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Convolution approximation and shift approximation
by

J. MIKUSINSKI (Katowice)

Part I. Convolution approximation

1. In this paper, the convolution

2
[9(—n)k(x)dx

will be denoted by gk (instead of the usual notation g*k). The ordinary
product of two functions will be denoted, on writing explicitely the argu-
ments, e. g. g(H)k(t). Such a notation iz also used in my book [2].

Let C[0,T] (0 << T < oo) be the clags of real continuous functions
on the interval [0, T'], C,[0, T'] the subclass of C[0, T] of functions which
vanish at 0, and Of°[0, T'] the class of infinitely derivable functions in
[0,T] which vanish at 0 together with all their derivatives.

THEOREM L. For any fized geC [0, T] which does not vanish identically
in the right neighbourhood of 0, the set of convolutions gk with k<O [0, T']
is dense in 0,[0, T].

This theorem ig, in fact, due to Foiag [1], who needed it to prove
that the set of continuous functions is dense in the space of operators.
However, Foiag formulated it in a slightly different form: For any fized
geI*[0,T], not vanishing almost everywhere at the neighbourhood of 0,
the set of convolutions gk with %keC[0,T] is dense in L'[0,T]. Another
formulation of Theorem I is given in the paper [3]. There it is proved
that, for any fized g<C,[0, T], non-vanishing in the neighbourhood of 0,
the set of convolutions gk with absolutely continuous functions k is dense
in C[0, T']. The proof given in [3] can be used for Theorem I; the only
needed modifications are the following: one assumes that g<C[0,T]
(instead of geCy[0, T']), ky, k0P [0, T'] (instead of k,, ke AC (absolutely
continuous functions)) and one has k' [0, T'] (instead of %' eL'[0, T]).

Evidently, Theorem I is a little stronger than my earlier formula-
tion in [8]. It is easy to see that it is also stronger than the formulation
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in Foiag’s paper [1]. In fact, let ge L'[0, T] and let
i

b= [g(x)dx
0

By Theorem I, the set of convolutions Ak, where k<03’ [0, 1'] is dense
in Q,[0, T]. Since hk’ = gk, we may also say that the set of convolutions
gk where £<0y[0, 7] iz dense in C,[0, T']. A fortiori, the set of convo-
lutions gk where %k¢C[0, T'] is dense in C,[0, 1']. Since (,[0, 1'] is dense
in I'[0, T'], this set is dense in L'[0, T].

In the Part I of this paper we are going to strengthen Theorem T
in three steps. In this way we shall obtain Theorems IT, IIT and IV, each
of them being stronger than the preceding one.

THEOREM II. Qiven any fized geC[0, T which does not vanish iden-
tically in the right neighbourhood of 0, the set of convolutions gl with k03 [0,7']
is dense i CY[0,T].

Proof. Let feC3°[0, T'] and let &, be a sequence of positive numbers,
tending to 0 as n - co. By Theorem I, there exists, for every positive
integer n, a function %,<0°[0, I'] such that

|9kl — ™) < T™",
This implies that
gk — O < 1%, for i=0,1,...,m.

Thus, for any fixed 4, the sequence gk{ converges uniformly to
f®, as m — co. This means that gk —f in the topology of ([0, 7],
which proves Theorem II.

The fact that Theorem II is stronger than Theorem I follows from
the remark that 03[0, T'] is dense in C,[0, T'].

Let C[0, co) denote the class of continuous functions in the interval
[0, co) and CF[0, cc) the class of indefinitely derivable functions in that
interval. We say that a sequence of functions from the class ([0, co)
or from the clags C5°[0, o) is convergent in [0, oo) or in OF [0, oo) respec-
tively, if the corresponding sequence of functions restricted to any boun-
ded interval [0, T'] is convergent in the proper topology, of €0, 1] or
oo, T1.

TurorREM IIL. For any fized geC[0, oo) which does not vanish iden-
tically in the right neighbourhood of 0, the set of convolutions gk with k e C5°[0,00)
is dense in OF[0, co). ’

Proof. Let feC§°[0, co). By Theorem II, there is, for any positiv:
integer p, a sequence of functions k,,eC[0, co) such that |gk{),—f| < ¢
in [0, p], where 0 < ¢, — 0 as # —> oo. This implies that the diagonal
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sequence gk{j), converges to fO uniformly in every interval [0, 7]
(0 < T' < o0), which proves Theorem III.

Evidently, Theorem III rednces to Theorem II, when restricting
the considered functions from [0, co) to [0, T'].

2. Let M, denote the space of all operators a = p/q (see [2]), where
P, ¢<0[0, o) and ¢ does not vanish identically in any right neighbourhood
of 0. We say that a sequence a, M, converges in M, if there is a function
q<0[0, co) non-vanishing identically in any neighbourhood of 0, such
that all the operational products a,q are functions of class [0, co) and
anq converges almost uniformly in CO[0, oco) (i. e., uniformly in every
bounded interval [0, T']). We say that an operator aeM , does not vanish
in the right neighbourhood of 0, if it is of the form p/¢, where both p and ¢
are functions which do not vanish identically in the right neighbourhood
of 0 (see [4]).

THEOREM IV. For any fized operator geM ., which does not vanish
in the right neighbourhood of 0, the set of elements gk, where keCY[0, oo),
is dense in O3°[0, oco). .

Proof. Let fe0[0, co). There is a function ge([0, oo), non-vanish-
ing identically in the right neighbourhood of 0, such that ggeC[0, co);
evidently the function gg does not vanish either identically in the right
neighbourhood of 0. Thus, by Theorem III, there are functions &, ¢ 0F [0, co)
such that the sequence (gq)k,, i. €., g(gk,), converges to f in the topology
of C7°[0, o). Since ¢k, <03’ [0, o), Theorem IV iy proved.

In order to see that Theorem IV is stronger than Theorem. III, it
suffices to observe that ([0, co) is a subset of M.

Part II. Shift approximation

3. Let § be a linear subspace of M, containing 05°[0, co), with the
following properties:

1° § is a locally convex topological space such that every sequence
fn€Cy[0, co) which converges in O[0, co) converges also in § to the
same limit; moreover, every sequence f,eS which converges in §, con-
verges also in M, to the same limit; finally, we assume that C3°[0, co)
is dense in §; ) .

2° If fef, then h'fe8 (b shift-operator) for every A > 0. In the to-
pology of 8, h'fis a continuous function of A in the interval 0 <4 < co;

3° There is a family of semi-norms ||f|, with aed such that: for any
acd there is a number i, >0 such that 1 > 1, 1mphes Hh‘f{]a = 0 for
every feS.
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We are going to give a few examples of the space 9.
(i) Space C3°[0, co). Here, we have

f(t—2) for

(1) Wf =
) 0 for
For 4, we can take the set of pairs o = (p,) of integers p,r

(p >0,7 >1) and then let

[fll.n == max |[f@(1)].
0=ty

(ii) Space C7[0, oc). The elements of this space are functions in [0, oo),
derivable up to the order p in that interval, and vanighing together
with these derivatives at 0. A sequence f,<C%[0, oo) iy said to com;ech
in €70, o), if for any ¢ = 0, ..., p, the sequence f) converges uniformly
in every interval [0,7] (0 <T < oco). Formula (1) holds also in the
actual case. For 4, we can take a = (i, r) of integers 4, p (0 < i <p,r>=1)
and then let .

1.y = max|fO(1)
0t

.(ii.i) Spave C,[0, oo). Its elements are continuous functions in [0, oo),
vanishing at 0. This is a particular case of the preceding example (with
P z i)). Actually, for A we can take the set of all positive integers o = 7
and let

Iflly = max|f(#).
0sglagr

(iv) Space LP[0, co), p > 1. The elements of thig space are functions
?Vhich are locally p-integrablein [0, co), 1. e. p-integrable on every bounded
interval [0, T']. Formula (1) holds also in the present case. For 4, we can
take the set of all positive integers and let

» r
Il = |/ Jif@Pa.
[

(v) Space D’.. As elements of this space we take the distributions
whose support lies on [0, co). It turns out to say that these elements
are distributions defined on the whole line ( —o0, 00) and vanish in (~ oo, 0).
In particular, continuous functions in (—o0, oo}, vanighing in (—o0, 0),
are distributions. In order to imbed CF[0, oc) into D', we extend the
definition of f<C§[0, oo) onto the negative part of the real axis, assuming

that f vagxishes on that part. Evidently, formula (1) makes senge in the
case of D). For 4, we can take the set of all smooth (infinitely derivable)
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functions a of bounded support (vanishing outside a bounded interval).
Then we let for feD.,

e = }_ fwf(t)a(t)dt‘.

(vi) Space M,. The elements of thiz space are operators (elements
of M) which can be represented in the form f = p/q, where p, g<C[0, co)
and ¢ does not vanish identically in the right neighbourhood of 0. The
space M, is thus determined by the function g. For 4, we can take the
set of positive integers and let

[fl- = max |gf]
i<
(gf is a continuous function).
We have evidently ([0, co) = (5[0, co)c §4[0, co) = IP[0, co) = D
‘Wealso have D), « M,, provided we take for ¢ a function of elass €7 [0, co);
then D is a proper subset of M,. ‘

TEEOREM V. For every operator geS which does not vanish in the
right neighbourhood of 0, the set of elements of the form

@) Mg+ .o+ Ahg,

where 4; and ©; are real numbers, T; > 0, and h is the shift-operator, is dense
in 8. )
Proof. Let us consider the integral

®3) [ wgk(z)dr

where keCP[0, co). Remark that, in the interpretations (i)-(v), this in-
tegral can be written in the form E

:
fg(t—r)]c(r)d'r,

because of formula (1). Thus it equals the convolution gk. We shall
show that it equals gk also in the general case. In fact, the integral
’ v

(4) [ Wgk(z)dr
0
is defined for every finite b > 0, since its integrand is continuous. The

value of (3) is to be considered as the limit of (4), as b — oo. The existence
of that limit follows from the inequality

H f R gk (v)dr
1

< [ Wgllk@ldr (< 72)
1
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and from the fact that [[h"g|l, = 0 for i, <7, <7 < 1,. On the other
hand, by 1° the limit (3) can be also considered in the operational sense,
and so we see that it equals

gf W k(t)dv = ghkeS
0

(see e. g. formula (9.1), p. 337, of [2]).

Let
0, (R = AWM 2R s e Ae
where
in
A= k(z)dv (n=1,2,..,0%.
(i~1)/m
‘We have

llgh— 1w, (W) gll,. <

lofnhfgk(r)dr_—wn(hlf“)g”a -[_”fwhgk(z)dr]}a.

For n > 2, the last integral vanishes, so we can write

n? i/n
(5) lgk—mn(™)gl < || 3 [ (g—1g)(e)as]|
{=1 (i~1)[n
'n_,z‘| i
<D [ W= 1l o(z)| .
i=1 (i-1)m
For v = (i—1)/n > 2, we have {|h%y—h'"g|, < 1* 1n
N : . , gl < B gl 7], = 0
it therefore suffices to consider, in (5), only expresgions 7l ,

(6) IB* g — B g,

with v and 4/n belonging to the bounded interval 0 < v < A4,+1. Since
the functiop Mg is supposed continuous, expression (6) be(:zomes less
t].mn any given & >0 if 0 < (i—1)/n <7 <i/n < A-+1 and » iy suffi-
ciently large, say n > n,. Thus we obtain, for u > n,,

Al
lgfe—wa (") gll, <o [ ()] de.

0

This proves that w, (k'™ g - gk in the topology of §. We can also
say t.hgt the set of elements w (h'™)g, where w are polynomials with réal
coefficients, is dense in the set of convolutions gl with respect‘ to the
topology of 8. Since the set of convolutions gk is dense in [0, o), by
Theorem I}/f, an.d the last set is dense in §, by hypothesis, the se’t of’ele-
m{mts w(h™)g is dense in §, which proves Theorem V.
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4. We are now going to discuss some particular cases of Theorem V.

It § is one of the spaces OF[0, co), C5[0, co) or C,[0, o), then the
hypothesis that the operator g does not vanish in the right neighbour-
hood of 0 means that the function g (actually ¢ is a function) does not
vanish identically in this neighbourhood. Theorem V says that, for any
fixed ¢ with that property, the set of elements

(7 hgt—T) 4.+ Ang (1 — 1)

with 7; > 0 is dense in the cousidered space.

This implies, in particular, that every function feC[0, oo) (not necessa-
rily vanishing at 0) can be appromvmated olmost uniformly in [0, oo) by
sums (7) with geC,y[0, co), where at most the number T, is negative, all others
7; (¢ >1) being positive.

In fact, there is a point #, >0 such that g(f,) # 0. The funetion

fit)
f)——gi+t)
g(ty) g !
belongs evidently to ‘C'o [0, co) and can be therefore approximated almost
uniformly by sums
Agg(t— T} ...+ Apg (—Tn)-

Hence, our assertion follows, on taking 1, = f(2,)/g(¢;) and 7, = —1;.
I we restrict the functions to a bounded interval [0, T'], then we obtain
a theorem proved in [3].

Tn a similar way we can show that every function feCP[0, co) can be
approzimated almost uniformly together with their derivatives up to the
order p by sums (), where at most p—+1 numbers Ty, ..., Tpy1 A€ negative.

If 8 = I”[0, o) (p > 1), then the assumption that g does not vanish
in the right neighbourhood of 0 means that there is no right neighbour-
hood of 0 in which the function g vanishes almost everywhere. Theorem V
says that the set of elements (7) is dense in IP[0, oo). If we restrict the
functions to a bounded interval [0, '], then we obtain a theorem proved
by Skérnik in [6].

If § = D), then Theorem V says that every distribution from D',
can be approwimated distributionally by sums (7) with any other distribution
g from D' which does not vanish in the right neighbourhood of 0, and positive
numbers 7;. In particular, it can be approximated by sums with the delta
distribution: A,8(t—7)+...+ A, (t—1y,). It might to seem, at firss,
more paradoxal that the delta distribution &(¢) can be approximated by
sums (7) with positive z; and with an arbitrary given funection ge0y[0,00).

Finally, it follows from Theorem V that every operator feM . can be
approximated operationally by sums (2) with any other operator geM
which does not vanish in the right neighbourhood of 0. In fact, there exists
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a function geC[0, o) which does not vanish identically in the right
neighbourhood of 0 such that f = p,/q and g = p,/q, where p,p, ([0, oo).
Let M, be the set of all operators which can be represented in the form
p/g (p<C[0, o0)). By Theorem V, f can be approximated by sums (2) in
the topology of M,. But every sequence which converges in the topology
of M, also converges operationally, which proves our assertion. Taking in
particular g = 1, we see that every operator from M, can be approximated
by polynomials 2, ...+ 4, k™ of the shift-operator with positive ;.

5. We have considered, so far, functions, distributions and operators
defined on the one-dimensional real space R. However, all the theorems
can also be inferpreted in the Ruclidean space RB™ of any number of di-
mensions. Then by an interval [0, I'] we understand the et of points
t=(t, ..., t,) whose coordinates satisfy the inequalities 0 <, < T
where T = (T, ..., Ty). Similarly, the interval [0, co) means the set
of points ¢ with ¢, > 0. By the convolution

2

[9t—7)k(z)dr

0
we understand an integral stretched on the set 0 < 7; (¥, (i = 1, ey m).
The proof of Theorem I is based on the Titchmarsh theorem, which holds
for any number of dimensions (see [5]). This theorem permits to introduce
the class of in-dimensional operators ¢ = p/g, where q does not vanigh
identically in the m-dimensional right neighbourhood of 0. Then all the
frs-ceding considerations remain true in the new, more general, interpre-
bation.
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On generalized topological divisors of zero
in m-convex locally convex algebras

by
W. ZELAZXO (Warszawa)

By a topological algebra we mean in this paper a topological linear
space together with an associative jointly continuous multiplication.
An element x of a topological algebra 4, x 5= 0, will be called a left (right)
topological divisor of zero if there exists a non-void subset P = A such that
zero is not in the closure P of P but 0exP (0ePx). Here, as usual, UV
= {wy: 2eT, yeV}. An element x4 is called a topological divisor of zero
in A if it is both a right and a left topological divisor of zero. It is a clas-
sical fact of the theory of Banach algebras, due to Silov [3] (for algebras
without a unit, see [5]) that a complex Banach algebra either possesses
topological divisors of zero or is isomorphically homeomorphic to the
field of complex numbers. The same holds for locally bounded algebras —
a class more general than the class of Banach algebras [5]. Here we in-
vestigate the problem for another generalization of Banach algebras,
namely for the class of locally convex multiplicatively convex topological
algebras (shortly, we shall call them m-convex algebras throughout this
paper). An m-convex algebra is a topological algebra (over complexes)
with a basis for neighbourhoods of the origin consisting of sets {U} which
are convex, symmetric and idempotent, i.e. such that UU< U. Or,

" which is equivalent, it is a locally convex algebra with the topology given

by means of family & of submultiplicative pseudonorms:

1) : lleyll < e iyl

and, in the case where the algebra in question possesses a unit e,
2 flell =1

for each |- ||e#. We may assume that & consists of all continuous pseudo-
norms satisfying (1) and (2) in the case where there is a unit element.
The theory of these algebras was created by Arens [1] and Michael [2].

The statement that an m-convex algebra either possesses topolog-
ical divisors of zero or is isomorphically homeomorphic to the field of
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