icm

38 E. B. Tabes and N. M. Riviére
ro1 ~1fa |
P= f —————{ f|!2(w—(t—-s) y) — Q(x)| dow| 0
oL, j

2%%(,8)
[~

1 1
< Olyl f sy at <0
2%%w,9)
using (3.3).
A similar inequality is obtained for ¢ using (3.4).

o
u 1 1 g .
R= f il gy T g { J |2()| dm} dt
Z“Qa(ll,s) K n
@ Is| 1 \mat2 d
. s i 1 }
zaea(”'s) 2“0(1(1/,8)

and the condition (1.1) is finally proved.
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On the convergence structure of Mikusifiski operators
by

Edwin I, WAGNER (Albugquergue)

1. Introduction. Let # denote the complex algebra, the elements
of which are continuous complex-valued functions of a non-negative
real variable with the operation of multiplication defined by finite con-
volution; the operations of addition and scalar multiplication defined
in the usual manner. € has no zero divisors, hence the quotient field may
be constructed. This field, which we will denote by ., is called the field
of operators, and is the foundation of the operational calculus developed
by Mikusinsgki [4].

Mikusinski [4] (Part Two, Chapter I, p. 144) states a definition of
convergence of sequences of operators. Urbanik [6] has shown that there
is no topology satisfying the first axiom of countability in which con-
vergence of sequences iy convergence in the sense defined by Mikusifski.
The definition of convergence as given by Mikusinski is generalized to
nets and filters and is referred to as M-convergence. ‘We show that M-
convergence defines a Limitierung, vy, o0 the field of operators which
is the direct limit of Limitierungen on subspaces of . It is shown that
the Limitierung, 7, is not topological. Thus there is no topology on .
for which convergence of nets and filbers is precisely M-convergence.

Some properties of the limit space (A, ;) are investigated and the
notion of a linear limit space is defined. The topology defined by Norris
in [5] is shown to be the direct limit of Limitierungen on certain subspaces
of the field of operators

2. Preliminaries. If the complex algebra % is provided with the
topology of compact convergence it is & routine matter to verify that #
is a topological complex algebra. The collection

B(f) = {Blay &, [): @ >0,¢6> 0},
where
Bla, e, f) = {ge®: max |f() =g <e}
[iE<2:7

is a fundamental system of neighborhoods of the element fe% with respect
to the topology of compact convergence.
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TuEOREM 1. Let ?,_ = {a-+-fi aeC}, where C denotes the complex fidld
If the operations of addition, scalar mulliplication, and product are deﬁned
as in M, then €y has the following properties:

(i) %, is an integral domain.
(i) %1 is a complex algebra.
(iii) %, is isomorphic to the direct sum of the complex algebras € and C
(iv) A s the quotient field of %,.

(v) af is & unit of €y iff a == 0.

) Proof. The_ proofs of statements (i)-(iv) are straightforward and
Wlltl not be duplicated here. The multiplicative identity of €,, one will
note, is the element 1. a--f is a unit in ¥, iff there exists Y
such that: ' ‘ fe€ and ge

() ef =1, and

(i) ag-+ Bf-+fg = 0.

af =1 iff a 0. Then g = 1/a and condition (i) is satisfie
s s ' d' 00 3
dition (ii) becomes: g(a--f) = —f/a. Thus, formally "

(=]

. "“f(t)/a — 1 VZS 1 i
o0 =575 =5 D, 3w
By induction one can verify
" Kpi!
(1) ] <t)‘<m£:i>‘! for nm=1,2,..,
where Ky = max {|f(1)|}.
ot<T
Application of (1) yields
co e _}_ N1 K
g( 1) [af(t)] <ﬁexp(tK1v/la|).

Thus the series

LS apn |50

N

is uniformly convergent on every finite interval and the function g- de-

fined by
RETD s PR PO
9l ==~ Z (—1) “[;f(t)]

is an element of %. !

By direct computation it ma;
B) o y be shown that the functi isfi
condition (ii) and the theorem is proved. © funotion g st
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We provide the direct sum, C@®%, with the product topology. Thus
the isomorphism of Theorem 1 (iii) induces a topology on ¥, with the
properties:

(i) %, is a topological C-algebra.

(ii) %, is a Hausdorif space.

Definition 1. Let €* = € w € — {0} be provided with the relation |
defined by ¢|d iff there exists be¥* such that be = d.

The relation | defines a preorder on #* and directs €.

Definition 2. We shall denote by %, the image of #, under the
mapping gy : €, A defined by:

f

a
(@) = — 4=
opla+f) ) )

@p i8 a C-module homomorphism and if, for »<%,, y%,, we define
the product ze,(y) = pp(@y), it follows that %, is & %,-module.

%p, however, is not a C-algebra. For if pe%— {0} then 1/pe®p. If
%, were a C-algebra then (1/p)(1/p) = 1/p®e%,, hence 1/pe%,. But
pe¥ is not a unit in %, thus 1/p¢%..

%p, provided with the topology T, induced by the mapping @, is
a topological #,-module. With respect to the topology I on €, @y is
a homeomorphism.

LEvMA 1. If p| g, then €, = €,

Proof. If z¢%,, then & = u/p for some we®,. Since p |¢ there
exists ke®* such that kp = ¢. Thus kpr =gz = u and o = w/g. Hence
weby.

LEMMA 2. If pe®*, q<%* and p | g, then the topology Ty is finer than
T, | %p (the Ty topology relative 10 €p)-

Proof. If p | ¢, then there exists re%* such that rp = ¢. The injec-
tion mMap jpg : €p > €, can be expressed fp, = Pa’Pp ! where @, and g
are the homeomorphisms defined above and r is the continuous mapping
r: %, > %, defined by r(x) =72 Since T, | %, is the least fine topology
guch that the injection map jy4 is continuous, it follows that T, is finer
than T, | €p.

Definition 3. Let X be an arbitrary set. Let B be the family of
filter bases on X preordered by the relation < defined by: B < @ if
for each B¢ there exists G¢® such that ¢ = B. A convergence structure
on X is a relation =: B(X) —> X which gatisfies

(i) {{w}} ve for each w <X where {{z}} denotes the filter base of which
the only element is {«}.

(i) Bro and B <J implies S,

If, in addition to properties (i) and (ii), v satisfies

(iil) Brow and Jvew implies (S~ B,

y pe(f*.
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then v i called a Limitierumg on X and the pair (X,v) is termed
a limit space.

Convergence structures were defined by Kent in [2] and limit spaces
were formulated by Fischer in [1].

Definition 4. If 7 and o are two convergence structures on a set
X, then v is finer than o iff Jww implies Jow.

A topology 7' on a space X uniquely defines a Limitierung v on X
in the following manner: Jzw iff N(w) < J where N(x) is fundamental
T-neighborhood system of the point .

PropositioN 1. Let 8 and T be two topologies on o set X, and let o
and © be the Limitierungen defined by S and T’ respectively. Then 8 is finer
than T #ff o is finer than =.

Definition 5. A function f from a limit space (X, ) to a limit
space (¥, o) is continuous iff for each zeX, Bra implies f(B)of(w).

3. M-convergence

Definition 6. A nebt (b)), bie# for each 1, M-converges to b
iff there exists pe%* such that (pb,) is a net in ¥, which converges
to pb.

In the special case where (b;) is a sequence, the above definition
is equivalent to the definition given by Mikusiriski.

Definition 7. A filter base § M-converges to a point w» iff there
exists a p e®* such that #¢%, and N, (z) < 3 (where N, () is a fundamental
Tp-neighborhood system of » in #,).

TuworEM 2. A net (b)) M-converges to bes# iff the base B of the
net filter of (b;) M-converges to b.

Proof. (i) If (b)) M-converges to b, then there exists p<#* such
that (b;) converges to b in %,. be®,, and if N,(b)eN,(b) there exists
we such that 4 > o implies B; = N,(b) where B, = {b,: 1 > }. Thus
N, (0) < B (B = {B;:1ed}) and B M-converges to b.

(ii) If B M-converges to b, then there exists pe@* such that be®,
and N, (b) < B. It Nyp(h) N, (b) there exists B, B such that B, = N,(b).
Thus for w > A, b, e Ny (D), henoe (b,) M-converges to b.

CoroLLARY 1. A filter base 3 M-comverges to bed iff every net
with base of the met filter finer than S M-converges to b.

Proof. (i) Suppose § M-converges to b, B is the base of the net
filber of (b,), and § < B. F M-converges to b implies that there exists
P «%* such that b %y and N, (b)) < . Thus N, (b)) < B and by Theorem 2,
(b2) M-converges to b.

(i) Define a net (by,y) where by = a if acF and Fe3. Let < be
defined by: («', F') < (a, F) iff F < F'. Clearly < directs the index get.

icm
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The base B of the net filter of the net (b,x) i8 precisely S. If (br) M-
converges to b, then by Theorem 2, S M-converges to b.

Definition 8. Let i : B(#) >4 be defined by Jryw iff 3
M-converges to « for each wes#.

THEOREM 3. (A, 73r) 95 @& Wimit space. :

Proof. (i) For each we.# there exists p %™ such that ze%,. Clearly
Ry (2) < {{”}}

(ii) Suppose Jvyw and J < G. Then for some pe®*, Ny(@) <
hence N, (x) < B, Thus Gy

(iil) Srprw and Gy w iff there exist p €™, ge®* such that x<@p ~ %,
RN, (@) < T and N,(w) < B. There exists re®* such that p |7 and q |7,
hence %, ¢ ¢, and %, < %,. By Lemma 2, T, is finer than T, | %, and
T, is finer than T, |%,, thus in %, N, () < Ny(@) ~ Ny(@). Therefore
we%, and N.(2) <J ~ G, hence I ~ By

Definition 9. A Limitierung v on a set X defines a pretopology
on X iff for each meX, Nvaw where N = (M) T. N is called the base of

™

the meighborhood filter of the point x in t]i}e pretopological space (X, 7).
Bvery topological space is a pretopological space, but not conversely.
THROREM 4. The Limitierung v, does not define o topology or pre-

topology on A.

Proof. Consider the sequence defined by

n—1
0 for 0t )
n
n—1
nt—(n—1) for " t<1,
1) =
fa(®) 1
: —nt+-(n+1) for 1<t ot
n+1
0 for -: <t.

Olearly f, does not converge to 0 in ¢, but for any fe€, \(ffa) ()] é To/ne
for 0 <t <a (where k, = max |f(¢)|). Hence ff, converges to 0 in %,.
o<ia

Suppose T, is pretopological (i.e., vy defines a pretopology on ).
Let N(0) be the base of the neighborhood filter of 0. Then N (0) € N,(0)
for all p «%* and there exists ¢ %" such that N,(0) < N(0) since Ny (0) 7 0.
Torr = fq, fe#— {0}, the sequence (f/q) M-converges to 0 in %,. Thus
RN,(0) <3, S filter base of f,/g, hence N,(0) < 3. However, the sequence
f"/q does not converge to 0 in %, since ( fn) does not converge to 0 in %.
Thus N,(0) < Jand a contradiction is established. Hence 7 does not
define a pretopology on .
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COROLLARY 2. If pe% < €%, qe% < & and p|q, then the topology
T, is strictly finer than the relative topology T, Cp.

Proof. For the sequence (f,) constructed in Theorem 4, (f,/p)
converges to 0 in %, since ¢/p «%. But ( fulp) does not converge to 0 in %,,.
Lemma 2 has established that 7', is finer than T, | €, hence I’ is strictly
finer than T, | €,. )

4. Direct limits of Limitierungen

TuroREM b. Let & = {(B), 72): Aed} be a collection of limit spaces.
Suppose the inder set A is directed by << which s defined by 1 < A provided

that B, < By, and the injection map fay : By - Wy, 48 continuous. Then

if B=\JB, there ewists a unique finest Limitierung v such that for
Aed
each Aed, the injection map ji: By -> B is continuous.

Proof. We define 7 as follows: for each zel Jrvw iff for some Aed
(1) zely,

(ii) there exists FeJ such that F < H,,

(iii) 3z, 7a% where g, = {I' ~ By F <3} eB(H)).

Then

1) {{=}} > since for some Aed,wek;, and {{z}}y, 2%

(2) If Sw and $ < ® then there exists Aed such that Jy,zz. I <G
implies 3, < G, thus Ggz2, hence Gus.

(3) Suppose Jzz and ®Bzz. Then there exist 4 and A’ in A such that
Sp,me and Gg, 7, v A is directed hence there exists 2" ed such that
A< A" and 2 < 4. This implies B; < By, By c By, and the injection
maps fuu : By > By, jyg By — By are  continuous. Thus gyt
and Bg.1pw. (Bye, 7y) is a limit space, hence (Sgy ~ Ogyp)7prw and
(3 Ia) @)T%‘ 4

The fact that for each AeA the injection mayp j,: ¥, - ¥ is continuous
follows directly from the definition of <.

Finally, suppose o is another Limitierung on B such that the injection
map j;: By > B is continuous for each Aed. Let zel, then if Jva there
exists Aed such that Jg,72. Since j,: By B i3 (r;, o) continuous,
{J2(3g,)} <3 hence Jow. Thus v is finer than o.

TuEoREM 6. Let (K, ) be defined as in Theorem B, and let (X, o)
b.e a limit space. If f is o mapping f: B - X, then f is continuous iff
Sfirt By > X is continuous for each Aed.

Proof. (i) If f is continuous then fj,: B, -» X is continuous for
each AeA since each j, is continuous.

(ii) Suppose Jrw, then there exists AeA such that: wel;, there exists
FeJ such that P < B, and g, 7a@. Since j,: B, > X is continuous,

icm
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(i) S offzz. But (£i2)(Sg,) <f(3), thus f(S)of () and fr B> X 18
continuous.

Definition 10. The unique finest Limitierung v on the set I des-
cribed in Theorem 5 is the direct limit of the Limitierangen 7;.

THEOREM 7. vy 48 the direct Vimit of the Limdtierungen w, defined
by the topologies T, om @, pe?™.

This theorem is a consequence of Lemma 1, Lemma 2 and Proposi-

tion 1 and from the fact that .4 = | %,. The definition of v i8 precisely
V243

that of 7 in Theorem b5.

If the limit spaces (H,,7;) are linear topological spaces, as iy the
case With (%,, T) then B is a linear space. In this case (B, 7) hag been
termed the “réunion pseudotopologique” by Marinescu [3] ( Jhapter I,
Section B).

5. Properties of (#,75)

Definition 11. A limit space (X, ) is a Hausdorff limit space iff
7: B(X) -~ X is a function.

THEOREM 8. The direct limit of Hausdorff limit spaces is a Hausdorff
limit space.

Proof. Let (E, r) be the direct limit of the Hausdorff limit spaces
(B,, ), ded. Suppose Sre and Jvy. Then there exist ded, A <A such
that Sg, 70 and Sg, T #. Since 4 is directed, there exists A" such that
E, v By c B,» and the injection maps j;»» and Ja g are continuous.
Thus jl,l"(SE;,) < SE)'" and jZ',Z"(SE;") < SE?.” hence SEl/'TA"w and
Sgy iy, Since (Hpr, 7p) I8 & Hausdorff limit space, # = y.

COROLLARY 3. («#, Ty) 48 a Hausdorff limit space.

Definition 12. Given the limit space (X,, v,) and (Y,, 1), the
product space (X;x X,,7,X7;) is defined by: For FeB(X; X X,),
v, X 7,2 iff pry(J)mw for A =1,2 (where pr; is the projection map
pr: X -+ X, A=1,2).

The proof that (X, x X, 7, X 7,) is a limit space may be found in [1].
The Limitierung 7, X 7, is the least fine Limitierung such that the projection
maps are continuous.

Definition 13. A complex linear space I7 equipped with a Limi-
tierung 7 such that the mappings: --: (FX H,rx7) > (H,r) defined
by +(x,y) = o-+y;and g: (CX B, 14X )~ (H, 7) defined by ¢(a, ») == ar
(where 7, is the Limitierung defined by the usual topology on C), are
continuous, is termed a linear limit space.

THROREM 9. (A, Th) 48 o linear Lmit space in which products arc
joimtly continuous.

Proof. (i) Let S(var X tar)(®,y), then pry(F)eye and pry(Qd)way.


GUEST


46 | E. F. Wagner

There exist p«@* and ge@* such that N, (x) < {pr:1(J}e, and N,(y) <
{or(D}e,- It re®* guch that p |7 and ¢ |7, then M (w) < {pr;(S)e, and
N, (y) < {pra(S)}e,, But €ris a topological C-algebra thus {pr,(J) 4-1)1-2(3)},%
converges to @4y in %, that is N (@ +y) <{pr(3)+prs(D)}e,. Hence
{pry(3) +pr2 (S} rar(@+y) and + is continuous.

(i) Let Svex 1yl 2). Then pry(3)vga and pry(I)vye. There existy
pe%* such that Ny, (@) < {pr2(J)}e,,- Since %, is a topological C-algebra
Rp(aw) < {131'1(8)131"2(5)}'5,,- Hence {pr(3)pry(8)}rarar and scalar multi-
plication is continuous.

(iii) Let Svar X va(z, y). Then {pr,(J}vye and {pry(3)}ray. There
exist p «#* and g «%* guch that N, (@) < {pr1(D)he,, and Ny(y) < {Pra(3)}e,.
For v =pg, re€*, €, v Gy = Cry ty ¢Cry (@) < {pr:(S)}e, and Nu(y) <
< {pr2(3)}e,. But products in %, are continuous whenever defined. In
particular if ze%, = %, then

T R

for a-+fe#, and B+ ge%,. This operation is continuous since €, is a topo-
logical #;-module. Thus N, (xy) < {{pr:(D)}e, {I)I‘Z(S)}g’r}«r and the joint
continuity of multiplication in (4, 7,) follows directly.

6. On the topology defined by D. 0. Norris. The purpose of this
section iy to characterize the results on convergence obtained by Norris
in [5] in the environment of a limit space. It is necessary, first, to list
some definitions and a theorem which appear in [5]. These definitions
and the theorem will appear in a form congistent with the previous
developments of this paper.

Definition 14. (i) #; shall denote the class of continuous, complex-
valued functions of a real variable with the property:

flt-+¢) =0 for
(ii) ' shall denote the set:
¢ = U Wé,

t < —ec.

(¢ a real number).

(lii) Products in ¥’ are defined by:
(fo)(8) = f Flu) g(t—u)du;

but if fe%, and ge%,, e, < oy,

ey

)@ = [ fluglt—u)du.

—0p
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We note that the quotient field of %’ is precisely .# and the natural
imbedding of €' in . identifies %, with that subset of @ which consists
of (continuous) functions f with the property: f(0) = 0.

Definition 15. (i) Let D = {f¢%": f is infinitely differentiable}.

(il) Let S be the subalgebra of .# defined by: § = {aes: aD = D}.

%' is provided with the topology of compact convergence. D is equipped
with the topology induced from #'. A topology on 8, referred to as the
S8-topology, is defined as the coarsest topology such that each of the
functions d: § -» D defined by d(a) = da is continuous.

Definition 16 (Restricted Mikusiriski Convergence in §). A filter
bage I N-converges to « in § iff there exists p «¢%*, p a unit in 8, such
that the filter base pJ converges to px in some space %, ¢ > 0.

TurorREM 10 (Norris). If a filter base S N-converges to z in S, then
converges to = in the S-topology.

1
LemMA 3. Let N = {pe‘f*:——D IS D} and let €y = \J %,. Then
Y4 PeN

En 18 a €yi-algebra.

Proof. We first note that €* is a multiplicative cancellation semi-
group. This follows from the fact that:

(i) C is closed under multiplication and € is closed under multipli-
cation and scalar multiplication;

(ii) Associativity and the cancellation property follow from corres-
ponding properties in %;

(iii) The (unique) unit element of €* is 1%™.

N is a multiplicative sub-semigroup of ¢* since (i) NV is a non-empty
subset of ¥*; (ii) if peN and geN, then

1 D 1 (i D) c lD <D
q P

hence N is closed under multiplication.

N is directed by the pre-order | on %* restricted to N. Each €, is
a ;-module (peN) hence €y is a ¥,-module. Since N is a multiplicative
sub-semigroup of ¥, ¥y is a %;-algebra.

LEMMA 4. €y < 8.

Proof. Let #<%y. Then for gome peN, x = (a+f)/p, thus

+f

mD:—a—

pg P

(D) = @3- D) < (D = D.

Hence zeS.
Definition 17. Let (¥y,7y) denote the direct limit of the limit
spaces {(€p, tp): peN}.
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The ~p;‘oof of the existence of the limit space (¥y, vy) parallels the
proof of Theorem 5.

TurorREM 11. Styz iff I N-converges to .

Proof. Sryx implies that there exists peN such that ze%, and
N, (@) <. peN implies p is a unit in §; N,(») < iff pF converges
to pz in %.

The operator ¢: %' %' is defined by:

0 for t< —e,

e {f()} = f(t+e) for —e <<t

(A derivation of the operator ¢ may be found in [4], Part IT, Chap. 2).
From the definition of ¢” one notes ¢ < D, hence ¢ «§. If § N-converges
to @, then there exists pe%*, p a unit in §, such that pJ converges to
px in %, for some ¢ = 0. If p3 converges to px in €, then e~“p3 con-
verges to ¢~ “pw in %, hence in %,. Since ¢~ p <N, the proof is complete.

Two questions arise in connection with this section:

(a) It was established that %y < S. It is suspected, but as yet
unverified, that €y = §.

(b) Let Ty denote the topology induced on #y by the S-topology.
Let o denote the Limitierung induced on ¥y by the topology T'x. Theorem
10 and Theorem 11 show that o < 7y. Is 7'y the finest topology on %y
with this property?
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CHAPTER I

This chapter containg the statement of the main results. Chapters
II-VI contain their proofs. Chapter VII contains some additional remarks.

In what follows the function f(x) = f(#y, %5, ..., #,) i8 defined in the
n-dimensional unit cube: 0 <y <1,j=1,...,n, and is of the class I”
there, 1 < p < co. We assume once for all that »n > 2.

Definition 1. The function f has at & point x o k-th differential
in IP — for brevity, a (k, p) differential — if there is a polynomial P(f) =
P(ty, ..., 1) of degree &k or less such that

1/
(1.1) (lQi f]f o+1)—P( t)l”dt) —o(BY, h->0,
where @ is an n-dimensional cube containing the origin and of edge h.

The purpose of this paper is to investigate the connections between
this - differential and certain other notions of differenfial. In [3] a con-
nection between this and what may be thought of as the partial (%, p)
differential is discussed. The main theorem of [3] is:

THEOREM A. If f has a (k,p) differential at each poini of a set E,
then for any integer m satisfying 1 < m <n the function f has a (k, p)
differential almost everywhere in E with respect to the variable @ = (@4,
Lyy oery Bm)e

Actually what we shall need here is the following result, also proved
in [3], of which Theorem A is a simple consequence.

THEOREM A’. Let &' = (@1, ...y Bm)y ' = @my1y - - -y ) ond let f(2) =
=f(®, ..., @) = f(&', @) be non-negative and integrable over the unit
cube Q°. Let a be any positive number and let @ and I denote respectively
arbitrary n-dimensional and m-dimensional cubes with edge h. If at each
point & = (o', ") of a set B < Q" we have

[f(&rag =o(h™), h->0,
Q
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