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is cross-Lipschitzian but not Lipschitzian over amy open ball about the
ortgin.
For linear mappings our result may be phrased so as to say:
COROLLARY 3. For any densely defined linear mapping T:H# —#,

(41) Kint||T—AI|| < ||7|1* < intT— A1,
2 A
where

ITI1+ = sup {|Ta|*— |(Te, z)|*}*,
llefl <1

and K is a positive constant independent of T.

The best value of K is not known to the authors, they can only say
that it is not smaller than 5-%%. It may be shown that the value iz
one if the dimension of the space is 2 or if the mapping is normal. Is it
always so?
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Properties of the orthonormal Franklin system, IT
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7. CIESIELSKI (Poznah)

1. Introduction. This is to continue the investigations undertaken
in the paper [1]. Most of the results were announced without proofs
in [2].

In Sections 3 and 4 sharp estimates from above and from below for
the single Franklin functions and for the Dirichlet kernel of the Franklin
gystem are obtained. Actually, we work out an explicite formula for
the Dirichlet kernel. )

Theorem 4 ghows that the Fourier-Franklin series of an integrable
function converges at each weak Lebesgue point. Using Theorem 3 and
Lemma 8 one could deduce this result from the general criterion for sin-
gular integrals of Krein and Levin [10]. However, with the help of gener-
alized Natanson Lemma, proved by Taberski in [15], the straightfor-
ward proof of the Theorem 4 becomes very simple and therefore it is
presented here.

The next part of this paper deals with the best approximation and
with the approximation by the partial sums of the Fourier-Franklin
expansions in the L,<0,1)> spaces. Most of the corresponding results
for the space €0, 1> were discussed in [1]. Theorem 9 shows that there
is a non-trivial difference in the order of approximation of smooth fune-
tions by the partial sums of the Fourier-Franklin and Haar-Fourier ex-
pansions. ]

Theorem 12 extends the results obtained in [3] for the case p = oo
to the Lipschitz classes in L,¢0,1>. It shows that there is a constructive
linear isomorphism between any two L, Lipschitz classes with the expo-
nents a,0 < a < 1. Again, the limit case o =1, like for p = oo [31,
is singnlar. We do not know whether the isomorphism exists for1 < p << o©
and o = 1. If » = co and a = 1 then it exists but the known proof is
not constructive [12].

Theorem 6 is a generalization of the main inequality proved in [1].
It plays an important role in the proofs of the absolute convergence
theorems of Section 7.
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Comparing the results of two parts of this work with corresponding
results for the Haar system (see e.g. [5], [6], [7], [8], [16] and [17]) we
find the far going similarity between the Haar and Franklin systems.
The Haar functions, the integrated Haar functions plus a constant
function, i.e. the Schauder functions (ef. [5], Theorem 3), the orthonor-
malized Schauder functions, i.e. the Franklin funetions, and finally the
integrated Franklin functions plus a constant function (c¢f. Theorem 20)
form the Schauder bases for the Banach space (0, 1>. This suggests
strongly the possibility of continuing this process.

2. Notation. We are going to continue the notation developed in [1].

The partial sums of the function weL,<0,1> of the Schauder, Haar
and Franklin expansions are denoted by o,(z;t), H,(2;t) and S,(z;1),
respectively. Quite often we drope the argument ¢ in the symbol denot-
ing a function.

For a given ze¢L,<0,1>, 1 < p < oo, we put

ol = ([ le@Pa)”, o = la.

The best approximation is defined as
EP(0) = infllo—gl,, BY(@) = Bu(x),
L4

where ¢ denotes a polynomial of the n-th degree corresponding to the
partition 0 =f, <<... <1, = 1.
The ordinary differences and the divided differences are defined as
follows:
4,0(0) = (i k) —w(l),

A35(8) = o(t+2h)— 2 (t+ h)+2(t),

@ (as) —2(ay)
[ary asja] = —2_”1‘7
Ay — 0y
[as, as; ]—[a1, ay; 2]

ag—ay

[0y, asy ag; @] =
We have the obﬁous relation
(2R2) ' M (t) = [£, t+h, 1+ 2h; z].

The moduli of continuity of the first and second order for the func-
tions in I,<0,1) we define as follows:
1-h

of(3;0) = swp ([ [dwio)Pas]”, 0<s<1;
o<hss Yy
1--2h
of(8;0) = sup ([ |Mfm(s)Pas)”, 0<25<1.
8<h<d *

icm
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We put also off?(d; ) = wp(d;2) for k =1, 2.

Now let us introduce the following Banach spaces (0 < a < 1):

KIS 1Yy is the space of all weL,<0,1> such that o®(8;z)
= 0(6), with the norm

1—-h
1 1;
Jo! = ma |, sup - ([ 14zt as) ")
0<h<l h N

SO | 18 is a subspace of the last space of all @ such that
o (8; ) = 0(8%);
{Myp, || |> — the space of all sequences & = (a,, a4, ...) such that
(1<p <o)
gmt1
i
(3 1ea?)” = o),
2™y
with the norm
S Up
lali = sup|laol, laals Y 1anlf)”,m =0,1,...];
241

m®, I > —is a subspace of the last space of all ¢ such that

gMm+1
(3 1a?)” = o).
2™41
All these spaces are complete. <I®, || &% and <m,,|| [ are
non-separable; (I, || > and (m{), || |> are separable subspaces,
regpectively.
3. Estimates for the single Franklin functions. To prove the main
inequalities of this section we need the following three lemmas.
LemMA 1. Letn=2"+y,m>1,1<r<2" and let n = (1 — ngp_n—
—Ng_1). Then n> % and
1 1
9 < D (Aap_ay fap1) < MAX (7] Napmsy Nov—1) < ’3“
Proof. In the proof we distingnish three cases corresponding to
equations (16.I)-(16. III) of [1].
First case. Lemma 3 of [1] and formula (18) of [1] give that
N> Now—z > Noy—1-
Now, the inequality 3(ns—s+7m-1) >3 (cf. [1], p. 151) implies
that # < 3. On the other hand, equations (16.I) of [1] give

1 3
3 T3 +3N2—2F H2p1 = 1’

3
Naw—at 4091+ N2 = Z?
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hence it follows that

3 3

1
E R TR

Nop—1 = 22 Noy—3+

ACGOIdiﬂg tO (17) Of [1]7 _'77211 > 0 a'nd 1721:—3 > — Nay—2 > ’_"7 > —%
Thus, #5,-1 > §—g > 5
A similar argument and the equation (see [1], p. 151)

1 15 1 3
Ky (N2rm1 -+ Npz) = w11 oy — vy Nav—3
give
1 15, 13 1
Y (7291 7y—2) <_+§H+§_4_ E
hence # > %.

Second case. It is proved on p. 151 of [1] that 5, > 5 > #,. Since
7:< 0 and (see (17) and p. 152 of [1])

9 1
Mo = 2—8,+7"72:

it follows that 7, < 3. _
Now, let m = 1. Then, solving equations (16.1I) of [1], we obtain
1 1

N =5 >3-
For m > 1 we argue as follows. On the one hand (see [1], p. 152),

1/3
= Z—2ﬂg,

and, on the other hand, by (16.II) of [1] we have

M+4n+n; = 0.

This combined with (17) of [1], gives 7,-+47n, < 0 or — 27, > 47;.
Thus,

1 3 1
> ( += 7]1); hence "71>—2€>§-

Using the equations given on p. 152 of [1], we obtain

1 12

‘7"'72 S +—=

11 1

3
711+77n——2—8+§— 37 2,

hence 7> 1.

icm®
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Third case. According to (17) of [1], %,_5 < 0. It is shown on
p. 152 of [1] that #,_, <% < 7y, and that

3 1
Nn—2 = 2—0 - ‘5‘7711-—3;
_3 .1
N—1 = 10 10 Np—3-
These equalities give
_ 8.1 .8 _1
-2 =59 79 1S9 T3
and
ey o83 1 L2 11
M-l = o T T 10 ™ S50 T30 T2

The last inequality gives that # > }, and the proof is complete.

LeMMA 2. Suppose that the sequence {Ty, ..., Tmy1} Satisfies the fol-
lowing equations:

2my+2, = 0,
L1+ 4Cp+ 0y =0, Ek=1,2,...,m.
Then,
chak
= (—1 ktm+1 T
@ = (—1) ha(mi) Tmy1
for k=0, ..., m, where a is the positive solution of the equation cha = 2.

LemmA 3. Let the sequence {Tn_m—1, ..., %n} SOUSfy the equations

Tyt 40+ =0, k=n—m,...,n—1;
Ly_y+22, = 0.
Then,
L ﬂ+m+k+lcha(n k)
& = (—1) ha(mi1)

for k=n-—m,...,n; a is defined as in Lemma 2.

Both these lemmasg are a simple consequence of the elementary theory
of linear difference equations (cf. [9], p. 241).

THEOREM 1. Let n = 2™+v,m > 0,1 <» < 2™, and let {ly ..., I}
be defined as in (10) of [1]. Then,

clzmlze-a[k—(bf—l)] < (—1)k+1fn(tk) < czzmlze—u]k—(zr—l)[’
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where ¢ = 243" (i.e. >0 and cha = 2) and

2131
=g =437 2437

Proof. Using (26) of [1], one checks. easily the statement for m = 0,
ie. for n = 2. Let m > 1. We know that (see Section 4 of [1])

— g for k=0,...,20—2;
(1) 2 ifult) =1 n  for k=2—1;
— Mgy for k=2v;...,m.

The bounds for i,, we obtain from Lemma 7 of [1]. Namely,

(2) 2-81.9™ <L A < 6-3Y2.9™,

The required inequalities for the #’s we are going to establish sepa-
rately in each of the three cases corresponding to the sets of equations
(16). of [1].

First case. Applying Lemmas 2 and 3 to equations (16.I) of [1],
we obtain )

—(-1)"-—@7“— for % =0 2v—3
e = cha(2v—2) Nay—2 = Uy evy 2V —0j5
and ;
cha(n—1—F)
= (e, =2y,...,n—1.
N ( ) cha(n—2) oy T k=2, y n—1
This and Lemma 1 give
1 chak % 1 chak
9 a@—2) ~ V<3 gomm—g
for ¥ =0,...,2v—2; and
1 cha(n—Fk) - 1 cha(n—k)
it Sa L —1 _ M
9 chan—2) ~ VT < et

for & = 2, ..., n. Now, the inequalities 4¢’ < chi < e’ (1>0) imply
6" e (o 2¢°
ﬁe - @1} - (—1)k77k < _3_6—«:11:—(2-;—1”

for k¥ =0,...,2»—2; and

(3)

Gl 2¢° :
e olk—(2—1)]| _1)* _ —alk—(2v—1)|
18 < ( )} N1 < -——~3 e

ey e
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Moreover, Lemma 1 gives
e’ < 1 1 2
81Tz <3
~ Combining (1), (2), (3), (4) and (5) we complete the proof in the
first case.
Second case. Equations (16.II) of [1], and Lemma 3 give

()

(—1)F cha(n—Ek) E—2
1 = ({— —_ T = T
Nk—1 cha(n—2) N1y ) ’
Thus, Lemma 1 gives inequalities (5) and also
& et o (ayeyy < 28 et g,
18 - L 3 ’ y
(6) ) , o
€ k- € ok
= =1 < (—1)’°n,c_1<—3 el E=2,..,n.

Now, (6), (5), (2) and (1) give the required result.
Third case. Lemma 2 and (16.III) of [1] give

chak

(-1 ———
cha(n—2)

e = (— Nn—2
for k =0,...,n—2. Lemma 1 gives (5) and
e* Y 26° k(o .
Tge—ulk—(z 1)|<(.”1)k’7"<T6 f—@=3l k= 0,...,n—2;
(N

et 26" _ ik (2
gm0l (1Yo, < —é-—e =@l k= n.

18

Finally, (7), (8) and (2) applied to (1) complete the proof of the the-
orem.

4. Dirichlet kernel and the pointwise convergence of the Fourier-
Franklin series. Let us denote by K,(t,s) the Dirichlet kernel of the
orthonormal Franklin system, i.e. let for ¢, s¢<0, 1>

n
Ealt,8) = 3 fil®)fils), n=0,1,...
im0
The n-th partial sum can be written now for #zel,<0,1) in the form

(8) Su(m;t) = fK,;(t, 8)x(s)ds.
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Let ¢ be a polynomial of the n-th degfee corresponding to the parti-

tion {fy, ..., t,} defined in (10) of [1]. Then the definition of the Franklin
functions and (8) give

9) plt) = [Halty s)p(s)ds, i=0,...,n.
0

We introduce for fixed n the following notation:
Gi=olh), ay=Ku(hi,t), &==t—t,,
Li={tit) for i =1,...,0—1; I, = {lpoy, td;

t—1t;_ .
i—1 and  fi(2) i—1

(1) =
) ti—1 t-—t«._

for tel;.

. In this section the letter o for log(2-4-3%?) will be used, systematic-
y.

LemmA 4. For fiwed n and i such that n =2"+k,1 <k <2™,
0 <i <y the following equations are satisfied:

6
2“0,1‘,""“1,1: = S 60'[1

6 .
O_rit 40+ 05005 = 3 8y j=1,...,2k—1;

s

3
(10) Y1805ty ==

559'&, J = 2k;

3
ai—l,i+4a‘i.i+a'f+l,i = E‘sﬁ, ji= 2k+17 ceey—1;

3
“n—x,i+2an,i = 'g Onis
where & = 2™ and 8y equals 1 if i =3 and 0 if # j.
Proof. We notice that for tel, '
(11) P (1) = an(2) 5h+ﬂ'h(?) &1y
and ‘that for (t;8)el; X I

(1) Halt, ) = (1) 0r(6) 1 B30 n(6)asn - s (0) o) yp o+
i B () Bals) @y —Lh-1+
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Moreover, one checks easily that

[amu= [aoun=2
Iy

In
N :
[awmwa=2 n=1,..n.
Iy 6
This, (12), (11) and (9) give
n a 5
(13) D b @y 2an)+ 2 Qs + ansn) = &,

h=0

where it is assumed that &, = d,., = 0. Since ¢ was arbitrary, we can
specify the numbers &,..., &, as follows: & = &;. Now (13) gives for
j=tand 1=20,...,7n

é I}
EI (@1 205) + ’—g‘(wz,ﬁ ary14) = By

Remembering that & =6 for 1=1,...,2k, and & =24 for Il =
9%k+1,...,n, we reduce easily the last equations to the form (10).

LeMMA 5. Let {4,,..., 4.} be a given sequence of real numbers and
let n>2. Suppose that the numbers {ay,...,an} satisfy the following
equations:

2a,+ 8y = Ao;
(14) Gy 4t o, =4;, i=1,...,n-1;
G120, = Ay
Then,
n
(15) @ = shashanjgol —1)"*4,chamin(i, j)chamin(n—1, n—j)

for i=20,...,m

Proof. To derive (15) we use the well-known technic in the theory
of linear difference equations with constant coefficients (e.g. Chapter
IIT of [9]). For the sake of completeness we state the results of the main

steps in solving (14).
- The general solution of the homogeneous equation ®;_;-+ 42+, =0
is the sequence .

(16) (—1)*(0, ch ai+ cysh af)

where ¢, and ¢, are arbitrary constants.
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A particular solution of the non-homogeneous equation a;_,--4m,+
+ a4, = A; (we may assume that 4; =0 for ¢ < 0 and 4 > n) iy the
sequence :
1 i
. YT 4 P4
(17) shaig‘:( 1) 4 sha (i—j).
Thus, the sum of (16) and (17) gives the general solution of the non-

homogeneous equation.
The first boundary condition is 2@,+#, = 4, and it implies that
¢, = 0. The second boundary condition z,_,+ 22, = 4,, gives

o = — Z —1y 4,

Combining these facts we get

1w, .., chaicha(n—j) 1 . .
;= — —1V 4. ! YL g - .
“ shag( R ‘sha]_%z( D7 4sha(i—j).

chaﬂ cha(n—j)
“shan

Applying to this formula for the indices j <4 the identity
chaicha(n—j)—sha(i—j)shan = chajcha(n—1),

we obtain (15).

THROREM 2. Let n =2"+k,m >0 and 1 <k < 2™ Then

Koty ) = 31/2'2m+1)’n( _1)i+j‘9ii7

where
¥n' = shan-+sha(n—2k) ch a2k

and

2¢h amin (4, §) [chamin (n—1i, n—§)
+sha(n—2k)shamin (2% —i, 2k —j)] for 0 <4, < 2k—1;
oy — chamjn(n—i,n—j)[ehamin(i,j)-l—cha2kcham1n(z—2k,] —2k)]

for ©,5 > 2k;
‘?chamm( i, j)chamin(n—s, n—j) for i,j such that min(i, )
< 2k—1 < max(s, j).

Proof. Tet us fix for the proof the index j and let a; — a; a;j. Ac-
cording to Lemma 4 the numbers a,, ..., a, satisfy equations: (14) with

6 1
A ——3 usrl-azk;(z (27 +“xk)

icm
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where ¢; equals 1 for 0 <7 <2k—1 and } for 2k < i < n. Substituting

thig into (15) we get for 4 =0,...,n

6e;(—1)+

(3. ) ohomin (7 —q. n—i
“Sshashan chamin(z, j)chamin(n—1%, n—j)+

a; =

e 1y (1
+ST(a—S—}Z_l):1% ( Gogr+ aik) chamin (i, 2k)chamin(n—1%, n— 2k).
‘We introduce the following notfation:

cha(n—2k)sha2k

1
A ='§‘alzk—1+a'zky B=1—-—pFr,

2shan
A, = _6_(_1)i+j chaemin (7, j)chemin(n—4, n—j) )
4 F) shashan

Using (18) with i = 2k—1,2k we obtain

cha(2k—1)cha(n—2k)
gshaghan

gy = & Aop15— !

cha2kcha({n— 2k)
Gor = &G dop st A —————

k)

shashan
whence
cha(n— 2k)sha2k
A= ( Ao i+ Ages) + 4 —— 2shan
Thus,

AB = %(%Auc—u‘l' -Azk,y) )
and therefore

i —2
3 _yynShashatn=2k) o,
S shan

AB =
2y Gh“(’bglaﬁjh“zk i j>%
This and (18) give
3( 1)‘i+7
%= gha T

where &; and y, are detmed as in the statement, and the proof is com-
plete.
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TuEorEM 3. Let n = 2™+k, m = 0,1 <k < 2™ Then, for i,j

=0,...,n we have the following inequalities:
1 ‘3',,2% chamin (i, §) chamin (n— i, n—j)
2 shan

< (=1 Eu(ti, 1)

<8-3M.q chomin(i, j)chamin(n—1, n—j)

shan !
zm
(2+3112) fi—7l *

(3

2 o
0.5-3"2W (="K, (4, ) < 12.5-3%

Proof. Notice that Theorem 2 gives

shan < y;' < 28hen

and
chamin (%, j)chamin(n—1%, n—j) < &;
< 4chamin(¢, j)chamin(n—1i, n—j).

This proves the first part of the theorem.
Since chi> 3¢ and 2sht < ¢, it follows that

chamin(z,j)chamin(n—3, n—j)

(=1 Kalty ) > 872
2shan

> %. 31/2 .2me—a[i—i| .

It is a consequence of the assumptions that » > 2, and this implies

¥a < (sham)™' < 267 (1—e™*) 71 < 2(1+—}a"1)6'°" < -Z—e”“”.
Moreover, Theorem 2 gives: &y < fe* 1,
and Theorem 2 complete the proof.
In the proof of the convergence theorem we are going to employ
the following generalization of the I. P. Natanson Lemma ([11], p. 243):
) LEmA. 6 (Taberski [15]). Let g(t) be a function of bounded variation
in every interval {a-te,bd, 0 < e < b—a, such that
b
Jo(s)as < oo,
a ;

These inequalities

where

ol = vargl (a< b < by, w(b) = 0.

icm®
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Then, if
1 ath
M= sup —f f(t)dt‘ <oo  (feL{a, b)),
o<h<<b—a h 4

the improper Lebesgue integral

b
I= [fgta
ot

exists and i
<M f [v(s)+ lg(®)]1ds.
TEMmA 7. Let n=>2,n=2"+k 1<k < 2™. Then
|Ealt, 8)| < ane™"=912

holds for t,8e<0,1)> with @ = 12.5-3%2(24-3"7).
Proof. Notice that

(19) li—jl = dnlt—tl, 1, =10,...,1m,

where {fy, ..., t,} is the parfition defined by (10) of [1].
Tet ¢ < s. Then there exist 4+ and j such that tel;, sel; and i < j.
Formula (12) gives

|Ealty 9) < max(lasly 161l [@55-als 8151
Thus, Theorem 3 and (19) imply
|Ea(t, 8)| <12.5-3"2g%gme 0D

< ane~ ™02 ane™ W,

Sinee K,(t,s) = Kn(8,1), the proof is complete.
Lumma 8. There ewists an absolute constani M such that the estimates

1 t
f var K,(t,w)ds <M and f var K,(t,uw)ds < M
i U<l b 0<u<s
hold for all m >0 and te<0, 1>.
Proof. The proof in the ease of the interval <0,t) goes very much
like in the ease of the interval (¢, 1). Therefore we are going to prove
the first inequality only.
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Let & be an arbitrary positive number, and let 6 be such that

Let 7, <t < t,,. Then,
0<i—0d<t<it+o<1 and

! n i

7
20) Jar Kot u)d f var Ko (t, w)ds = ' [ var Ku(t, uds Lo
i U SguU<1 N
f I=gH14;_, S<u<1 sup —f [z(s)—z(t) ]d.g\ < e.
LI n n o<ihj<s | I
<.2 f var K,(t, u)ds = 2 ) Zva‘rK () u).
1=EFL by s TR Rt We decompose I, as follows:
Formula (12) and Theorem 3 give L t4s
4 I, = + [+] -
js—il>6  t=8
var K, (¢, ) = f — Kt u)| du 7
i ht Lemma 7 gives the bound for the first integral:

”’ [ Kult, )[o()—0(0]ds| < 5w Kalt, )| (leu oD
1>6

1
=3 f lag(8) g+ Bg (8) g1~ g (8) g5y — By (8) Gy 41| At e
< o[l + o (@) ne™ ™"

< max(|ag_,; i : . — —a(i- .
whence (tamasl s D+ max (lagd, [g15-a) = O(ne ‘ Q))’ Therefore, there exists n, such that
S . <& for n>mn.
vark,(t, u) = 0(’7'3—u(i—qJ) ‘ |s—t[>8 *
iz uel;
Combinig this with (20) we obtain . .Now, let us estimate the integral over (¢, ¢+ 8). Lemmas 6, 7 and
give
: 48
J v Halt e = 0 3 o-w) = o). ‘ ORI a(iyds| .
i=g+1
TEEOREM 4. Let weL,<0,1> and lot t,1e<0,1>, be such that t+3
’ T B <ef [ yar Bt w)+ | Kat, ¢+ 0)]1ds
1 b s<u<t+d
(1) :];.n,.}if z(s)ds. , .
| ’ < e[ var Ko(t, u)ds+ed|Enlt, t+ )]
_’l’h(m, 7 s<u<1

3 L ' 2a
@(t) = Za'nfn(t), Ay = fW(s)f,,(s)ds, n=20,1,... < eM_i_g(Sang_“M/: < E(M—I— ;—) =eM;.
oy 1

Proof. We are going to estimate the integral Similar argument shows that

f (t, 8) [ s)—' o(t)]ds ' lfKﬁ(t 8) [z(s) —2( t)]dsl eM,.

by splitting it in suitable way into three parts. Thus, for n > n, We have

The argument given below can be used easil
y to prove the theorem M 1
in. the -cage when: ¢ is one of the end points of <0, 1). Theerefore We may fu L ! = 8(2 S
assume that £¢(0,1). : i . , Smce M1 is a numemeal mnSta.n’s the proof is complete.
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5. Inequalities. The following Lemma will be very useful in the
next section:
Levma 9 (P. L. Uljanov, [17], p. 384). Let weLy<a,b>, 1 <p < oo,
— oo < a<b<<oo. Then
b b b—a  b-h
[ [le)—

(©)Pdids <2 [ ab [ |Ayo(t)Pas
0 a

b—a

<2 [ [oP(h; 2)Pdh.
0

THEOREM 5 (*). Let ¢ be a polynomial of the n-th degree oorraspond-
ing to the partition 0 =4, < ... <t, =1 and let § = mm(tt _1). Then,
if 1<p << oo, we have

1—h
1p 1
e (] 1vpiopas)” < aomin 5 )t
for 6<h<1, and
1-2h
1 L T1 [R\Up
e2) (f 1atooras)” <smin[5, () T

for 0 < 2h < 1. )
Proof. We may assume that p is finite. Notice that the inequality

1-h

(23) [ 14e(s)Pds < 27 ol

is satisfied always. Moreover, we have the following chain of inequali-
ties:

1-h 1~h 1 8+h
.,f | Unp(s)Pds = AP f B f o at’ ds

1-k  &+h 1-h

<w | dsf o' (%) ]”dt-h”‘ f dsf|¢ (s-+0)Pdt
[

k 1-n h 1-hitt

=W [ g (s+iPds =W [ar [ lg!(s)Pds < W5
c 0 0 0, 3

anthor was kindly informed by DrP. L. Golubov that a special case
heoorem 2: of [1] was proved: earlier y, K. M: Shaidukev in [14].

ok
(p ='00)0
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This and Theorem 2 of [1], imply
1-h

h
(24) [ 14pieras < (4 g)” lpl-

0

Combining (23) and (24) we obtain (21).
To prove (22) first of all we notice that

1-2h
(25) [ 143p(s)Pds < 47|jpl.
[}
The next step is to show that
1-2h 1-%
(26) [ 1 Gp@)rds <1 [ 449’ ()P ds.
[ 0

This can be proved as follows:

1—-2h 1—2h 8+h 3+h

[ 1sgwras=w [ 5[ verna—i [ soula
0 &

0

1—2h s+h 1—2h a+h

i of = f Aw'(t)dtrds<h”“ f as f |t (P a8

1—2h 1-2k

=w [ a f [dag’ (s-+ 1)t = 127 f @ [ 4! (s as

B 1-2n+i R 1—h
=W fat [ Mg (e)Pds <K [dt [ |drg'(s)"ds.
0 t 0 o
Now, if » < é and 8;e(ti_y, %;), then

1-k :
@7 [ 14 0Pt

0

n L—h -1 1
= 2 f | dng’ (t)]"dt+2 f |y’ ()P dt = 2, f,. RO
=1ty =1 4=
= 2—: f 9" (8642) — ' (8:) [Pt = hz—' ¢ (830) — ¢ (80)I"
i=1 t—h =1
n . h 1
w3 D oo =2 [y o

20
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Applying Theorem 2 of [1] to the last term in (27) we obtain
1-h

h
(28) [ 1 P dt < 8 ol

0

6) and (28) gives

h\Pt+1
(5w

The combination of (2

1-2h

(29) [ 1e0pa<s

0

Finally, (29) and (25) give (22).

LeEMMA 10. Let 0 <a<1,n =2 and let 1 <p < oco. Then
1 1—-2h
6 —wlfly < sw ([ 1gnora)”
16 o<2h< d
1—-h y
D
<2sup 1 ([ 1duu0Par)” < 16m°ful
0<h<l ¥

Proof. We notice that Minkowski’s inequality gives

1—-2h 1—-h

[ 14 famPar < f 1Anfa (O 2.

Let n =2™+k,m >0,1 <k <2™, and let & =2V, Then, if
2h < 8, Theorem 5 gives

1-h
1p h
e ([ agaora)” < n s if
0
<827y < 81°[fil-
If 6 < 2h <2, then
1-h

e [ 14agat (t)Pat)"” < 20l

< 2M6T0Ifllp = 22 fullp < 8% [fallp-

It remains to prove the left-hand side inequality in (30). Let k, = 30
and let
1-2%
K = sup 7 | A;,fn(t)["dt)llp
0<2hg1 °

icm®
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The function A3 f,(t)
tyr_s+ hey . Therefore,

vanishes at ¢ = fy_, and it is linear in {Zy_,,

1-2h, Log—athy

g [ g n0ra” =0 [
0 L.

2k~2
= hy T (p 1) AR fultorems -+ o] = Ry =TV (p+1) VP4 A2 (fap )]
This and (25) of [1], imply that

143, Fa(t) \”(lt) e

e ..
whence by Lemma 5 of [1], we ‘get
o - 1 il
K > h aTI/p(p—]"l) Yo _ nlip
’ 2:2™ 4gu,

1 1
— h-0~a+1111 e 2m(1/2+1lp)”fnnp > _i_g ne ”fn”p-
This completes the proof of (30).

,THEOREM 6. Let 1 <p<oo,l/p+llg =1, and let {a,, as,...} be
a sequenoe of real numbers. Then for m = 0 the following inequalities are

satisfied:
2M4-1
<| 2 \fal

G iflmnmﬂp
o (3 *al)‘“’<l¥2 lfnfll””

™41

" Lol w 2 laal?) 2,

2™+l

_ max nfnnl)”QHZZ il
<p<<a+l RRE S |

omt1
(83) [ 315l max (ifll)¥? < 258Meemgnann,
oMy e+l

Proof. Let us put

gm+1

1G] _
g 0= Dl

M1

pn(t) =

Then (31) is a consequence of the following inequalities:

gm+1 1 g1 gm+1
| Qf lanfaly = [ 1ba (07 2+ pt)lanl)” dt f P (Y pultlan?) i
oM.y 0 2My. Mgy

gm+1 oMmA+1

f P (3] Va0 laa) dt < 1B~ ' max Ifal) 2 2.
[

2M41 1
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Now, let {¢,} be an arbitrary sequence of real numbers. Then the
orthogonality of the Franklin functions and Holder inequality give

gm+1 1 m 1 om+1
| 3 ] = | [[ 3 antutt) [ X eutuio)a]
2™41 ° z'" 241

: mt1
IS a3 et
2™M+1 2M+1

In particular, using this inequality with ¢, = sgna,|a,/”"* and then
applying (31) we obtain

om+1 gml
2 (@)’ = I 2 @ Cp,
2M+1 oMy
’ om+1 .
Il Z ‘anfn‘n w7 ( max Hf Il I/Q(Z lon )uq
o 2™+
zm+1 o
= || 2 entully ot max 1A 3 o PJ
- 51

Consequently, dividing each side of these inequalities by
gm+1

( ) tea)™

aM+1
we obtain (32).
Inequality (33) is a consequence of Theorem 5 of [1] and of Lemmas
5and 7 of [1]. Indeed, the left-hand side of (33) is less than

(2531122m/z)1/q(6 . 31/22»11'-/2)1/1) — 253112(3 _2—4)1/1: olia=1/pmiz - gsgli2gm(lj2—1p)

COROLLARY. Let 1 < p < oo and let {a,} be an arbiirary sequence of
real numbers. Then, for m =1 we have

gmt1 gmt1

(34) 2‘53‘1’22’"“’2‘””)(2 la ) < | 2 anfall, < | 2 jandall,

om
2‘m+1

< 2531/22m(1[2—1/12)( Z ]an‘p)llp.
241

Remark. Inequality (34) is a generalization of Theorem 5 of [1].

6. Approximation. The following result is essentially due to Ulja-
nov [17]. Since our proof is simpler and gives much better constant
(6 instead of 24), it is presented here.

sy
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THEOREM 7. Let eLly<0,1),1 <p < co. Then,
1
o — (@)l < 6P (? w) for w1,

Proof. If # =1 the result follows immediately from Lemma 9.
Let n = 2™+ k,m > 0,1 <k <2, and let {#;} be defined by (10)
of [1]; & = t;—tiq, 6 = 27D, Then by Lemma 9 we obtain

lo—Ha(@)l = 2 f ja(s) — Halo; s)"ds

i=1 t_

n 4
=;ti—f1}_ f[m% w(s)]dt|Pds
\Z fflm

’L
=1 Lim1ti-1

n 1 & t;—h
<22?fdh f | Ay (8)P @

i=1 iy i1

3 2k t;—h
=5[>
=3

f | dna (017t} +
26 n  4—h

i=1 byq
1
—{ dh
+ é

0 i=2k+11; y

8
f dn
(]

3 1-k —h

2 » 1 I
be hof | An (|7 dt-+ fdhf | A ()P dt

z () dids

Ao (P dt)

top—h 23 ty—h

| Apa(8)[P 8+ — fdhf | Ay (0Pt

c»]w

0

< 2[oP(8; 2) P +2[0P(28; )T

v 1 0
<2(1+29 [m(f) (2j+1; m)] < [6«0‘1"’ (—;; w)] .
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ILevma 11, Let n = 2"+ %, m =0, 1 <k <2™; let {t;} be the parti- Write
tion corresponding to n and let & = t;i—t_y, 6 =27V For a given "3
2eli (0,1) we define a polynomial o of the n-th degree as follows: 4 = (8e4 831)" N ltica b, s X,
=1
(p(t't)zfu 'i=0,,’)’b; 2k—1
G -A1 (6 ‘|’51+1)p+ |[t—17tutt¢17X]l b
My = — fm(t)dt, P=1,...,n; =t

Ay = (6or ’52k+1)p+1|[t2k—17 tos taer1; X1,
& = (my+my) for i =1,...,n—1; .
Then, for 1< p < oo, Ay = k+1(6 o 8 [Tty by tigns X1
1=2,
4

1—
llp—Hy (o)l < (2 f |As2( t)l"dt)m’ < o “”(1 a:) We notice that there are three possibilities:
b n

: ‘ 4, ik =2",
Proof. Notice that
) (36) A=14,+4, it k=2m-1
mi— & = F(my—myy,) I =1,...,n—1; t ) " !
and A +A4,+4, i kB<2"-1.

Mmi— &g = t(my—myy) if 1=2,...,n;

Without any restrictions on %, ie. for 1 <k < 2™, we have
and that for ¢ =1,...,n we have

(37) =2 (281 (26)" fA,,w il
fIH o) —p@Pdt = flm’ g =k 4 bk
—1
’r‘l
<2 f \A,m(t)Pat = f |4, (0)P dt.
—t_ —1 P
= f‘ S (i £ 4 (i £1) S J
ti—1 * i _ Tf & is such that 1 <k < 2™—1, then the well-known technic of
< dymax (|my— &7, |mi— &_(|P) < 8;(1my— &P+ [my— &1 ). divided differences (see Popoviciu [13], p. 7) gives

This gives (38) Ay = (38 [[takrry tap tarsa; X1

¥

i=1

(35)  [Hn(2)—glp < D bilmi— &P+ D) dilmi— £i,[”

2
= (35)p+1 ”g[tﬁk—ly tog—1-+ 6, for—+ 265 X1+

n

1 n
Sild(mi—my )P+ D 813 (ms—my )PP

1 »
= &l +§[t2k—1+5,tak—1+25:tm—1+355 x]
= 2_17%_‘1(51-{- By Mg —my; ]p. = (38)PF? 2 #LAQX(t )+ }—i—AzX(tzk _|_,5)JJ
& L 3 pe2 ! 2k~1 3952 ° -1
~1
= 111 i
=27 7’12:(5 +6m+1)1’+ |[t1 1y by t1+11 X:H y < (26)—F(36)ﬂ+1 [%(%Agx(tzk—l) + g‘_g A%X(tzk_1+ (5)\ ]
where .
ok +d
— faa VT [ ssoract 7 a0 a)-
J . = ‘2_ 'é_‘ f l 8 ] é

lak—1
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To estimate 4, we need the following identities and inequalities
(cf. [13]).

Let 2k+1 <4 < n—1. Then

[tieay by big; X1 = [l 81+ 26, 61+ 46; X]
1
=7 [-1y bt 08, 814+ 26; X]+

1
+ 5 [heat 8, iy +20, 1 +30; X1+

1
+ M1t 20, 0438, 44485 X,

whence

I{tie1) ‘th tip15 X

1
| X (i + 0|+ =

o X () =

2 252 o [ X (h s+ 20).

< —
4 26’
This gives
1 fy+é

<79 %f |4y w(2)[Pdt+

(39) “:t ~13 tiy t1’+1y X:”p

‘i+d

—<26)—” f IA.sm(t)l”dH (2607 f | 4,0 (t) Pt

l¢!1+a ;

1 _ firo
= L2rsen f g (P dt+ L o-vg-wn f |4y (8)[Pdt.
b1 ti1+o

Applying (39) to the definition of A, we get

. n—1 i t4s
(40) 422 N ( [owPat [ |d,00)r)
=2kl by 4 1+e
tn1 ln—y+d
=2 [ |4oPat+2? [ |d0@)Pa
tox; tyg+o
1-4 togt+a
<P t:{ [dsw()Pat—2° [ |4,2(0)Pds.

2k
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Now, in the case k¥ = 2™, according to (36), Lemma 11 is a con-
sequence of (35) and (37). If k = 2™—1, again by (36), (35), (37) and (38)
we obtain

[Ha(@) — ¢l < 277 (414 45)
thp1 » tag 3 pfzk'i‘"
<3 [ dgawraa (3 [ asorat (3] [ asora
4 4
H tak-1 ©
byg+d
<2(%>pof | 4y (t) l”dt_Z( )pof sz ()P dt

1-8

<2 |ds;z@)Pdr.
/

PFinally, if 1 <k < 2™—2, then according to (36) we obtain from
(38), (37), (38) and (40) the following inequalifies
| Ha (@) — ol < 277 (41 + A+ 4,)
b1 plkte

|A,,w(t)l"’dt+2( ) f|Adm(t ]pdt—{—( ) f |45 (t)\° dt +
Lok

1] faxk—1

gor?

by o 18
+2 f (Ao at— | 14,0(0Pa <2 [ 14,ara;
tok log, 0
this completes the proof.

THEOREM 8. Let n > 1. Then for ®el,<0,1) if 1 <p < oo, and
for 200, 1) if p = oo we have

(41) B (1) < |lo— Su(@)]p < 4BD (@),
and
(42) B (z) < 8o (%, m)

Proof. It is clear that it sufficient to prove this theorem for finite p.

The left-hand side inequality in (41) is a consequence of the defi-
nition of B (z). The right-hand side inequality follows from Theorem 1’
of [1], (compare Theorem 6 of [1]) ().

(2) In the proof of Theorem 6 of [1] there are three misprints: Bym.yp (@) should
be replaced by oym, g ()
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The proof of (42) goes as follows. If p denotes the polynomial defined
in Lemma 11, then the definition of B¥(x), Theorem 7 and Lemma 11
give for n =2

EP(5) < lo—ollp o+ 1 Hn () — llp

1 1
< 60 (% m)—{—ZW ) (-— .'L') < Bw(”)(n; m)

< flp— Ha ()

If » =1 we infer from Theorem 7 that
EP(w) < |lo—Hy(@)], <
and this completes the proof.

THEOREM 9. Let 0 < a <2,
0 < 26 < 1. Then,

6“’?)(1? z),

©eC<0,1) and let w,(d; ) < M&° for

Sp(2) < il ! n
(@) < 991 (n—}—l)“’

Proof. Notice that |o,(2)| < |lz||, hence it follows that

(43) llz—

\Y

1.

(44) Eu(2) < lo— op (@) < 2Bn(2).
Theorem 1’ of [1] and (44) imply
(45) le— on(@)] < 2llm—Sul@)ll, llo— Su(@)| < 4llw—on(®)]l.

‘We know also that (see Theorem 3 of [5])

(46) a(t) = @(0)+ D) 6agalt), 1e<0,1);
f=]1
where
, k—1
(47) o =al)—a(0), emy = =274 |5 ).

Modifying slightly the argument of Theorem 4 of [5] we get from
(45), (46) and (47) inequality (43).

Remark. It follows from the results of [1] that for 0 < a < 1 the
order of approximation in (43) is the best one. If « = 2, then for z(t) = #?
we have

B(tp1) — oym iy (fae—1) = Oamyg(tor—1) — oympz_1 (fox—1)

1
= Cgmyr@am ik (la—1) = "‘%Aiﬂmﬂm(tzk—z) = —(2m+1)2’
whence

o Bu@) >3, w1,

(n41)¥’
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THEOREM 10. Let xeL,0,1) if 1 <p < oo and let 2eC0,1> if
p = oo. Then, for 1 <p < oo we have

1
of? ( ; w) < 48— ZE“’)

and for 1 <p < oo we have

(48) n>1,

1 5-27 &
(49) "’gm(“””)gm NerEP (@), w2

" i=1

Proof. It is clear that the proof of (48) can be restricted to finite p.
Let us denote by v, the L,<0,1> best approximating polynomial of
the n-th degree and corresponding to the function ze¢l,{0,1). Then,
for k> 1, we have
k-1

Yo) + Z (tpym+1— pgm) + (T — ak) .

m=0

2z = o+ (p1—

Let he(0,2_k>. Then by Minkowski’s inequality and by (21) of
Theorem 5 we obtain

1-h
([ 140 a)™
0
1~k k—1 1-h yp
<[ Al —m@)Pa) "+ P ([ |alpamer—pm)Pa)”+
0 . m=0 0
1-h
[ [Mfor—va@)Par)”
L]
. k-1
< 4min(d, 275y, — oll,+4 3, min (2™ F, §) flygnsr—pgmlp + 2BR (@)

Now, if k¥ = 0 we have

1—h
([ 14re0Pat)"™ < 2lp— vollp+ 25 (2) < 2B (a) +4E7 (@),
0

whence
1 2
o (27, 2) <8 3 B (a).
1=0
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If & >1, then

1-h

(f | dy(t) )"

k-1
(B () + B (@) + 2 2™ (B () + BE (@) + 289 (x)
m=0

48
) < 2k+1ZE'(£p)(m)
i=0

SN

8 @) 48 & m—1 (D)
<2k+1E0 (w)+2k+1 22 E;m(ﬂ?

Thus, we infer for all ¥ > 0 that

ol <o gor

1, let % be such that 2° <

For given n,n > < m < 25! then the last

inequality gives (48).

For the proof of (49) we assume that 0 < h < 2% & > 1. Theorem
b, (22), gives
1-2h y k—1 1-—2h
4 !
([ 143e@ra)” < 3( [ |Sfpmer(t)—pum(0)Pat)"+ 4BR (@)
L] m=0 0

k-1

< Zsmin[(77'2m+l)l+llp7 $llpam+1— pamllp+ 4B (z)
m=0
k—1
< >8R B (n) + Bf(0) 1+ 45D (o)
m=0 2k

< 5-27. 2~ (F)A+Y) 2 P EP) (7),

hence (49) follows immediately.

Remarks. Theorem 10 shows that for finite p the condition EY”
= 0(1/n) implies o’ (8; %) = 0(8). If p = co, then this is not true.
An example of such function is constructed as follows (compare with [4],

Theorem 4):
- 3L = Z pmaa(t),  16<0, 15
m=1
One checks easily that
n
Ai,y&ﬁ(%) = Tgm

henee it follows that
w0y (27" D5 p) 2 w270

icm®
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However, for p = co and #<C<0,1> the converse is true. Namely,
it wy(d;2) = 0(), then E,(z) = O(1/n) (ef. [8], Theorem 4). We do
not know whether a similar result holds for finite p.

The following result generalizes Corollary of [1], p. 156:

TaroREM 11. Let ©el,{0,1> if 1 <p < oo and let 2<0<0,1) if
p = oo, If an_, denotes the n-th Fourier-Franklin coefficient of a and if
0 < a <1, then the following conditions are equivalent:

i) B®(2) = 0(n™"),

() le— Sal@)llp= 0(n™%),

gm+1

(111) 2m(1/2~1]ﬂ)(2 Ianlp)lliﬂ — 0(2~am)7
241

(iv) 0P (8;2) = 0(8).

The theorem remains true replacing O by o.

Proof. The equivalence of (i) and (i) is dne to Theorem 8, (41).
Corollary to Theorem 6 shows that (ii) is equivalent to (iii). Finally, (42)
and (48) give the equivalence of (iv) and (i).

The next theorem generalizes the results proved in [3].

THEOREM 12. Let 0 < a < 1,1 < p < oco. Then there is a linear iso-
morphism between the spaces <L), || 157, <ZEO, 1 15 and <y, || [,
<m®, || >, respectively. In both cases the isomorphism is given by the
Fourier-Franklin series

n.f(ap) Ay, = an“gz)(m7fn)’

1?[\43

where f&P = f/\fal. Moreover, {f$"} is a Schauder basis for the space
<TG - .

This theorem is a simple consequence of Lemma 10 and of Theo-
rem 11.

7. Fourier-Franklin coefficients. Absolute convergence.

TEEOREM 13. Lot a >0, 3eC0{0,1> if p = oo and let zelyp(0,1>
if 1<p <oo. Then

(50) 2”’ p

=1

f <
if and only if

o

1
2 — BEP(z) < oo.
=1 n

(51)
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Proof. According to Theorem 8 condition (50) implies (51). The
converse is a consequence of Theorem 10. Indeed,

—_— 0(2 EP w))

The following two theorems generalize Theorems 8 and 9 of [1].

THEOREM 14. Let2eL,<0,1>if1 <p < coand eC0, 1) if p = co.
If ay, = (2,fa) and a >0, then

o0
EN(x
E nl—(a) < oo
»

n=1
implies
am+1
- 1jp
Sameafyn 5 ) <
m=0 2111+1

Proof. According to (34) and (41) we have

amt1

om{1f2+3) (2—m 2 Ia‘n”llr2

2M41
< 25312 9™ |8 i () — Sy (@) < 203227 B (),
hence the theorem follows.

COROLLARY. If xel,<0,1) and

1 B ()
2 Y < o0,
n=1

then

L Yl < oo

n=1

THEOREM 15. Let 1 < p < oo and let
m+1
22m;«» (2_ Z PR 129)1/2? < oo.
2™t

Then the series Z’ | fn(B)] converges a.e. and in the norm || |-

e ©
Im Orthonormal Franklin system, IT 319
This result follows immediately from (34).

The idea of the proof of the next theorem is due to P. L. Uljanov [17],

. 362.
THEOREM 16. Let x be a function of bounded variation on {0,1) and
et a, = (x, fn). Then,
gm+1 .
2 (@] < 21831222 yary,  m = 0.
o] @b
Proof. Since x is of bounded variation, it follows that for 0 < 6 <1
(ef. Tljanov [17], p. 358) .
o{(8; 1) < 3dvara.
<1
This, (34) and Theorem 8§ give
om+1

g ™ Z @] < 2 3% 18 41 (2) — Sym

om,

(@)l < 2°3Y B (2)

+1

< 9.3 ) (—2},;, m) < 2M-3-82. 0" "varg,
£0,1}
and this completes the proof.
COROLLARY. If te<0,1> and m =
am+1l ¢

2 Ufn(s)dSI < o1-3.31% ™2,
2y O

0, then

A similar inequality holds for the Schauder functions (see [4], p- 142).

TaEOREM 17. Let # be of bounded variation on <0,1> and let a
= (@, fa)- Then,

oo

Dntlagl < oo for a<i,
=1
and

Niaf < oo for p>3.

Proof. The first part follows immediately from Theorem 16.
The second part can be proved in the same way as a corresponding
result for the Haar system (cf. Uljanov [17], p. 373).

THEOREM 18. Let 0 <e<i and let 13> a>ef2(2—e). Then for
each © such that w,(d;x) = 0(8%) we have

oo
2 [@af*™* < o0,
n=1

where a, = (2, fr)-
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To prove this it iz sufficient to apply Corollary from [1], p. 155.

THEOREM 19 (Carleman’s singularity). Let 0 <& <3%. Then there
erists x such that o (8; w) = 0(6%) with a = &[2(2—¢) and such that

2 I“n]z_z = 00, ap = (%, fn).
n=1 -
Proof. Define
. ) 1,
z(t) = Za,,f,,(t) with a, = gl
=1

Then |a,|*~* = 1/n. Now, Corollary ([1], p. 156) gives w,(d; &) = 0(4%.

8. Integrated Franklin system as a basis. If we integrate the Haar
functions and add to this new system the constant function 1 we obtain
the Schauder basis of the Banach space <C<0,1>,| [I>. The same
turns out to be true for the Franklin functions.

THEOREM 20. The set of functions
(52)

i8 a Schauder basis for the space <{C<0,1>,| ||>. Moreover, for each
xeC{0,1) ihe unique ewpansion with respect to the system (52) is given
by the formula

0 1 i
(53) a(t) =@(0)+ Y[ [ fa(s)da(s)] [ fa(s)ds,
n=0 0 0

where the series converges uniformly im (0, 1>.

Proof. The uniqueness is & consequence of the relation (3) of [1].

Since {f,} is a Schauder basis for the space <0 <0, 1>, | |[>, it follows
that (83) is satisfied for a dense subset of ('<0,1) for #’s which are
continuously differentiable in <0, 1).

Let

t
Da(z; 1) = a( +2[fft 9)da(s)] [ fls)ds.

1=0 0
N

(54)

Notice that {D,} is a sequence of bounded linear operators in
{C<0,1y, | |> such that D,(z)—& — 0 in a dense set. To complete the
proof of our theorem it is sufficient to show that the norms ||D, of
these operators form a bounded sequence.
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The definition (54) gives
Dyl ) = m<0)+m<1>§ f fuls)ds fi(1) —2(0) 2 f fils)ds £:(0)—
~é,l‘oflmsf(s)dsff, (s)ds
= 0(0)42(1) Salzs; 1) —2(0) 8n (7,5 0)— f () Ga(35 1) ds,

where y,(u) is 1 for 0 <u < iand()fort<u 1, and

Ga(s, 1) —Zf(s)ffl u)du.

i
This and Theorem 1’ of [1] imply

|1 Dn ()]

hence it follows that

<7+ el sup [ |Gals, 1]ds,
oIl g

1
(85) [Dall < T+ sup [ |@u(s, 1)) ds.
ogtglo
Now, we notice that
Guls, 1) = stu)du—f Ro(s, w)du
1
d f a
= =2 [ Euis, wydu = —f—K,,(s,u)du.
ds J as
Let {ty, ..., t,} be the partition corresponding to n and let d; = #,—#;_,
If 6, <t < and ¢ <k, then Theorem 3 gives

iy

(56) f]G s, 1)jds = ”flE Rals, u)dulds
. i

1
d

I

f'tf[K”(t"’ u)— K, (ti_1, w)] dulds
tiq L

-
-

< | [HEa(tiy )]+ K p(lioy, #)| Jdu

H——

kid ]

2
R AC

i=k 4y

o5 W)+ 1 (81, w){1du

21
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o
1
o

< 3 8 lts, 1)1+ Enltey )|+ | Enltis, )]+

ik
1 Kaltions )] = 0 (2 @-ne‘“t""")
=k
- O(ea'tze——a.’i) — O Y.

i=k

If i >k, then quite similar argument shows that
i _
(87) [ 1Gals, ] ds = 0(e).
41

Thus, (56) and (87) imply

# )
[ 16als, ids = 0™ for  fy B <y,
t1

whence uniformly in %

1

sup f]Gn(s, t)ds = O (26‘“"““) = 0(1).

0<i<ip

Combining this with (55) we complete the proof.

COROLLARIES. 1) The set (52) is @ Schauder basis in the Banach space
0™ ¢0,1> with respect to the usual norm. 2) If 2e€<0,1> and y is of
bounded variation om <0, 1>, then the following Parseval's identity holds:

1 oo 1 1
[yman(t) = Y [fa(d)da(@) [fals)y(s)ds.
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