

Convolution approximation and shift approximation

by

J. MIKUSIŃSKI (Katowice)

Part I. Convolution approximation

1. In this paper, the convolution

$$\int_{0}^{t}g(t-\tau)k(\tau)d\tau$$

will be denoted by gk (instead of the usual notation g*k). The ordinary product of two functions will be denoted, on writing explicitly the arguments, e. g. g(t)k(t). Such a notation is also used in my book [2].

Let C[0,T] $(0 < T < \infty)$ be the class of real continuous functions on the interval [0,T], $C_0[0,T]$ the subclass of C[0,T] of functions which vanish at 0, and $C_0^\infty[0,T]$ the class of infinitely derivable functions in [0,T] which vanish at 0 together with all their derivatives.

THEOREM I. For any fixed $g \in C[0, T]$ which does not vanish identically in the right neighbourhood of 0, the set of convolutions gk with $k \in C_0^{\infty}[0, T]$ is dense in $C_0[0, T]$.

This theorem is, in fact, due to Foias [1], who needed it to prove that the set of continuous functions is dense in the space of operators. However, Foias formulated it in a slightly different form: For any fixed $g \in L^1[0,T]$, not vanishing almost everywhere at the neighbourhood of 0, the set of convolutions gk with $k \in C[0,T]$ is dense in $L^1[0,T]$. Another formulation of Theorem I is given in the paper [3]. There it is proved that, for any fixed $g \in C_0[0,T]$, non-vanishing in the neighbourhood of 0, the set of convolutions gk with absolutely continuous functions k is dense in C[0,T]. The proof given in [3] can be used for Theorem I; the only needed modifications are the following: one assumes that $g \in C[0,T]$ (instead of $g \in C_0[0,T]$), k_n , $k \in C_0^{\infty}[0,T]$ (instead of k_n , $k \in AC$ (absolutely continuous functions)) and one has $k' \in C_0^{\infty}[0,T]$ (instead of $k' \in L^1[0,T]$).

Evidently, Theorem I is a little stronger than my earlier formulation in [3]. It is easy to see that it is also stronger than the formulation in Foias's paper [1]. In fact, let $g \in L^1[0,T]$ and let

$$h = \int_{0}^{t} g(\tau) d\tau.$$

By Theorem I, the set of convolutions hk', where $k \in C_0^{\infty}[0, T]$ is dense in $C_0[0, T]$. Since hk' = gk, we may also say that the set of convolutions gk where $k \in C_0^{\infty}[0, T]$ is dense in $C_0[0, T]$. A fortiori, the set of convolutions gk where $k \in C[0, T]$ is dense in $C_0[0, T]$. Since $C_0[0, T]$ is dense in $L^1[0, T]$, this set is dense in $L^1[0, T]$.

In the Part I of this paper we are going to strengthen Theorem I in three steps. In this way we shall obtain Theorems II, III and IV, each of them being stronger than the preceding one.

THEOREM II. Given any fixed $g \in C[0, T]$ which does not vanish identically in the right neighbourhood of 0, the set of convolutions gk with $k \in C_0^{\infty}[0, T]$ is dense in $C_0^{\infty}[0, T]$.

Proof. Let $f \in C_0^{\infty}[0, T]$ and let ε_n be a sequence of positive numbers, tending to 0 as $n \to \infty$. By Theorem I, there exists, for every positive integer n, a function $k_n \in C_0^{\infty}[0, T]$ such that

$$|gk_n^{(n)}-f^{(n)}|< T^{-n}\varepsilon_n.$$

This implies that

$$|gk_n^{(i)}-f^{(i)}| < T^{-i}arepsilon_n \quad ext{ for } \quad i=0,1,\ldots,n.$$

Thus, for any fixed i, the sequence $gk_n^{(i)}$ converges uniformly to $f^{(i)}$, as $n \to \infty$. This means that $gk_n \to f$ in the topology of $C_0^{\infty}[0, T]$, which proves Theorem II.

The fact that Theorem II is stronger than Theorem I follows from the remark that $C_0^{\infty}[0, T]$ is dense in $C_0[0, T]$.

Let $C[0,\infty)$ denote the class of continuous functions in the interval $[0,\infty)$ and $C_0^\infty[0,\infty)$ the class of indefinitely derivable functions in that interval. We say that a sequence of functions from the class $C_0^\infty[0,\infty)$ or from the class $C_0^\infty[0,\infty)$ is convergent in $C[0,\infty)$ or in $C_0^\infty[0,\infty)$ respectively, if the corresponding sequence of functions restricted to any bounded interval [0,T] is convergent in the proper topology, of C[0,T] or $C_0^\infty[0,T]$.

THEOREM III. For any fixed $g \in C[0, \infty)$ which does not vanish identically in the right neighbourhood of 0, the set of convolutions gk with $k \in C_0^{\infty}[0, \infty)$ is dense in $C_0^{\infty}[0, \infty)$.

Proof. Let $f \in C_0^{\infty}[0, \infty)$. By Theorem II, there is, for any positivinteger p, a sequence of functions $k_{pn} \in C_0^{\infty}[0, \infty)$ such that $|gk_{pn}^{(i)} - f^{(i)}| < \varepsilon_i$ in [0, p], where $0 < \varepsilon_{in} \to 0$ as $n \to \infty$. This implies that the diagonal

sequence $gk_{nn}^{(i)}$ converges to $f^{(i)}$ uniformly in every interval [0,T] $(0 < T < \infty)$, which proves Theorem III.

Evidently, Theorem III reduces to Theorem II, when restricting the considered functions from $[0, \infty)$ to [0, T].

2. Let M_+ denote the space of all operators a=p/q (see [2]), where $p,q\in C[0,\infty)$ and q does not vanish identically in any right neighbourhood of 0. We say that a sequence $a_n\in M_+$ converges in M_+ , if there is a function $q\in C[0,\infty)$ non-vanishing identically in any neighbourhood of 0, such that all the operational products a_nq are functions of class $C[0,\infty)$ and a_nq converges almost uniformly in $C[0,\infty)$ (i. e., uniformly in every bounded interval [0,T]). We say that an operator $a\in M_+$ does not vanish in the right neighbourhood of 0, if it is of the form p/q, where both p and q are functions which do not vanish identically in the right neighbourhood of 0 (see [4]).

THEOREM IV. For any fixed operator $g \in M_+$ which does not vanish in the right neighbourhood of 0, the set of elements gk, where $k \in C_0^{\infty}[0, \infty)$, is dense in $C_0^{\infty}[0, \infty)$.

Proof. Let $f \in C_0^{\infty}[0, \infty)$. There is a function $q \in C[0, \infty)$, non-vanishing identically in the right neighbourhood of 0, such that $gq \in C[0, \infty)$; evidently the function gq does not vanish either identically in the right neighbourhood of 0. Thus, by Theorem III, there are functions $k_n \in C_0^{\infty}[0, \infty)$ such that the sequence $(gq)k_n$, i. e., $g(qk_n)$, converges to f in the topology of $C_0^{\infty}[0, \infty)$. Since $qk_n \in C_0^{\infty}[0, \infty)$, Theorem IV is proved.

In order to see that Theorem IV is stronger than Theorem III, it suffices to observe that $C[0,\infty)$ is a subset of M_+ .

Part II. Shift approximation

- 3. Let S be a linear subspace of M_+ containing $C_0^\infty[0,\infty)$, with the following properties:
- 1° S is a locally convex topological space such that every sequence $f_n \in C_0^\infty[0,\infty)$ which converges in $C_0^\infty[0,\infty)$ converges also in S to the same limit; moreover, every sequence $f_n \in S$ which converges in S, converges also in M_+ to the same limit; finally, we assume that $C_0^\infty[0,\infty)$ is dense in S;
- 2° If $f \in S$, then $h^{\lambda} f \in S$ (h shift-operator) for every $\lambda \geqslant 0$. In the topology of S, $h^{\lambda} f$ is a continuous function of λ in the interval $0 \leqslant \lambda \leqslant \infty$;
- 3° There is a family of semi-norms $||f||_a$ with $\alpha \in A$ such that: for any $\alpha \in A$ there is a number $\lambda_a > 0$ such that $\lambda > \lambda_a$ implies $||h^{\lambda}f||_a = 0$ for every $f \in S$.

We are going to give a few examples of the space S.

(i) Space $C_0^{\infty}[0,\infty)$. Here, we have

4

(1)
$$h^{\lambda}f = \begin{cases} f(t-\lambda) & \text{for } t \geqslant \lambda, \\ 0 & \text{for } 0 \leqslant t < \lambda. \end{cases}$$

For A, we can take the set of pairs a = (p, r) of integers p, r $(p \geqslant 0, r \geqslant 1)$ and then let

$$||f||_{(p,r)} = \max_{0 \le t \le r} |f^{(p)}(t)|.$$

(ii) Space $C_0^p[0,\infty)$. The elements of this space are functions in $[0,\infty)$, derivable up to the order p in that interval, and vanishing together with these derivatives at 0. A sequence $f_n \in C_0^p[0,\infty)$ is said to converge in $C_0^p[0,\infty)$, if for any $i=0,\ldots,p$, the sequence $f_n^{(i)}$ converges uniformly in every interval [0,T] (0 < $T<\infty$). Formula (1) holds also in the actual case. For A, we can take a=(i,r) of integers $i, p \ (0 \leqslant i \leqslant p, r \geqslant 1)$ and then let

$$||f||_{(i,r)} = \max_{0 \leqslant t \leqslant r} |f^{(i)}(t)|.$$

(iii) Space $C_0[0,\infty)$. Its elements are continuous functions in $[0,\infty)$, vanishing at 0. This is a particular case of the preceding example (with p=0). Actually, for A we can take the set of all positive integers a=rand let

$$||f||_r = \max_{0 \leqslant t \leqslant r} |f(t)|.$$

(iv) Space $L^p[0,\infty)$, $p\geqslant 1$. The elements of this space are functions which are locally p-integrable in $[0, \infty)$, i. e. p-integrable on every bounded interval [0, T]. Formula (1) holds also in the present case. For A, we can take the set of all positive integers and let

$$||f||_r = \sqrt[p]{\int\limits_0^r |f(\tau)|^p d\tau}.$$

(v) Space D'₊. As elements of this space we take the distributions whose support lies on $[0, \infty)$. It turns out to say that these elements are distributions defined on the whole line $(-\infty, \infty)$ and vanish in $(-\infty, 0)$. In particular, continuous functions in $(-\infty, \infty)$, vanishing in $(-\infty, 0)$, are distributions. In order to imbed $C_0^\infty[0,\infty)$ into $D_+',$ we extend the definition of $f \in C_0^{\infty}[0, \infty)$ onto the negative part of the real axis, assuming that f vanishes on that part. Evidently, formula (1) makes sense in the case of D'_{+} . For A, we can take the set of all smooth (infinitely derivable)

functions α of bounded support (vanishing outside a bounded interval). Then we let for $f \in D'_{\perp}$,

$$||f||_{\alpha} = \Big|\int_{-\infty}^{\infty} f(t) \, a(t) \, dt\Big|.$$

(vi) Space M_q . The elements of this space are operators (elements of M_{\perp}) which can be represented in the form f = p/q, where $p, q \in C[0, \infty)$ and q does not vanish identically in the right neighbourhood of 0. The space M_q is thus determined by the function q. For A, we can take the set of positive integers and let

$$||f||_r = \max_{0 \leqslant t \leqslant r} |qf|$$

(af is a continuous function).

We have evidently $C_0^{\infty}[0,\infty) \subset C_0^p[0,\infty) \subset C_0[0,\infty) \subset L^p[0,\infty) \subset D'_+$. We also have $D'_{+} \subset M_q$, provided we take for q a function of class $C_0^{\infty}[0, \infty)$; then D'_{+} is a proper subset of M_{σ} .

THEOREM V. For every operator $q \in S$ which does not vanish in the right neighbourhood of 0, the set of elements of the form

(2)
$$\lambda_1 h^{\tau_1} g + \ldots + \lambda_n h^{\tau_n} g,$$

where λ_i and τ_i are real numbers, $\tau_i > 0$, and h is the shift-operator, is dense in S.

Proof. Let us consider the integral

(3)
$$\int_{0}^{\infty} h^{\tau} g k(\tau) d\tau$$

where $k \in C_0^{\infty}[0, \infty)$. Remark that, in the interpretations (i)-(v), this integral can be written in the form

$$\int_{0}^{t} g(t-\tau) k(\tau) d\tau,$$

because of formula (1). Thus it equals the convolution gk. We shall show that it equals gk also in the general case. In fact, the integral

$$\int_{0}^{b} h^{\tau} g k(\tau) d\tau$$

is defined for every finite b>0, since its integrand is continuous. The value of (3) is to be considered as the limit of (4), as $b \to \infty$. The existence of that limit follows from the inequality

$$\left\|\int_{\tau_1}^{\tau_2} h^{\tau} g k(\tau) d\tau\right\|_{a} \leqslant \int_{\tau_1}^{\tau_2} \|h^{\tau} g\|_{a} |k(\tau)| d\tau \quad (\tau_1 < \tau_2)$$

and from the fact that $||h^{\tau}g||_a = 0$ for $\lambda_a < \tau_1 \le \tau \le \tau_2$. On the other hand, by 1°, the limit (3) can be also considered in the operational sense, and so we see that it equals

$$g\int_{0}^{\infty}h^{\tau}k(\tau)d\tau=gk\,\epsilon S$$

(see e. g. formula (9.1), p. 337, of [2]).

$$w_n(h^{1/n}) = \lambda_1 h^{1/n} + \lambda_2 h^{2/n} + \ldots + \lambda_{n^2} h^n$$

where

$$\lambda_i = \int\limits_{(i-1)/n}^{i/n} k(au) d au \quad (n=1,2,...,n^2).$$

We have

$$\|gk-w_n(h^{1/n})g\|_a\leqslant \Big\|\int\limits_0^nh^\tau gk(\tau)\,d\tau-w_n(h^{1/n})g\Big\|_a+\Big\|\int\limits_x^\infty hgk(\tau)\,d\tau\Big\|_a.$$

For $n > \lambda_a$ the last integral vanishes, so we can write

(5)
$$||gk - w_n(h^{1/n})g||_a \leq \left\| \sum_{i=1}^{n^2} \int_{(i-1)/n}^{i/n} (h^{\tau}g - h^{1/n}g) k(\tau) d\tau \right\|$$

$$\leq \sum_{i=1}^{n^2} \int_{(i-1)/n}^{i/n} ||h^{\tau}g - h^{1/n}g||_{\alpha} \cdot |k(\tau)| d\tau .$$

For $\tau \ge (i-1)/n > \lambda_a$ we have $||h^{\tau}y - h^{1/n}y||_a \le ||h^{\tau}y||_a + ||h^{1/n}y||_a = 0$, it therefore suffices to consider, in (5), only expressions

(6)
$$||h^{\tau}q - h^{1/n}q||_{\alpha}$$

with τ and i/n belonging to the bounded interval $0 \leqslant \tau \leqslant \lambda_a + 1$. Since the function $h^{\lambda}g$ is supposed continuous, expression (6) becomes less than any given $\varepsilon > 0$ if $0 \leqslant (i-1)/n \leqslant \tau \leqslant i/n \leqslant \lambda_a + 1$ and n is sufficiently large, say $n > n_0$. Thus we obtain, for $n > n_0$,

$$\|gk - w_n(h^{1/n})g\|_a \leqslant \varepsilon \int\limits_0^{\lambda_{\alpha}+1} |k(\tau)| \, d\tau \, .$$

This proves that $w_n(h^{1/n})g \to gk$ in the topology of S. We can also say that the set of elements $w(h^{1/n})g$, where w are polynomials with real coefficients, is dense in the set of convolutions gk with respect to the topology of S. Since the set of convolutions gk is dense in $C_0^{\infty}[0,\infty)$, by Theorem IV, and the last set is dense in S, by hypothesis, the set of elements $w(h^{1/n})g$ is dense in S, which proves Theorem V.

4. We are now going to discuss some particular cases of Theorem V. It S is one of the spaces $C_0^{\infty}[0,\infty)$, $C_0^{0}[0,\infty)$ or $C_0[0,\infty)$, then the hypothesis that the operator g does not vanish in the right neighbourhood of 0 means that the function g (actually g is a function) does not vanish identically in this neighbourhood. Theorem V says that, for any fixed g with that property, the set of elements

(7)
$$\lambda_1 g(t-\tau_1) + \ldots + \lambda_n g(t-\tau_n)$$

with $\tau_i > 0$ is dense in the considered space.

This implies, in particular, that every function $f \in C[0, \infty)$ (not necessarily vanishing at 0) can be approximated almost uniformly in $[0, \infty)$ by sums (7) with $g \in C_0[0, \infty)$, where at most the number τ_1 is negative, all others τ_i (i > 1) being positive.

In fact, there is a point $t_1 > 0$ such that $g(t_1) \neq 0$. The function

$$f(t) - \frac{f(t_1)}{g(t_1)} g(t + t_1)$$

belongs evidently to $C_0[0,\infty)$ and can be therefore approximated almost uniformly by sums

$$\lambda_2 g(t-\tau_2)+\ldots+\lambda_n g(t-\tau_n).$$

Hence, our assertion follows, on taking $\lambda_1 = f(t_1)/g(t_1)$ and $\tau_1 = -t_1$. If we restrict the functions to a bounded interval [0, T], then we obtain a theorem proved in [3].

In a similar way we can show that every function $f \in C^p[0, \infty)$ can be approximated almost uniformly together with their derivatives up to the order p by sums (7), where at most p+1 numbers $\tau_1, \ldots, \tau_{p+1}$ are negative.

If $S = L^p[0, \infty)$ $(p \ge 1)$, then the assumption that g does not vanish in the right neighbourhood of 0 means that there is no right neighbourhood of 0 in which the function g vanishes almost everywhere. Theorem V says that the set of elements (7) is dense in $L^p[0, \infty)$. If we restrict the functions to a bounded interval [0, T], then we obtain a theorem proved by Skórnik in [6].

If $S=D'_+$, then Theorem V says that every distribution from D'_+ can be approximated distributionally by sums (7) with any other distribution g from D'_+ which does not vanish in the right neighbourhood of 0, and positive numbers τ_i . In particular, it can be approximated by sums with the delta distribution: $\lambda_1 \delta(t-\tau_1)+\ldots+\lambda_n \delta(t-\tau_n)$. It might to seem, at first, more paradoxal that the delta distribution $\delta(t)$ can be approximated by sums (7) with positive τ_i and with an arbitrary given function $g \in C_0^\infty[0,\infty)$.

Finally, it follows from Theorem V that every operator $f \in M_+$ can be approximated operationally by sums (2) with any other operator $g \in M_+$ which does not vanish in the right neighbourhood of 0. In fact, there exists

a function $q \in C[0, \infty)$ which does not vanish identically in the right neighbourhood of 0 such that $f = p_1/q$ and $g = p_1/q$, where $p_1p_2 \in C[0, \infty)$. Let M_q be the set of all operators which can be represented in the form p/q ($p \in C[0, \infty)$). By Theorem V, f can be approximated by sums (2) in the topology of M_q . But every sequence which converges in the topology of M_q also converges operationally, which proves our assertion. Taking in particular g = 1, we see that every operator from M_+ can be approximated by polynomials $\lambda_1 h^{r_1} + \ldots + \lambda_n h^{r_n}$ of the shift-operator with positive τ_{t+1}

5. We have considered, so far, functions, distributions and operators defined on the one-dimensional real space R. However, all the theorems can also be interpreted in the Euclidean space R^m of any number of dimensions. Then by an interval [0, T] we understand the set of points $t = (t_1, \ldots, t_m)$ whose coordinates satisfy the inequalities $0 \le t_i \le T_i$, where $T = (T_1, \ldots, T_m)$. Similarly, the interval $[0, \infty)$ means the set of points t with $t_i \ge 0$. By the convolution

$$\int_{0}^{t} g(t-\tau) k(\tau) d\tau$$

we understand an integral stretched on the set $0 \le \tau_i \le t_i$ $(i=1,\ldots,m)$. The proof of Theorem I is based on the Titchmarsh theorem, which holds for any number of dimensions (see [5]). This theorem permits to introduce the class of m-dimensional operators a=p/q, where q does not vanish identically in the m-dimensional right neighbourhood of 0. Then all the preceding considerations remain true in the new, more general, interpretation.

References

- [1] C. Foias, Approximation des opérateurs de J. Mikusiński par des fonctions continues, Studia Math. 21 (1961), p. 73-74.
 - [2] J. Mikusiński, Operational Calculus, 1959.
- [3] An approximation Theorem and its applications in Operational Calculus, Studia Math. 27 (1966), p. 141-145.
- [4] Germs and their Operational Calculus, ibidem 26 (1966), p. 315-325.
 [5] Convolution of functions of several variables, ibidem 20 (1961),
 p. 253-259.
- [6] K. Skórnik, A theorem on approximation in the class L^p , Bull. Ac. Pol. Sci. 14,4 (1966), p. 195-196,

Reçu par la Rédaction le 3, 1, 1964

On generalized topological divisors of zero in m-convex locally convex algebras

b

W. ZELAZKO (Warszawa)

By a topological algebra we mean in this paper a topological linear space together with an associative jointly continuous multiplication. An element x of a topological algebra $A, x \neq 0$, will be called a *left* (right) topological divisor of zero if there exists a non-void subset $P \subset A$ such that zero is not in the closure \overline{P} of P but $0 \in \overline{XP}$ $(0 \in \overline{Px})$. Here, as usual, UV $= \{xy : x \in U, y \in V\}$. An element $x \in A$ is called a topological divisor of zero in A if it is both a right and a left topological divisor of zero. It is a classical fact of the theory of Banach algebras, due to Siloy [3] (for algebras without a unit, see [5]) that a complex Banach algebra either possesses topological divisors of zero or is isomorphically homeomorphic to the field of complex numbers. The same holds for locally bounded algebras a class more general than the class of Banach algebras [5]. Here we investigate the problem for another generalization of Banach algebras, namely for the class of locally convex multiplicatively convex topological algebras (shortly, we shall call them m-convex algebras throughout this paper). An m-convex algebra is a topological algebra (over complexes) with a basis for neighbourhoods of the origin consisting of sets $\{U\}$ which are convex, symmetric and idempotent, i.e. such that $UU \subset U$. Or, which is equivalent, it is a locally convex algebra with the topology given by means of family \mathcal{P} of submultiplicative pseudonorms:

$$||xy|| \leqslant ||x|| \, ||y||$$

and, in the case where the algebra in question possesses a unit e,

$$||e|| = 1$$

for each $\|\cdot\|\epsilon\mathscr{P}$. We may assume that \mathscr{P} consists of all continuous pseudonorms satisfying (1) and (2) in the case where there is a unit element. The theory of these algebras was created by Arens [1] and Michael [2].

The statement that an *m*-convex algebra either possesses topological divisors of zero or is isomorphically homeomorphic to the field of