, I'] of measurable
vector functions % defined on the interval [¢,, T'] and such that

(4) luly = ess sup JJu(f)] < +oo.
telty, T)

The meagurable function «, defined on [t,, T'], is an admissible con-
trol if and only if luly <1(Y).

(1) All the results of section 3 are true if instead of the constraint |ulr <1
we consider comstraints of the type

T
[tf le@IPa]? <1 1 <p< + o).
(]
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. The further procedure is the following: we solve the so called mini-
mum norm problem, i.e. we find the minimum norm (4) of the function »
which transfers the system from 6 to ¢,(T) = D(t, T)a*—z°.

In the same way as in [6] one can show that the value of the mini-
mum norm luly is a continuous function of the parameter T and | «ly — oo
if T — t,. The minimum value #, of the parameter T' for which the equality
l4lz = 1 holds (if such a value exists) is the minimum time of control.
Further we will assume that a finite time of control exists.

To solve the minimum norm problem we put ¢ = ' and ¢(t) = ¢, (T)
in equation (2a). Rewriting this equation in the form of » scalar equa-
tions we obtain

2 1)y
i=1

T m
(3) ci(T) = f(a,(z w@)dr= [ Y@ (mdr (=1,2,..
%

where ¢ (T) denotes the i-th component of the vector ¢,(T), the vector
a;(1) is the 4-th row of the matrix A (f), and a}(?) is the j-th component
of the vector a;(f).

It was shown in [15] that the space B[y, 7'] is conjugate of the space
B, [ty, T] = L};,;k [tos T] of m-dimensional measurable vector functions

a with the norm

T
(6) laly = [ lla(@)as,

tﬂ -
where ||-||* denotes the norm in m-dimensional space B conjugate of

the space E;.

Each linear functional, defined on the space B,[f,, T'], can be re-
presented in the form of the right-hand side of equation (5) and its norm
is given by (4).

We can treat the vector functions a; as the element of the space
B,[f, T]. So the minimum norm problem can be formulated as follows:
find & minimal norm of a linear functional # which assumes given num-
bers ¢(T) on n given elements a;eBy[t,, T1:

(Ba) u(a) = & (T)

We assume that the complete controllability condition [8] is full-
filed, i.e.

(=1,2,...,n).

(7 mmIZz al, >0,  D@H>0

i=1 i=1

for sufficiently large values of the parameter 7. Then equation (5a) has
the minimum norm solution for each bounded vector ¢,(T) [8].
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To find the minimum norm of the functional % satisfying equation
(5a) we use the method given in [1]. First we introduce a linear funec-
tional ¢ defined on the n-dimensional subspace B[t T = By[t, T]
spanned on the elements a;, and assuming the given values ¢ (T) on the
elements @;. This functional is defined uniquely and on the element

n
a=YNa it assumes the value
i=1 n N
(8) u(a) = D (1)
=

By definition the norm of the functional ¢ equals

n
IZ }fail,[ =1.
i=1

Let the vector 4, = [4}, A2, ..., A7] maximize the right-hand side of
formula (9); then

(9a) lply = D) Hai = h4.

i=1

(9) lply = mngﬂc}'(T),

A oi=1

In virtue of the Hahn-Banach theorem [4] functional ¢ can be
extended with the same norm to the whole space B,[f,, T']. Thus we
obtain the desired functional % with the minimal norm luly =lgly.

Let ¢, be the minimum value of the parameter T for which the equa-
tion lgl;, = lpl =1 holds; then #,—{, is the minimum control time.

) Now we turn to the problem of determining the form of the time
optimal control.

The extremal element of the functional ¢, i.e. also of the funec-
tional %, is given by

n
(10) ao=21§ai=loA-
£=1

For the element g, the following equation must be satisfied [1]:
h
(11) () = f(a,o(t), uw(t))dt = lulla,] = 1.
. i
These results have a simple geometrical interpretation [14].
The functional ¢ determines in the subspace B[ty,?] an (n—1)-
dimensional hyperplane G" ' = {aeB}[t, 1] ¢(a) = lg|l =1} support-
ing the wumit sphere Z; of the subspace By[t,?]. The element a,

is a common point of Zy and ¢**. It is shown in Fig. 1 for the case
n=2,

icm

On the time optimal condrol 151

The functional %, which is an extention of the functional ¢ to the
whole space B,[ly, ;], determines in this space a hyperplane
(12) G = {a:u(a) =lul =1}
such that @ ~ B[, ;] = 6"

b)

6

Z o

Fig. 1

Note that the reachable region Z", i.e. the set of all vectors o(t,)
which can be reached from the point 6 in the time ¢, —%, by using all
admissible controls, is identical with the unit sphere Z" in the space
conjugate to the n-dimensional subspace By[ty,?;] (see [1]). As a unit
sphere this set is closed, convex and bounded and because Bj[h, #,] is
n-dimensional, Z* is compact and also n-dimensional.

The time optimal control is unique if there is only one hyperplane
@ satisfying (12).

The geometrical interpretation allows us to determine when equa-
tion (11) is a sufficient condition for time optimal control, i. e. each fune-
tion % satisfying (11) must satisfy (5).

If the unit sphere Z7% is smooth at the point a, (see Fig. 1a), then
the element a, is the extremal element of one functional ¢ only and con-
dition (11) is sufficient for time optimal control. But if Z} is not smooth
at the point a, (see Fig. 1b), then a, is the extremal element of a whole
bunch of functionals (each functional belonging to the cone created by
the lines G, &; in Fig. 1b). For each of these functionals equation (12)
is satisfied and we cannot use it to determine the time optimal control.

Note that more than one vector A, maximalizing formula (9) can
exist. Geometrically it means that there is more than one common point
of @ and Z%. If there are q linearly independent vectors Ay, Agas - - -5 Aog
satistying (9), then G"' includes a (¢—1)-dimensional flattening P*~*
of Z" (the segment P! in Fig. 1lc). All elements a, belonging to the inte-
rior of P4~ are the extremal elements of the same functionals ¢ and u.
But the elements a, belonging to the edge of P?' (a; and a; in Fig. le)
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can be the extremal elements of some additional functionals (e.g. for
a, all supporting lines situated between G* and GY).
Tt is easy to see that the necessary condition for Z not to be smooth
at the point a, is that there is more than one function w satisfying (11);
s0 we will analise the cases where the solution of (11) is non-unique.
First of all we find the conditions for the time optimal control to

be non-unique.

3. Conditions for the non-uniqueness of the time optimal control.
It was shown in [14] that the function u satisfies (11) if and only if the
following equation holds for almost every te[t,, #,]:

(“o(t)’ 'u'(t)) = fla, ()"

The set {u(t): (ao(t), %(1)) = [lao(t)|*} defines in the space E an (m—1)-
dimensional hyperplane H™ '({) supporting the unit sphere U(%).

The space F is finite-dimensional, and thus the hyperplane H™ *(t)
has at least one common point with U(f). Each of those points satisfies
equation (13) and is the desired value of the function » at the time 1.

The vector «(t) is determined non-uniquely if and only if the hyper-
plane ™ (%) contains a certain k-dimengional face R*(k = 1,2, ..., m—1)
of the unit sphere U(%).

It is obvious that if R*(t) = H™ '(t) there must exist such a one-
dimensional edge R'(f) of U(#) that

13)

(14) R\(t) « H™'(3).
Let the edge R'(f) generate a line S§'(¢). Let us assume that dim
[U(#)] = m. Then the line 8(f) can be considered as an intersection of
p = m—1 (m-—1)-dimensional hyperplanes S7~'(#), S7'(t),..., S5 (%)
generated by all (m—1)-dimensional faces R~ (t), Ry ~'(?), ..., Ry ~'(f) of
the polyhedron U(f) which are contiguous to R(#). Let s;(¢) denote
vectors orthogonal to 87~'(¢) and directed outside of the polyhedron U ().
Leyma 1. R*(t) belongs to H™ (%) if and only if there is a non-negative
linear combination

»
(15) s(t) = dg(t), V>0,

=l
of the vectors s;(t) such that a,(t) = s(t).

Proof. Let K™(t) denote a convex cone generated by the hyper-
pla,ne.s 877'(@) (j=1,2,...,p) and containing U(#). R'(f) is an edge
Ofothls cone. Such a cone is shown in Fig. 2 for the cage m = 2 (a vertex
B'(t) occurs here instead of a one-dimensional edge R!(t)).
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R(t) belongs to H™ '(#) if and only if H™ '(f) is a hyperplane of
support to the cone K™(f). The hyperplane H™ '(f) is a hyperplane of
support to the cone K™(¢) if and only if the intersection of the hyperplane
HP(t) = {u(t): {80(2), u(¥)) = B} and the cone K™(t) is void for suffi-
ciently large values of the parameter f: HY'(f) ~ E™(f) = A.

<

Hitt)

The cone K™(t) can be described by the formula

(18) K™(t) = {u(?): (si(t):u(t)) gajy j=1,2,...,p},

where of are positive numbers, because the zero element of the space E

belongs to the interior of the cone K™(1).
Then R(f) « H™ '(#) if and only if the system of inequalities

(_3i(t)1u(t))>_“j (i=1,2,...,m),

(17)
(ao(t)y 'u'(t)) =

has no solution for B sufficiently large.
It was shown in [11] that system (17) hag no solution if and only

LI
if there exist non-negative numbers W=0 (> 4 >0) such that
§=0

»
wat)— D W) =0,

(18a)
F=1
2 .
(18b) pop— D d > 0.
F=1

We can put u® # 0. It is easy to see that if (18a) holds we can find
such f that inequality (18b) is satisfied. Then equality (18a) ig the neces-
sary and sufficient condition for R!(f) =« H™(f). This equality can be
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rewritten in the following form:

D i b4 )
2—;‘—08;(1#) - 2v’sf(t) =5(t) = ap(8), qe.d.
i=1

=1

LemmA 2. If the vector a,(t) is a positive linear combination
»

(19) ag(t) = >'vs(1),

I=1
of p linearly dependent vectors s;(1) (j = 1,2, ..., p), then there are q linearly
independent vectors s;(t) belonging to the set {s,(t), s,(t) g ooy Sp(t)} such
that the vector a,(t) is a positive linear combination of them.
i Proof. The vectors s(¢) (j =1,2,...,p) are linearly dependent,
ie. there exist numbers »’ , not all equal to zero, such that

P
(20) 2%187('6) = 0.

i=1

¥ >0,

We can assume that at least one number »/ is positive. Let us write

7=

(21) 8;(1) = v'8(t), .
v

Then equations (19) and (20) can be rewritten in the form

Y
(19a) a(t) = Zgi(t):
j=1
»
(20a) 6= D 5(t).

=1

Loy

Let %* = max{¥}. Dividing both sides of equation (20a) by —i*
we obtain

(20b) 6= _Z%%(t)—ik(th
=

where #[%* < 1.

. (;;)dding both sides of equations (19a) and (20b) we obtain in virtue
0

2 o
(19b) a(t) = 2 (1 - :,;)f 8().
b

The coefficients corresponding to 8;(t) are non-negative, and thus

th(e) vector a,(t) is a non-negative linear combination of p—1 vectors
8 1).
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The above construction can be repeated successively until we obtain
a,(t) a8 a non-negative linear combination of ¢ linearly independent
vectors s;(t), q.e.d.

The intersection of hyperplanes 87 (¢) (j = 1,2, ..., p) gives a line;
so in the set {s;(f)} there are (m—1)-linearly independent vectors.

In virtue of Lemmas 1 and 2, R*(f) « H™ () if and only if there
are m—1 vectors s;(¢) such that a,(?) is a non-negative linear combination

m-1
of them, i.e. there are non-negative numbers »°, 5%, ...,»™ " (3'¥ £ 0,
#° % 0) which satisfy the homogeneous equation 7=t

@) [0, 50, 500, s s 0]
™
—wﬁ(t),s{(t),...,s}n_l(t) »° 0
—a}(t), 10, . sha ) | [ | _|o
— a0, 800, -, ] L Lo

where ai(f) and si(t) are components of the vectors a,(f) and s;(f) respec-
tively.

The necessary condition for equation (22) to be satisfied is that
the determinant of this equation be equal to zero:

(23) |— @y (), 8.(8), $2(2), « oy Sma (D)} = 0.

Sinee the vectors s;(¢) (j = 1,2, ..., m—1) are linearly independent,
the rank of the matrix [s,(%), 85(%), ..., 8;m_1(?)] is equal to m—1. Then
there is at least one (m—1)-dimensional non-zero determinant of this
matrix.

Let us assume that we obtain this determinant after removing the
last row of the matrix

Si(t),z%(t), ey sin-—-l(t)
i B)yeny 8o (f ’ , '
(2a) [0S0 Bna )| gy ), (0] = B 0.
L (t), gt ®)e.es sﬁii(t)

It follows from Kramer’s formulas that the coefficients »' are non-
negative if and only if the inequalities
M;(1)
M@~
hold, where M;(¢) is the determinant obtained from M (¢} by substituting
ag(t) = [ay(8), a3(?), ..., @y~ ()] instead of the j-th column of M (t).

(25)

(i=1,2,...,m—1)
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The following lemma is a direct consequence of the above congi-
derations:

Lemma 3. The necessary condition for R'(1) to belong to H™ (1) 4s
that equation (23) hold. This condition is also o sufficient one if, in addition,
inequalities (25) are satisfied.

Hitherto we assumed that dim[U(#)] = m. If Aim[U@®)] =k < m,
the above results are also true, but instead of the vector a,(t) one ought
to take its projection on the subspace spanned on U(#). In this case the
rank of determinant (29) equals k1.

We can obtain another, more convenient necessary condition.
Let 7(t) denote the vector parallel to R!(f). The necessary condition
for B'(t) = H™ '(5) is that the vector r(t) be parallel to H™"(#), i.e
orthogonal to (). Hence we obtain

Lemwma 4. The necessary condition for R (1) to belong to H™ (1) 4s
that

(26) (ao(t); ))

CoroLLARY 1. If U(t) is o parallelepiped, condition (26) is the neces-
sary and sufficient one.

Proof. If condition (26) is fulfilled, the vector a,(f) belongs to the
(m—1)-dimensional subspace spanned on vectors ;(t) (j =1, 2, ., m—1)
defined as above. This subspace is identical for each of the mutuaﬂly paral-
lel edges R'() of the parallelepiped U(t). Then an edge E,({ ) for which
all coefficients » in equation (22) are non-negative must exist, g.e.d.

The solution u of equation (11) is non-unique if and only if there
exists such a measurable set D < [4,, ¢,], mes D > 0, that for every teD
the hyperplane H™'(f) contains some edge R'(t) of the control region
Ut).

In virtne of Lemmas 3 and 4 we can formulate the following

PROPOSITION 1. The necessary condition for the solution w of equa-
tion (11) to be mon-unique is that there ewist a measurable set D < [0, 211,
mesD > 0, and a measurable vector Sunction r with its values r(t) parallel
to some edge E(t) of the control region U(t) such that

(27) f (a0(®), r(1))2dt = 0.

This condition is a sufficient one if, in addition, there is a positive
measure set D' < D such that for every teD’ the inequalities (25) are
fulfilled.

Remark 1. Condition (27) is a mnecessary and sufficient one if the
control region U (%) is a parallelepiped.
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Hitherto we analysed the cases where equation (11) had more than
one solution « for one particular vector function a,. This means that the
control function corresponding to the extremal element a, is non-unique.
But it is interesting to find out when non-unigque control can occur in
the system for any initial and terminal states, i.e. when there is at least
one point a,eZ; such that equation (11) has more than one solution.

Each point a, belonging to the boundary of Z} can be represented
in the form

G =D lhai =14 (lal =1),
i=1

where the vector 1, depends upon initial and terminal states. Note that

appropriate initial and terminal states exist for every veector Ay, for the

unit sphere Z3 has a hyperplane of support to each of its points.
Substituting (10) in (26) we obtain

(28) (Zzuait), () = 2/1., t>,r<t)~2‘zout)—o

i=1 te=l

where 1i(t) = (a:(t), 7 ().

The necessary condition for the existence of a non-unique time op-
timal control is that equation (28) hold for each t belonging to some posi-
tive measure set D. It is equivalent to the requirement that functions ;
be linearly dependent on the set D.

It is well known [16] that the functions I; are linearly dependent
on the set D if and only if the rank of the following Gramian matrix is
less than n:

(29) rankf @, L) d = g < n.

Using the definitions of the functions I; and the matrix 4 we can
formulate the following

TEEOREM 1. The necessary condition for the time optimal control of
system (1) to be non-unique is that there exist a measurable set D < [t,,1,],
mes D > 0, and a measurable vector function r with its values r(t) parallel
to some edge R'(t) of the control region U (t) such that

(30) rank [ (ty, )@ (0)r (1) (1)G7 (1) 67 (1, ) dt = ¢ < n,
D

where the superscript T denotes tramsposition.
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To obtain the sufficient condition for the time optimal control to
be non-unique we substitute (10) in (25) and geb

@ g, 8, e, 1 (l)y 3 A (), e ySaa (B
31 M) &
M)
- 1550, 80 o G2 (), 6E0), 5120, - S (B
’ M(t)
i=1
= MAFW >0 (j=1,2,...,m—1),

{=1

where dj(t) = [a}(1), a3(t), ..., AP (1)]-

It is well known [16] that the vector 1, satisfies equation (28) on
the set D if and only if it satisfies the equation

(32) B [B(t, )G @B)r(1)r" ()G (1) O (1, 1) dt = 0.
D

Hence we have

THEOREM 2. A non-unique time optimal conlrol of system (1) can
ewist if and only if condition (30) is satisfied and if, in addition, there exists
a positive measure set D' = D such that for every teD’ inequalities (31)
are fulfilled, where lz denotes one of the non-trivial solutions (the same for
all teD') of equation (32).

From Corollary 1 we obtain the following

COROLLARY 2. If the control region U (t) is a parallelepiped, inequa-
lity (30) is a mecessary and sufficient condition for the ewistence of a monm-
untque time optimal control.

In particular, if the module of each component of the vector u(t)
is bounded (|’ (2)| < 1), the control region U(f) is a cube and the vectors
7(t) have the form [0,...,0,1,0,...,0]. For this particular case regult
(30) was obtained by La Salle [127]. The system described by equation (1)
was called by La Salle a normal system if the rank of matrix (30) is equal
to n for every vector »; of the form [0,...,0,1,0,...,0].

Let us consider now the case where system (1) is stationary, i.e.
the matrices ¥ and & are constant, and the control region U does not
depend upon t.

CorROLLARY 3. If system (1) is stationary amd the conirol region U

does not depend upon 1, the necessary condition for the time optimal control
to be mon-unique has the form

(33) rank [Gr, FGr, F*Gr, ..., F*"'Gr] = ¢ < n.
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Proof. If the system is stationary, then &(z,, ¢) =
from (28) we get

(34) Ao[exp F'(#,—

Equation (34) must be satistied on the positive measure set ). Note
that the left-hand side of this equation is an analytical function, whence
it must be identically equal to zero.

‘We successively differentiate equation (34). In virtue of the fact

that the matrices ¥ and [expF(f,—1,)] are interchangeable we obtain
after % successive differentiations

[exp F(t,—t)] and

H16r = 6.

AlexpF(t—1)]F*Gr = 6.
Then the vector A, must satisfy the following equation:

(85) Xlexp F(t,—1)1[Gr, FGr, F2Gr, ..., FiQr,...] = 6.

Since the matrix [expF(t,—1)] is non-singular, equation (35) has
& non-trivial solution if and only if the rank of the matrix [Gr, rar,
F2@Gr, ..., F*@r,...] is less than n. On the other hand, it is easy to see
that 11: 1s fulﬁ]led if and only if rank [Gr, FGr, F”’le’r] =g<n.
Geometrically this means that each vector of the form FiGr belongs
to the g-dimensional subspace spanned on the vectors Gr, FGr, ..., F*@r.

Using the definition of the matrix [expF(t,—1)] we remte equa-
tion (34) in the form

el i
%Z@ﬁm: 0.

1=0

(34a)

According to the above considerations if the rank of matrix (33)
is equal to ¢ < n, then every vector F'Gr belongs to the same g-dimen-
sional subspace. This subspace is closed [4], and thus the vector

ot g,
i=0 1,
belongs to it for each ¢. Hence equation (34) has a non-trivial solution
the same for each i.

Corollary 4 gives the well-known general position condition introdnced
in [18]. Hence Theorem 2 can be treated as a generalization of the general
position condition for the cases where the system is non-stationary and
the control region U(t) depends upon the parameter %

The maximal number of linearly independent solutions of equation
(34) cannot exceed . Thus we can formulate the following
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Remark 2. Suppose that system (1) is stationary and that the
control region U does not depend upon t Then the maximal number
of linearly independent elements a, = JoA. for which there are more
than one solution of equation (11) cannot exceed 7y, where y is the num-
ber of edges of the parallelepiped U.

4. Determination of the time optimal control in the case of non-
uniqueness. Suppose that for the terminal position ¢*(¢,) equation (11) has
more than one solution, i.e. that there is such a positive measure set
Dc[t,, t] that for each teD the hyperplane H™ (1) determined by the

vector " .
ay(t) = ) Mo = I A
i=1

(where lﬁl denote the values of parameters 4° maximizing (7) for ¢!(t,)
and T = 1,) contains some face R*®(f) of the control region U(t). We
assume that D is the largest set possessing such a property.

We want to find the set I'(t,) of all points ¢(?,) which can be reached
in the time #,—{, from the initial point § using all functions satisfying (11)
ag controls. It is obvious that the following relation must hold:

o1(ty) e'(t).

The set I'(t;) is isomorphic with the set of all (n—1)-dimensional
hyperplanes G"~! supporting to the unit sphere Z; at the point a,.

To find I'(¢,) we put ¢, instead of ¢ in equation (2a) and we rewrite
it in the following form:

(35) oft) = [A(Du(mdr+ [ A()u(r)dr.
b [t NP
Let u, () denote the centre of gravity of the face R®Y(t). The veetor
function u, is a measurable function of ¢ on the set D [15].

We introduce the following notation:
v(8) = u(f)—u (7).
Substituting (36) in (35) we obtain

(858)  o(t)) = [A()v(v)dr+ [A(T)ue(v)dr+
D

(36)

[ A@u()ir.
[0, tIND
Since the control function u on the set [t,, t;]N\D is given uniquely
by equation (13), the third term of the right-hand side of equation (35a)
is a given n-dimensional vector. Similarly, the second term is a given
vector. Let us write

dlh) = [A(z)o(v)dr,
(37) »
[ A@u@ds.

do(tr) = [A(7)uy(v)dr+
D T, )ND

icm
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It is clear that to find I'(¢,) we must find the set A(#,) of elements
d(t;) corresponding to all measurable functions v satisfying the condition
v()e R*® (1) on the set D. The set I'(t,) we obtain from the formula

(38) T'(t) = A(t) +do (%)

We prove some properties of the set A(,).

The set B (¢) can be treated [16] as a unit sphere inducing at the
time ¢ the Minkowskian norm |-}, in the space By of n-dimensional
vectors o(t) given by (36).

In the same way as in section 2, we introduce the function space
B,(D) = Lg,(D) of measurable functions v defined on the set D and
such that
(39) lol, = ess suplfo (), < +oo.

This space is conjugate of the space By, (D) = 1E;,(D) of m-dimen-
sional vector functions a with the norm

(40) lal, = [la@ifdt < +oo,
D

where |-[|f denotes the norm in the space conjugate of .

Let us consider the subspace BT, (D) = B,,(D) spanned on n vector
functions a;. Using the same argument as in [1], one can see that the
set A(t;) is identical with the unit sphere in the space conjugate of the
subspace BT, (D).

Let us assume that n—g is the maximal number of linearly inde-
pendent vectors Ay (j =1,2,...,n—g¢) such that [i;4] =1 and

Vol = | 3 &0l = 0

i=1

(41)

(at least one such vector exists, namely the vector 1, maximizing (7)).

It is obvious that the unit sphere Z7, in the subspace BT, (D) belongs
to the g-dimensional hyperplane orthogonal to vectors 4y (j =1,2,...,
n—¢q) and is ¢-dimensional itself.

Then the set 4(%;) is also g-dimensional and belongs to the hyper-
plane orthogonal to the vector 4y (j =1, 2,...,n—¢). In addition 4(%)
is convex, closed and compact as a unit sphere in the finite-dimensional
space.

The same properties has the set I'(%,).

It is obvious that the vector Ay fulfills (41) if and only if it satisfies
formulas (32) and (31) for each measurable vector function » with its
values 7(f) parallel to any edge of the face R*¥(¢).

Studia Mathematica XXVII, 2 11
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Hence we have the following

Levma B. By Ay we denote a non-zero vector satisfying (32) for every
measurable vector fumction r the values r(t) of which are parallel to some
edge of the face B*(t). Let n—q be the mawimal number of linearly inde-
pendent vectors Ay. Further, let inequalities (31) be satisfied for every teD.
Then the set I'(t,) is g-dimensional and belongs to the hyperplane orthogonal
to the vectors Ay (j =1,2,...,n—q). Moreover, the set I'(t,) is convexr and
compact.

COROLLARY 4. Every function u satisfying equation (11) is a time
optimal control which transfers the system from 6 to ¢(t,) iof and only if
there are n linearly independent vectors Ay (j = 1,2, ..., n) satisfying the
conditions given in Lemma 5.

Proof. The vector 1 satisfies (4¢1). Hence the unit sphere Z7,(D)
is reduced to one point. Thus the set I'(¢;) is also reduced to one point.
Obviously this must be the point ¢, (t;), q.e.d.

Let us assume now that we change the time of control. By I'(t) we
denote the set of all points ¢(f) which can be reached from 6 in the time
t—1, (¢ > 1) by using all admissible control functions satisfying (13).

The set D(2) on which the solution of equation (11) is non-unique
is a non-decreasing function of ¢. On the other hand, the number of linearly
independent vectors i, satisfying (82) is a non-increasing function of
D(t). Then in virtue of Lemma 5 the dimension of the set I'(t) is a non-
decreasing function of #. Bach of the sets I'(f) is convex and compact
and belongs to an (n—1)-dimensional hyperplane orthogonal to the
vector Ay.

We now define the set

Lty t) = U I(t)

h<t<hy
of all points ¢(t) which can be reached from 6 in the time ¢, <t <, by
using all admissible control functions satisfying (13). This set is equivalent
to the set of the respective segments of all trajectories corresponding
to those control functions and starting from 6. It is obvious that I'(ty, 1)
is a closed and connected set.

By analogy to I'(¢) we denote by I (f) the set.of all points ¢(?) from
which the point ¢,(?,) can be reached in the time #,—1 (f < #;) by using
all admissible control functions satisfying formula (13). It is easy to see
that the set I"(t) has analogical properties to those of the set I'(f). In
particular, it belongs to the (n—1)-dimensional hyperplane orthogonal to
the vector i,.

Between I'(f,) and I"(%) the following relation takes place:

(42)

I () = e, (t,)—T'(3,).

icm
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We write further I"(4, ) = U I"(1).
o<y

THEOREM 3. Let us assume that there exisis mo positive measure set
delly; 1,] such that the fumction |lag(D* = |AoA @)|[* is identically equal to
zero on that set. Thus the measurable function w satisfying (13) 4s the time
optimal control tramsferring 6 to ¢,(3) if and only if it does not lead the tra-
jectory of the system outside the set I'(fy, t,) ~ I (fy, 11).

Proof. It is obvious that the function u satisfying (13) is an op-
timal control if and only if the point ¢(7) of the corresponding trajectory
belongs to the set I'(f) ~ I (i) for every te[t,, ,]. Each of these points
belongs to I'(%y, %) ~ I"{t, ) Thus to prove our theorem it is enough
to show that only those points belong to I'(f, 1) ~ IV (4, %), i.e. that
for every different 1,1 ¢[t),?,] the set I'(f) ~ I'(¢") i3 void.

In virtue of Lemma 5 and of the further considerations the sets
I'(t) and I"(¢') belong to the (n—1)-dimensional hyperplane orthogonal
to the vector 4y for each t and . Moreover, for te[t, ¢,] both I'() and
I" (#) must belong to the same hyperplane since the time optimal control
exigts.

Then we must show that for every different ¢, e[t,,?,] the sets
I'(t) and I'(t') belong to different (n—1)-dimensional hyperplanes ortho-
gonal to ;. But these sets belong to the same hyperplane if and only
it (a(2), u(t)) = (A A(£), u(f)) equals to zero almost everywhere on the
interval [t,¢] for any u(¢)eR*®(f). Then from equation (13) we obtain
lao (B)I* = 1|2 4 (1)|I* = 0 almost everywhere on the interval [, '], which
contradicts the assumption, q.e.d.

5. The bang-bang principle generalization. La Salle investigated
the optimal control problem of the linear system with the control region
in the form of a cube and he proved the following theorem:

If there is any time optimal control transferring the trajectory of
system (1) from 6 to ¢,(3,), then there is also a control function with the
same properties which assumes its value at the vertices of the control
region for almost every ¢e[t,?;]. Such a control function is the most
convenient from the technical point of view. It is called the bang-bang
control, and the theorem is called the bang-bang principle.

We show that this principle is also true for the more general case
of the control region U(f) of the form considered here.

In virtue of equation (13) and its geometrical interpretation (see
section 2) it is clear that if the time optimal control is unique, it must
be the bang-bang control. Then it is enough to consider the case where
the time optimal control iz non-unique.

Let us assume that the required terminal point ¢, (#,), which must
be reached from 6, belongs to the set I'({,) defined in section 4,
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LemMma 6. If the point ¢, (t,) 8 an extremal point of the set I'(t,), then
there is a bang-bamg time optimal comirol transferring the trajectory of the
system from 6 to ¢q(t;).

Proof. It follows from the definition of the set I'(¢,) that there
is at least one admissible control function u, which transfers the system
from 6 to ¢(¢;) in the minimal time #,—%,, i.e. the control function 4,
satisties equation (2a) for ¢ = ¢, and ¢(#) = ¢;(%). Let us assume that
there is a positive measure set D,< D such that for every t<D, the value
#,(t) of the control function %, does not correspond to any vertex of the
polyhedron R*?(t) and the control funetion u, is of the bang-bang type
on the set [f,, {,\D..

We will consider the set D, only. Let R*@(z) =« R*(t) be the largest
closed convex polyhedron such that () belongs to the interior (2) of
R (t) and all vertices of R"®(t) correspond to certain vertices of R*®)(z).

We will show that each admissible control function « such that
u(8) eR™ (1) for teD, and u(t) = w,(f) for te[t,, t,\D, satisfies equation
(2a) for ¢(ty) = ¢, (ty)- )

Let us assume that it is not true, i.e. that there is an admissible
control function % with those properties which satisfies equation (2a)
for ¢(ty) = 6(ty) # 01(f).

By construction, u,(f) belongs to the interior of B*®(z). Then there
is @ number § > 0 such that the minimal distance from u,(¢) to the boun-
dary of R*(t) is larger than § for every ¢e.D?, where Df = D, and

lim mes (D,\.D5) = 0.
f—0
Therefore one can find f > 0 such that
JAWut)at = [ A)yuc)a.

nf nf
Let 4’ denote an admissible control function such that «'(f) = %(f)
for teDf and w’ (£) = w,(2) for te[t,, 1, ]\D¢. The control function %' satis-
fies (2a) for c(t,) = o'(t,) eI'(t,), where ¢'(f,) # ¢i(t,). We write

% = f-[max |u'(t)—u (1)1,
te e

where |-| denotes the Huclidean distance. Since

0 < max [w(8) — % (t)] < o0,

t¢D£

we have 0 < % < too.

(*) Here and in the sequel by the interior and the boundary of a set we will
understand the interior and the boundary of this set in relation to the minimal linear
subspace containing it.
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Let us define the control function %'’ as follows: " () = #,(¢) for
telty, t, ND4 and w''(£) = (1+x)u, (t)—»u' () for teDf. Tt is easy to see
that w' () e R™(3) for teD?. Then %' is an admissible control function
and it satisties (2a) for e¢(t,) = ¢’ (¢,)el'(f;) where ¢ (f) s ¢’(t). On the
other hand,

%, 1
1-x o' (4)+ 1tx

which contradicts the assumption that e, (f,) is an extremal element of
the set I'(%,).

Hence each admissible control function % such that u(f)eR™ (1)
for teD, and u(t) = u,(f) for te[t, {,]\D, transfers the trajectory of
the system from 6 to e;(t;). From the set of these control functions we
can choose an admissible bang-bang control, q e.d.

THEOREM 4. For each ¢,(t,)el'(t,) there is a bang-bang time optimal
conirol transferring the trajectory of the system from 6 to e,(t).

Proof. For the extremal elements of the set I'(¢;) the theorem is
satisfied in virtue of Lemma 6. Then we can assume that ¢,(#;) is not
an extremal element of the set I'(%,), i.e. it can be represented as a convex
combination of some extremal elements of the set I'(#;). Let the minimal
number of such elements equal to N,. In virtue of Lemma 5, dim[I'(t,)]
= ¢. Hence we have, N, < g-+1.

Let

e (ty) =

"' (&),

N
exlty) = D' #a0u(t),

a=1
Ng
where ¢,(?,) are the extremal elements of I'(#;) and 0 < », <1, D) e =1.
a=1

By Lemma 6 for each a =1, ..., %, there is a bang-bang control
%, which transfers the trajectory of the system from 6 to c,(t;). Let
By (t) = conv{u,(f)}. It is obvious that R,(f) = R*@(t). Analogically to
the sets I'(t), by I'y(t) we denote the set of all points ¢(f) which can be
reached from 6 in the time i —1, by using all admissible control functions
% satisfying the condition u(t)eR,(f) for almost every te[ty, t;].

By the same argument as in the proof of Lemma 5 one can show
that each set I'(f) (f, <t <1;) belongs to a g,-dimensional hyperplane
orthogonal to vectors 4q(j =1,2,...,n—g,), where Jy are linearly in-
dependent vectors satisfying (32) and (31) for each measurable vector
function r which has its values 7(f) parallel to any edge of R,(t). It is
obvious that g, < ¢. Moreover, dim[I}(t,)] = g,. It follows from the con-
struction of the set I'y(¢) that ¢,(f,) belongs to the interior of I'(t).

In the same way as in section 4 we denote by I's(t) the set of all
points ¢(f) from which the point ¢,(f,) can be reached in the time ¢, —%
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by using all admissible comtrol functions » satisfying the condition
u(t)eRy(z) for almost every velty,t]. For each te[t,1,] the set I(1)
belongs to the same g,-dimensional hyperplane as the set I'y(t).
Let
I';(tu; ) = U Fo
ogtgt

It is obvious that Ty (%, tl) is a closed and connected set.

Similarly to (42) we have I'y () = ¢, (t;)— Iy (t,). Hence dim [I" (¢,)] = 0
and 0 is an interior point of the set I (%,) since e,(4,) is an interior point
of Iy(t,). Since trajectories are continuous then for ¢ > #, and sufficiently
close to f, we have dim[/]"(?)] = g,- Therefore, taking into consideration
that for te[ty, t,] the set I,(f) belongs to the same g,-dimensional hyper-
plane as Iy (t), one can see that for ¢ > ¢, and sufficiently close to %, the
set I,(t) belongs to I(2).

We choose an arbitrary bang-bang control « such that w(t)eR,(t)
and the points ¢(f) corresponding to this control are extremal points
of I'y(t). For ¢ sufficiently close to ¢, these points ¢(f) belong to I (4, t,).
But since ¢,(#,) is not an extremal element of the set I (¢,), the control
u cannot transfer the trajectory from 6 to ¢,(?,). Thus there must exist
a time Te(fy,t,) such that o(t)¢ly(t, ¢,) for ¢ > T,. Since trajectories
are continuous and the set Iy (4, ¢,) is closed and connected, the respective
point ¢(7';) must belong to the boundary of the set Iy (fy, #,). If the point
¢(T,) is an extremal point of the set I (Z,) then using the same argument
as in the proof of Lemma 6 one can show that there exists a bang-bang
control leading the trajectory of the system to ¢,(f;). If ¢(T,) is not an
extremal point of I'y(7,), we can repeat the construction given above.
Note that since ¢(T,) belongs to the boundary of I'y(T;) and dim Iy (7T,) < o,
the point ¢(T') can be represented as a convex combination of N, extremal
elements of I,(T,), where ¥N; < ¢ < ¢. Uging the next segment of the
bang-bang control we reach the point ¢(T,)(T; < T, < t;) belonging to
the boundary of the respective set I',(T,) defined in the same way as
I'j(T,). We repeat this construction successively. After each step the
number N; decreases at least by one. Thus we obtain N, = 1 after
% < o < ¢ steps. It means that the respective point ¢(T;) is an extremal
element of the set Ij_; (T;). Hence there is a bang-bang control leading
the trajectory of the system to ¢, (f), q.e.d.

Note that Theorem 5 was obtained in another way and in a more
general case by Olech [17].
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