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IXa, b) with order convolution
by

L. J. LARDY (Syracuse, New York)

The linear order on an interval I of real numbers from a to b, where
a or b may be infinite and I may or may not include one or the other
of the end points (if it is necessary to indicate, for example, that the point
b is in the interval I and the point ¢ is not in the interval, then we
shall write I = (@, b]), determines a convolution on I'(a, d) and with
this product L'(a,d) is a Banach algebra. The convolution arises as
follows. Since the interval is a linearly ordered set, it is & commutative
semigroup with the product of x, yeI defined by xy = max{z, y}. When
I is provided with the usual interval topology, I is a locally compact
topological semigroup. Let M (a, b) denote the Banach space of all regular
bounded Borel measures on I and let Cy(a, b) denote the Banach space
of all continuous funections on I which vanish at infinity (the phrase
‘“yanish at infinity” is used in the general topological sense, that is, if
feOy(a, b) and & > 0, then there exists a compact subset K of I such
that |f(z)| < ¢ for all #¢K). One can then define the convolution of two
measures u, veM (a, b) in the usual way by viewing M(a, b), by means
of the Riesz representation theorem, as the dual of Cy(a, b). Then u*»
is the meagure determined by the linear functional L on Cy(a,d) where

(1) L(z) = [ [vley)ap@)dv(y) = [ 7(2)(u»)(2)
I I I

for all 7eCy(a,b). With this product M(a,d) is a Banach algebra. The
structure of measure algebras of this form is discussed in [1] not only
for an interval of real numbers but for an arbitrary totally ordered set
X, with semigroup product defined as above, such that X is compact
in the interval topology. As indicated in [1], many of the results for
compact X are algo valid for locally compact X. In particular, these
results show that the maximal ideal space of M (a,b) can be identified
with the set of semicharacters on I, that is, all bounded complex-valued
functions ¢ on I such that ¢ is not identically zero and ¢(zy) = ¢(z)@(¥)

&,
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for all @, yel. These semicharacters are of the following types:

1, »<a 1, ©<a,

@) @) =<@w= 0, a>a,

or ¢(r) =<, a) = l
0, «>a
where ael and a # o in the second case. The correﬂponding homomor-
phism of M(a,b) into the complex numbers is given by 1[ o{®) du(m) for

all peM(a, b) (see [1] for the details). In this paper we show that I'(a, b)
is a subalgebra of M (a,b) and study the structure of this algebra. The
convolution on L(a,b) will be called order comvolution. The maximal
ideal space of L(a, b) is obtained from an identification of the semi-
characters <z, a) and <z, a), hence it corresponds to an interval of real
numbers. The Gelfand topology is the usual interval topology and the
Gelfand transform has the form of the indefinite integral.

I'(a, b) as a subalgebra of M (a, )

In the interest of brevity we shall write simply I* and M for L'(a, b)
and M(a,b) throughout the remainder of the paper. Bvery function
feI' determines a measure useM where

= [f(@)de
i

The measure u; is absolutely continuous with respect to X.ebesgue
measure and, according to the Radon-Nikodym theorem, every meagure
which is absolutely continuous with respect to Lebesgue measure is of
this form. Since functions in I' which are equal almost everywhere are
identified, different functions determine different measures. Moreover,
we have [lu;]| = ||f|| and we can thus view L' as a linear subspace of M.
Our first result is that this linear subspace ig in fact a subalgebra.

It will be convenient to consider the semicharacters as functions
of two variables and for (z,y)el XI we write (@, y) and <w,y) for the

functions defined by (2) above. It is clear that for any function f on I
we have

3)  floy) = <@, y>f(y)+ <y, 2>f(s) almost everywhere on IXI.
THROREM. If f, g<I', then fxgeLl' and
4) (F*9)(@) = f(@) [g@)ay+g@) [f)dy ae.

a

Proof. We will show first that the function defined on the right-
hand side of (4) belongs to L'.

icm°®

I(a, b) with order conwvolution 3

We have

f} fgy)dy+y ff )dy | de

b [ ]

b
< [ [ @) lgw)<y, eydyda+ [ [17(5)lg()|<y, > dydw

f

b b
[f @) lg@)] <y, p>dyda+ [ [ 1f(@)]19(9)| <2, y> dyde
[f@)lg )] (<@, ¥>+ <y, @) dady

[f (@)l 1g(y)|dedy = IIf]lligl-

I
Q%a B o gkﬁe
R R R @

Thus

f@ [ g dy+g(@) [ fy)dyeL

a

To determine the convolution product of f and g, let = be an ar-
bitrary function in C,(a, d). Then, according to (1) and (3)

b b
= [ [ t(@)f(=)g)

b
[ e, y>7)+ @, o>7(@)f (@)g(y) dudy

[ w(@)du* o) dwdy
I

-
o

b b b
e [ [ @ wi@iddyt [ c@f@[f @ 2ewdy] a

v b v
= f () [g() J fla)da) dy+ Jw [fw / g(2)da] dy
b

= r(y[gy)ff o) du+1(y) [ g(o)da] dy.

Thus the measure uy*u, agrees with the measure determined by
the function

f@ [ g@)dy+g(@) [Fy)dy
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From the above theorem we have that L' is a subalgebra of
M and from the results of [1] M is semisimple. Thus we have the follow-
ing result:

COROLLARY. L' with order conwvolution 18 a commutative semisimple
Banach algebra.

Tf @ is a locally compact group, then the group uﬂgebra, I (@) is not

only a subalgebra of the measure algebra M (¢) but L*(6) ) is also an ideal
in M(G). This is definitely not the case for order convolution since the
characteristic function of the subinterval [¢, d1, where ¢ and d are distinet
interior points of the interval, when oonvolve?l with. the nnit point mass
at d gives the mass (d—e) at the point d. OF course tho sot of discrete
measures in M, 1, is a subalgebra of M. It is easy to check that LI,
that is those measures in M of the form ug-+-uy wheroe uy is disereto and
fell, is also a subalgebra of M.

TuroreM. If I is finite, then L' is generated by the function f;, where
folw) =1 for all wel.

Proof. We base the proof on the observation. that if f and ¢ are
differentiable functions with continuous derivative and if f(a) = g(a) = 0-
then f'# ¢ = (fg)'. This follows immediately from (4) and the funda,
mental theorem of caleulus. By induetion we have (fi*...% f) = (fi...fa)"
Since f, is the derivative of (v— a), the convolution. product of » factors
of f, is given by (fox ... *f)(z) = ((w— a)) = n(e—a)*"* Thus linear
combinations of powers ot f cwe dense in I*.

The Gelfand representation

The Gelfand theory for commutative Banach algebras provides
a representation of these algebras as algebrag of continuous functions
on a locally compact space. We show that this representation for L'
with order convolution is given by the indefinite integral.

Since L' is a subalgebra of M, each homomorphism from M into
the complex numbers will be a homomorphism of I' into the complex
numbers. Thus each semicharacter will provide a homomorphism of L'
into the complex numbers, however, since <x, o) = (W, a) almost every-
where, distinet semicharacters will not give distinet homomorphisms.
There is the possibility too that there are homomorphisms on L* which
are not of this form. The following theorem ghows that each homomorp]usm
is given by a semicharacter:

THEOREM. Hvery homomorphism h of L' onto the complew nwmbers
s of the form

b u
®) () = [fl@)<o, ayde = [ f(@)dw for soms a < a < b.

icm

L' (a, by with order convolution 5

Proof. Since h is a non-zero linear functional on L', there is a non-
trivial function ceL™ such that

b
= [f(@)e(@)d

By using the fact that » is multiplicative, we have

h(f*g)=f( fg Yy +g (@ ff ay)o ()

Q\a

F@)g() <y, @>e(@)+ <o, y>o(y)) dyds
b
[ fla)g

On the other hand,

c(zy)dyde.

-
-f

b b
r(Hkg) = [ [ F@)g@)e(@)ely)dyds.

Since the linear span of {f(z)g(y): f, geI*} is dense in L'(IxI),
we conclude that ¢(xy) = ¢(z)c(y) almost everywhere on IxI. The fol-
lowing lemma completes the proof:

TevumA. Let ¢ be a measurable function on I such that c(wy) = c(®)c{y)
almost everywhere on I x 1. If ¢ is not equal to zero almost everywhere on I,
then there is an a << a < b such that ¢(z) = {, a) almost everywhere on I.

Proof. Let 8, = {wel: =1 and ¢(x) # 0} and let ¢ =inf{i: 8,
has measure zero}. Since ¢(x) is non-trivial, a > a. If ¢(z) were to differ
from <@, «> on a set of positive measure, then there would be a set A of
positive measure contained in [a, o) such that ¢(z) # 1 for zeA. The
set D = {(®,y): ¥y <®,yeA} would have positive measure in IXI.
Since ¢(y) 5 1 for (x,y)eD and since ¢(x)c(y) = e(ay) = ¢(w) for almost
all (@ ,y)eD the set D' = {(z,y)eD: ¢(x) 7 0} has measure zero. Hence
the sets D, = {zel: (z,y)eD’} = {wel:y <o, 0(x) # 0} = §, have meas-
ure zero for almost all y. But this is 1mposs1ble since S, has positive
measure for all yeA and A has positive measure. This completes the
proof.

We can thus identify the carrier space of L' with the interval (a, b]
and r‘she Gelfand transform of feL! is the indefinite integral of f.
The fo]lowmg theorem shows that this identification is in fact topo-
logical:
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TemorEM. The Gelfand topology on (a, b] coincides with the interval
topology.

Proof. The Gelfand topology, 7, is the weakest topology for which
the functions

Ha) = [ flo)da

a

are continuous. Since these functions are continuous with respect to
the interval topology, 7', v is weaker than +'. The fanetions f(a) clearly
separate the points of (a,b], vanish ab infinity and do not all vanish
at a particular point in («,d]. Thus the weak topology, =, induced on
(a, b] by these functions coincides with ' ([2], D. 12).

Remark. The semicharacters (@, ad, ae(a,Dd], form a semigroup
under pointwise multiplication. Indeed, <@, a<w, «'> == {w,u’’) where
¢ = min{a, o’} By simply reversing the interval of semicharacters
we have for intervals of the form [a, ) a situation similar to that for
the group algebra of the real numbers. That is, the maximal ideal space
of the algebra L' of the semigroup [a, b) can be identified with the semi-
group [a, b).

Some additional properties of L'

Tt follows from the above results that I' has no identity. It is clear
that the adjunction of an identity to L' is equivalent to the adjunction
of the unit mass at the point a4 to the algebra L'. Iowever, thero are
approximate identities in I

THEOREM. Given feI' and &> 0, there ewists tel such thai
if w is any nmon-negative fumction in L' which venishes tlo the right
of t and

b
f w(w)de =1,
J .
then ||f—uxfl| <e.
Proof. Choose ¢ > a such that ’
1

[1f(@)|dw < o/3.

a

If w satisfies the conditions of the theorem, then for @ > ¢, (u*f) (%)
= f(). Thus

Lt (e, b) with order convolution 7

t © il
jwxf—fll = [ |uto) [f@)ay+@) [ wiy)dy—f(@)| do
12 x

2@ [ f@lay+ @) [ wly)dy+1f@)] do

a

AN

JAN

B L f— L "

] 4 £
u(@)| [ fwlay] do+ [f@ldo+ [1f@)]do

[2

< | (ef3)u(z)do+e/345/3 <e.

It we set f*(w) = f(x), then the map f->f* defines an involution
in I' and it is immediate that L' is self-adjoint.

If O is a closed set in (&, b] and «,¢C and if f has a continuous
derivative f eIL', vanishes at ¢ and on C but does not vanish at a,, then
f'(a) is zero on O and f’(a,) # 0. Thus we have

TupoREM. L' is regular and self-adjoint.

THEEOREM. Hvery proper closed ideal in I' is contained in a regqular
mazimal ideal.

Proof. The theorem follows from the fact that the set of functions
feI' such that

fla) = [f(@)do

has compact support is dense in L' ([2], p. 8B).

Finally we give an analogue of the Herglotz-Bochner theorem which
i similar to that obtained in [1]. Using the terminology of [2] we call
a functional P on L' positive if P(f*f*) > 0 for all f eI*. Since I' containg
approximate identities, a positive functional P on I' is extendable if
and only if it is continuous ([2], p. 126). A function p « L™ is called positive
definite if and ouly if the corresponding linear functional

P(f) = [fl@)p(o)d
I

is positive. If peL™, then, since P(f) ﬂ(f*) for extendable positive
funetionals, it is easy to see that p(z) = p(2) 2. e, whenever p is positive
definite. :

THEOREM. A function peL™ is positive definite if and only if there
ewists a finite positive Baire measure jip on I' = (a, b] such that

p(@) = [<@, a>dup(a)
2

almost everywhere.
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Proof. If pel® is posifive definite and P iy the corresponding
linear functional, then there exists a finite positive Baire measure pu,
on I' ([2], p- 97) such that

P(f) = [fla)p@)do = [ ] (a)dpm(a)
I I

Il

fff(w) (o, o) dudu, (a) = ff(a) l f(w, ay d,u,,(a)l da.
I i I :
Hence

p(@) = [ <, aydup(u)
P

almost everywhere.
Conversely, if

p(o) = [ <@, ayiu(a)
/

for some finite positive Baire meagure w, on I', then p L™, p(a) = p(x)
and

f(f*f*)(m)p(m)dm = ff(f*f*)(W)Gv, a) dup (o) da
Pr

¥
= zfi{ (F*f*) () <,y o dawdyy (o) = f If (o) *dpap () 0.
; I

Hence p is positive definite.

.OOROLLARY. A function p el is posiltive definite if and only if p is
positive, monotone non-increasing and left-continuous.

Pr.o'<)f. The above theorem shows that positive definite functions
are pogitive, monotone decreasing and left-continunous. On the other hand,
such a function determines, in the usual way, a finite positive Baire
measure such that

P(@) = wplw, b1 = [<@, ayduy(a).
/
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Commutators of singular integrals
by

E. B. FABES and N. M. RIVIERE (Chicago, IIL)

Introduction. Calderén and Zygmund considered in [2] singular
integral operators, I, of type C§’, f >1, and proved results involving
commutators of singular integral operators and the operator, A. It is
the purpose of this paper to prove similar results for KeCF,0 <f <1,

) ~ ~
and for the operator 4% a < f, defined so that A°f = ||®f, where f denotes
the Fourier transform of f.
Notation. £ == (X1, ..ry Zp)y ¥ = Y1y e-3 Yn)y # = (21, sy 2y) will de-
note points of E™ CF(E") denotes the class of functions feC®(E") with

compact support.
“g.e.” designates the phrase “almost everywhere with respect to

Lebesgue measure”,

n
zoYy = Z%%‘.; X = {weB™ |x] = 1}.

i=1

o = ( [ f@)Paa)”,  fl@) = [f@)e™"dy.
B B
y = (1, ..., yn) Will denote a point in E" with each y; representing
a non-negative integer.
Finally,
o orn

datr’ dafz " Owp

(0/02) (@) = f(@).
Aggume f(2)eC™ (") and that every derivative, (0/0x)f, satisfies
(@f0w)'f = O(|w|™™). For such f we define

Y
(S = [fo—ppmtmdy, 0<e<l
wi>e
REMARE 1. lim (87, f) (@) ewists point-wise for every x, and in P (E"),
80

for every p (1 <p < oo).
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