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On the class of infinitely divisible distributions and on its subclasses
by

L. KUBIK (Warszawa)

1. On the symmetry of infinitely divisible and stable distributions.
As it is known [4], the logarithm of the characteristic function f() of
any infinitely divisible distribution can be written in the Lévy form

0

o 1 .., it it
(1) log f(t) = Wt—gff 12 —J:; (e —1— 1+u2) aM(u)
r:a il 4 itu’ T
+J (e 1 1+u2)d1\(u),

where y = const, o > 0, M{(u) and N (u) are non-decreasing (continuous
from the left) functions, defined on (— oo, 0) and (0, -+ oo) respectively,
and such that M (— oo) = N(+ oo) = 0 and

0 &
fusz(u)+fusz(u) < 4 oo
—& [

for every ¢ > 0.

Let us introduce the following definition:

DEFINITION. An infinitely divisible distribution (*) X is said to
be completely asymmetric in the class of infinitely divistble distributions
(denoted in the sequel by I) if it is impossible to represent it in the form
X = X,+X,, where X,, X,eI, X, and X, are independent and X, is
symmetric.

The following theorem holds:

TumoREM 1. Every infinitely divisible distribution X can be written
in the form \

(2) X = g, X4 a0, X,
where ay, a3 =0 or 1, ay+a, >0, X XOeI, X 4s symmetric and X
is completely asymmetric in the class I.

(1) We assume all considered distributions to be non-degenerate.
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Proof. Lévy functions M(u) and N(u) of an infinitely divisible
distribution X define on (— o0, 0) u (0, c0) a non-negative measure u
satisfying the conditions

[} 1
Jurp(du)+ [wrp(du) < + 00, p(—o0,1) < oo, u(l,oc0) < oo
-1 0

and such that

1 e itu
1 log f(t) = iyt—— o®t2 j S
1) 0gflt) =tyt— o Fu#o(a i

)y(du).

Let us define the measure u* by the formula
HH(A) = p(—4)

where the set —4 denotes the symmetric reflection of 4 with respect
to u = 0. Let us write further u+ u* =v. Obviously the measures u
and u* are absolutely continuous with respect to the measure ». There-
fore, in virtue of Radon-Nikodym theorem, we may write

n(d) = [ e(up(du)
A
where o(u) > 0 is a measurable function. Let us write

os(u) = .min(Q(u)y Q(—’Il»)), 0a(®) = g(u)— os(u).

We have of course o(u) = gs(%)+ gq(t), 0s(%) =0, 0g(u) = 0, gs(2)
= gs(—u) and for every u either g,(u) = 0 or gs(—u) = 0. The func-
tions gs(u) and g,(u) define the measures us; and u, respectively by the
formulas

m(d) = [es(w)r(@w), pa(d) = [ oa(w)r(du).
A A

We have of course

p= pistfha-

The measure u, is symmetric (u; = u;) and the measure u, is com-
pletely asymmetric (if 0 < g, <y and g, = uf, then u, = 0). The meas-
ures us and y, define the distributions X® and X@ by means of (1')
(the term iy we include to X and the term —3}o02f2 to X©). Theo-
rem 1 iy thus proved. )

It the distribution X from Theorem 1 is completely asymmetric
in I, we have a, = 0. If X is symmetric, we have a, = 0.

In the sequel we shall use the following theorem due to Braumann [2]:

icm®
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BRAUMANN’S THEOREM. Infinitely divisible distribution X is symmetric
with respect to @ if and only if for every w > 0 such that u is & continuity
point of N(u) and —u is a continuity point of M(u) we have M (—u)
= — N(u). Besides a = y.

Observe that every non-normal, symmetric, infinitely divisible dis-
tribution X is a composition of two distributions completely asymmetric
in I. Indeed, if X is defined by Lévy functions M(u) and N(u) =
—M(—u) £ 0, we can write X = X, X,, where X, is defined by M, (u)
= M(u), N,(u) = 0 and X, is defined by M,(u) = 0, N,(%w) = N (u).

We may make the following remark:

REMARK. Every stable distribution X can be written in the form (2),
where X® and X© are stable.

Indeed, for a non-normal stable distribution X we have M(u)

= ¢ f|ul, N(u) = —cy/u’, where ¢, >0, ¢5=>0, ¢;+¢, >0, 0 <a<2.
If ¢, > ¢,, the distribution X® is defined by Lévy functions M (u)
= cof|ul®, NO(u) = —e,/u” and the distribution X@ is defined by

M (u) = (e,—ey)/|ul®, N(u) = 0. Similarly in the case of ¢, < ¢,.
In either case X and X are stable.

Tt is easy to observe that for ¢, = ¢, the stable distribution X is
symmetric (in formula {(2) a, =1, a, = 0) and for ¢, # ¢, thé distri-
bution X is asymmetric; if ¢, = 0 or ¢, = 0, the distribution X is com-
pletely asymmetrie in I (a, = 0, a, = 1).

The logarithm of the characteristic function of a stable distribu-
tion can be written in the form (1) with M (u) = e /|ul®, N (u) = — cyfu”
or in the form
1

It w(t, a)]a

(3) og f(t) = iyt —eltf [1 +if

where 0 <a <2,¢>20, —1 <8 <1. Coefficients ¢, ¢, and g satisfy
relations

€ —¢ . .

(4) :ci+c:, i oasl,a#2,
Co—Cy .

4’ == e if = 1.

(4) i PRI a

Formula (3) can be written in the form

g a a b .

(3 log f(t) = iyt — by lt{*— by [t] (lﬂ:—ﬂ io(t, a)),

where b, = (1—18])¢ = 0,b, = [flc = 0.
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b, = 0 is equivalent to || = (or ¢ = 0 which represents a degen-
erate distribution). In view of (4) and (4') this corresponds to e, = 0 or
¢, = 0 hence to a distribution completely asymmetric in I.

b, = 0 is equivalent to f = 0 (or ¢ = 0). In view of (4) and (4’) this
corresponds to ¢; = ¢y, hence to a symmetric distribution (the last con-
clusion follows also from the fact that in this case log f(1) is real).

Formula (3) gives us.therefore two separated parts of every stable
distribution: the symmetric part and the part completely asymmetric
in I.

In Lukaes’ ook [97, p. 106, we find the following theorem:

The stable distributions with 0 < o <1 and |f| =1 are bounded from
one side (from the right, if § = +1, from the left, if f = —1).

We shall show that the same is true also for 1 < ¢ < 2 and |f] = 1.
‘We shall base the proof on the following theorem (Baxter and Shapiro [1]):

Infinitely divisible distribution X is bounded from the right if and
only if

N@u)=0, o*=0 and lim f M(n)du < 4 oo.

a0 )

X is bounded from the left if and only if

1

Mu) =0, o =0 and limfN(u,)d/u. > — oo,

&0

. For 1< a<?2 wehave f=1if and only if ¢; = 0 (i.e. N(u) = 0),
and g = —1.if and only if ¢, =.0 (i.e. M(u) = 0). Take f=—1. We
have

1 1
]imJ-N(u)du = lim —Sz du=—~:—@~> — oo
o0 ¢ ety U —a+41
Thus, when 1 < o < 2 and § = —1, the stable distribution is bounded

from the left. Quite similarly we prove the boundedness from the right
for 1 <a<2and =1

It is easy to verify that:

The stable distributions with « = 1 and |\B| = 1 are unbounded from
both sides. These are the only completely asymmetric in I stable distribu-
tions which are unbounded from both sides.

Observe still that the stable digtributions with |8| # 1 are unbounded
from both sides (for when [8] s+ 1, in view of (4) and (4') we have ¢, # 0
and ¢, # 0 or M(u) 0, N(u) =£0),
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Let us summarize these results in the form of a table:

o 181 boundedness symmetry
unbounded from both sides symmetric (normal distribution)
#92 | # 1| unbounded from both sides gymmetric (8 = 0) or includes

both the symmetric and the
completely asymmetric parts

(B +#0)

2
: 1 1 | bounded from one side completely asymmetrie
1 1 | unbounded from both sides completely asymmetric

2. On the decompositions. It is known that the class I is closed
under compositions but is not closed under decompositions ([4], §17).
In my paper [7] I observed that the class L is closed under compositions
and in [8] I observed that the class of stable distributions is not closed
under compositions. It is easy to observe that the class L and the class
of stable distributions are not closed under decompositions. Indeed, we
have X, = X,+ X,, where Lévy functions M;(u), N;(uw) of X;(i=0,1, 2)
are defined as follows: M;(u) =0 (i = 0,1, 2), Ny(u) = Ny(u)— N, (u),

Iny for 0<u<1,
Noy(u) =
0 for u>1;
fnwtfur—3 for O0<u<1,
Ny(u) =
0 for w>1.

Obviously X,, X,eL, X,¢L. Similarly we have X, = X,+X,, where
Now) =0 (i=0,1,2), Myu) = My(u)—M;(u), My(w) = —1fu,

for u< -1,

M =
(%) u+1 for u> —1.

Obviously distribution X, is stable but X, and X, are not stable.

The probability distribution X is said to be unimodal if there exists
at leagt one value @ such that the distribution funetion F(x) of X is eon-
vex for @ < o and concave for @ > a. Chung [3] has proved that the class
of unimoda) distributions is not closed under compositions. I shall prove

TumorEM 2. The class of unimodal distributions is mot closed wnder
decompositions.

The proof will be based on a simple lemma:
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LeMMA. If the distribution X <s unimodal, then the distribution —X
is also unimodal.

Let X be unimodal. Therefore its distribution function F(x) is con-
vex for # < @ and concave for # > a. For 2 % —a the distribution funec-
tion of — X is equal to F,(x) = 1 — F(—w)and so it is convex forz < —aq
and concave for z > —a.

Proof of Theorem 2. Ibragimov [5] has proved that not all dis-
tributions from the class I are unimodal. Let us take a non-unimodal
distribution X, from the class L. In virtue of the lemma, distribution
X, = —X, is also non-unimodal and it belongs of course to the class L.
The distribution X = X,+ X, is clearly symmetric and XeIL. Thus
the distribution X is unimodal, because every symmetric distribution
from the clags I is unimodal (Wintner [10]). Thus we have a decomposi-
tion of a unimodal distribution from the class L into two non-unimodal
distributions from the class L. Theorem 2 is thus proved.

The following corollary results immediately from the proof of Theo-
rem 2: '

COROLLARY. The class of unimodal distributions from the class L is
not closed under decompositions in L.

Tbragimov [6] has introduced the notion of strongly unimodal dis-
tributions: a distribution is strongly unimodal, if its composition with
any unimodal distribution is unimodal. The class of strongly unimodal
distributions is closed under compositions (see [6]). I shall show that
this class is not closed under decompositions. I shall use the following
theorem due to Ibragimov:

IBRAGIMOV’S THEOREM. A non-degenerate unimodal distribution X is
strongly wnimodal if and only if its distribution function F () is continuous
and the function w(w) = logF'(x) is concave at the set B of poinis where
neither the right nor the left derivative of the function F(x) is equal to zero.

Let us consider the gamma distribution X with density function

. 0 for <0,
() = b* ~bz

—— e

I'(p)

It is easy to verify that it is a unimodal distribution. If p > 1, its
distribution function F(z) is convex for z < (p—1)/b and concave for
2> (p—1)/b. If p <1, F(x) is convex for # < 0 and concave for z > 0.

The set B defined in Ibragimov’s theorem consists of all the points
2> 0. We have

p>0,b>0.
for >0, ’

1—p

22

(AJ”(Q}‘) _

icm®
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Thus, the function w(z) is coneave for p > 1 and convex for p < 1.
Therefore the gamma distribution is strongly unimodal for » =1 and
non-strongly unimodal for p < 1.

Let us now take two independent gamma distributions X; and X,
with the same values of parameters b, = b, = b and p, = p,, 3 < p, < 1.
The distribution X = X,4- X, is a gamma distribution with parameter
P = 2p, >1 and so it is a strongly unimodal distribution. Thus we have
proved:

THEOREM 3. The class of strongly unimodal distributions is not closed
under decompositions (even if the componenis are assumed fo be identically
distributed).

Since gamma distributions belong to the class I we have immedi-
ately the following corollary:

COROLLARY. The class of strongly wnimodal distributions from the
class L is not closed under decompositions in the class L (even if the compo-
nents are assumed to be identically distributed).

‘We have seen that the composition of two non-strongly unimodal
distributions may be strongly unimodal. It may also be, of course, non-
strongly unimodal. It suffices to take the composition of two gamma
distributions with parameters p, < % and p, < §. It is easy to observe
that the composition of a strongly-unimodal and of a non-strongly uni-
modal distributions may be strongly unimodal. It suffices o take the
composition of two gamma distributions: one with p < 1 and the second
with p > 1. But the composition of a strongly unimodal and of a non-
strongly unimodal distributions may also be non-strongly unimodal.
It suffices to take the composition of the uniform distribution with den-
sity funetion

0 for =z<0,
pi(®) =31 for O<a<l1,
0 for z>1,

which is strongly unimodal and of the distribution with density funection

0 for <0,
Pa(w) = [1/21/5 for O0<w<l,
0 for ®>1,

which is non-strongly unimodal. The composition of these distributions
has the density function

0 for <0,
Vo for O0<o<1,
p(@) = —
1—Ve—1 for 1l<z<?2,
0 for #>2.

14
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It is easy to verify that this distribution is non-strongly unimodal.

It must be mentioned that Lukacs and also Dugué gave an example
of decomposition of Cauchy distribution into two non-stable distribu-
tions (see e. g. [9], § 9.2).

3. On the distributions of the same sort and of the same type. The
logarithm of characteristic function f(f) of an infinitely divisible distri-
bution X with finite variance can be written in Kolmogorov’s form [4]:

+oo
. 1
log f{1) = iyt+ f (6" —1—it) - R (w),

where y = const, K (4) (Kolmogorov function) is a non-decreasing bounded
function, K (— o) = 0. If X, = aX+b,a > 0, we have f,(¢) = f(at)e™
and so

+00 . 1
log f, (1) = it (ay +b)+ f (e”"‘—l—itu);;azdlf(%).

Thus the distribution X, = aX+b (¢ > 0) is defined by y, = ay+b
and K, (u) = oK (u/a).

In my paper [8] I introduced the notion of distributions of the same
gort. If infinitely divisible distributions X and X, have finite variances,
then they are of the same sort if and only if there exists a constant « > 0
such that K,(u) = oK (%) for all u, where K(u) and K,(u) are Kolmo-
gorov functions of X and X,, respectively. The question arises, when
two infinitely divisible distributions X and X, with finite variances are
simultaneously of the same type and of the same sort. We must then
have for all %

aZK(%) =aK(u), &>0,a>0.
Substituting # = 0 we obtain a = a? hence
u
(5) K(u)=K(—), a>0.

Suppose now that (5) holds for some ¢ < 1. Let us take an arbitrary
w, >0 and form the increasing sequence #, = u,_,/a. From () we have
K (up,) = K(u,) and since limu, = + oo and K (u) does not decrease,

U000
K(u) = const for u >w,. Similarly, taking the decreasing sequence
U_p = OU_n,,, Which converges to zero, we state that K («) = const for
0 < u < %,. Therefore K (u) = const for u > 0. Similarly (taking u, < 0)
we have K (u) = const for 4 < 0. The case & >1 is quite analogous.
We have then .
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THEOREM 4. The class of normal distributions is the only class of
distributions with finite variances which are of the same sort and simul-
taneously form one type of distributions.

This theorem gives us a new characterization of normal distribu-
tions (another characterization I gave in my paper [8]).

I express my thanks to Professor C. Ryll-Nardzewski for his valuable
remarks.
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