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The converse of Wiener-Levy-Marcinkiewicz Theorem
by

N.M. RIVIERE and Y. SAGHER* (Chicago)

Introduction. Let F(z) be a function of a single real variable =,
defined in the open set I. We say Fel,, 0 < s <1, if and only if, for
every compact set I’ contained in I,

(1.1) |F™(z)| < B"w™, =zl

where F™ denotes the n-th derivative of F(z), and B is a constant depend-
ing only on I'.
For 0 < p < oo, we call

4, = {f,f(m) = Zanei"’, such that (Z{anl")w = 4,[f1< oo}.
Marcinkiewioz (1] (p. 588-594) proved that if
(i) the domain of F(w) contains the range of f(@):(D(¥F) = R(f),
and _
(1) f(w)edsy F(@)eGy,
then F(f(z))eAs- .
A. Zygmund has pointed out that the proof of Marcinkiewicz can
readily be extended to show that actually F(f(x))eAs.
In this paper we will prove the converse of Marcinkiewicz’s theorem,
in a stronger form; more precisely:
TaEorEM. Let F(x) be defined in an open set I and let 0 <s <1.
Suppose that if feds with D(F)=> R(f), then F(f(m))eAp,p <2 (p depend-
ing on f). Then Fe@,.
This result has been proved when s = 1 by Helson, Kahane, Katz-
nelson, and Rudin in [2], [3], and [4]. The result is also true on any
- infinite -.compact abelian group, although our proof will be restricted to
the unit circle.
* This research was supported in part by the National Science Foundation
grant GP-3984.
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The above statement will be proved in section 1. In section 2, we
diseuss the stability of 4, under composition of its elements with a fune-
tion F(x). '

The authors wish to thank A. Zygmund and J.P. Kahane for sug-
gesting the problem and for many illuminating discussions.

1. We will divide the proof of the theorem into several lemmas.
LemMA 1. Let

Plz) = Z%gm and  ag <Ce™, 0>0, ¢>0

(¢ independent of n). Then Fe@,.
Proof. We have

[=3)

PP () = 2 (in)* a, ™,

[o-] e =]
PO (@) < D 0¥ o, <20 Y nFe
To 1
To estimate this series set f(z) = a"¢~*, and observe that f(x)
increases in (0, %"°/(es)"") and decreases in (%'°/(es)", oo} and that
f(klls/(cs)l/s) — kk/se~lc[s'

Thus
0
anc—cns < j‘mke—m‘s dw—+ (B—I/S)kkkls < Blakk/s’
1 []

and the lemma follows.
The converse of this lemma hag been proved by Marcinkiewicz [1].
Remark 1. We claim 4,(¢) = K >1 for p < 2. For

. 17
lcosTy __ - feosx|2 3., ___
A,fe ]—27: _ile "de =1
and if
o0
eieosx — 2 oy oim:,
-0
then |a,| <1 and |a,|® < |a,/”. The claim now follows.
Observe that if fed, (1 <p < o) and ged,, then

(1.2) Ap[f9] < Ap[fl4.[g] (Young’s Inequality)

KAHANE'S LEMMA. If fi,...focA,, then given ¢ >0 there ewist
Ay evey Ay Such that

[ [Jaho] > 0= [ 415, 1<p <oo.
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Actually, the result also holds for 0 < p < 1 although we shall not
prove it. For the case p =1, see [2].

Proof. In the case of two functions f, and f, where f; is a trigo-
nometric polynomial of degree XN,

Aplf:(2)f:(2N5)] = Ap[fi]4p[fe]-

Now let fyed, be arbitrary. Given &> 0, choose a trigonometric
polynomial P(x) such that

A,[fi—P] < A, [fi—P]1 <5, 6= gApm].
- If the degree of P(x) is N, then
Ay [f1(2)f2(28%)] = Ap[P(2)f2(2N2)]— Ay [(fi —P)f]
> Ay (P14, [f]— 04, [f2] > (1—e) Ay [f] 4, Fa].

Using induction and the same technique the result follows. Observe
that the 1’s may be chosen to be all different.

COROLLARY. Let R be an integer, 0 < s <1,p >1, then sup 4, e’
> K"P, where r = 2 "'RY, the supremum being taken over all f with
As[f] < T #

K as defined in remark 1.

Proof. Using Kahane’s lemma with all A’s different

R R
4, [exp {i 2 cos r}] > (1—e)E®  where A, [2 cos Z;m] = QM1 pIe
=1 J=1

and the corollary follows.

We are now in position to prove the theorem announced in the
introduction. The proof follows the line of that in [4].

Proof of the theorem. First of all we observe that it is enough
to prove (1.1) in a neighborhood of every point zeI and then use the
fact that I’ is compact. We may also assume that F(0) = 0, and that
I=[-1,1]

The proof will be divided into four steps:

(1) There exists an interval (—g, #) and numbers p < 2, 6 > 0, and
M < oo such that A,[F(f(z)] <M for all fed, which vanish outside
(=8, B) and satisfy A4,[f]<d.

(2) With p as above there exist numbers 5 > 0, and B < oo such
that 4,[F(f)] < B for all f with 4,[f] <.

(8) F(z) is continuous.

(4) Fe@, in a neighborhood of the origin.
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Proof of (1). If (1) is false, there exists a sequence of disjoint in-
tervals [a;, b;] = [—n, =] (obtained by translating the origin), a sequence
of functions f, with support in (a;, b;) and A5[f;] <1 /2’ and a sequence
of numbers p; — 2 with the following property. If D;ed, is equal to 1
in (a;, b;) and zero in (a, by) for & # j, then Ap, [F( fj)] > jA4,[D;]. Let

f= Zﬂ-
ji=1
Then fed, and F(f)eA, for some p < 2 since max @) < 4:[f1 <1
Observe that F(f;(x)) = &;F(f()) and therefore using (1.2)\ T
JAPT < Ap[F(f))] = Ay [P F()] < Ay, [F ()] A [B)].
Hence 4, [F(f)] = j, which is impossible,
For the proofs of (2) and (3) we refer the reader to [4], theorem 5.

Proof of (4). With p, 5, and B as before, observe that if
then f-ged, and Y ’ MRS geds

Aslf-9]1 < A:[f14,[g],

o(t) = - V(Y
. (t) (d]/s(smt)) d = Z(n!) .

It 4,[f1<1 and ¢ is a real number, then

0<s <1,
Tet h

43[80n(f+a)] < sinal* 42 [cosf]+ cos al* A2 [sinf] < NEHE

Lt (n‘)

1, then A,[sin(f+a)] < @'

=

That is to say, if 4,[f] < Hence if

A[f1 <1, then A,[D(f+a)] < B. Using (3 i iodi
<1, b g (3), (1) i3 a continuous periodic
D(x) ~ Zunem,

then -

f@ -{—ﬂ, ma,da = a, e1nj(7a)

-7

and therefore 4, [anemf 1< B for all f with 4,[f] <

fa'n[ < B(supA,, [e’fnf]
A, [nf] <n

The continuity of & and lemma 1 now imply that

7. Then

~1
) < B¢, g¢>1.

©0
= Ya,™ and @6,

icm
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Finally, F(z) = @(arc.sin.(dl’sw/ﬁ)) and since arc.sin.(z)eG, in a
neighborhood of the origin, it fellows that Fe@, in a neighborhood
of the origin. This completes the proof of the theorem.

2. The theorem proved in section 1 shows that if
F (f(‘”))f U 4,

<P <2
for all fed, with D(F) > R(f), then we actually have F(f(x))ed, for
all these f. Thus, we cannot “lift” the algebra A, by composing its ele-
ments with a function F(z).

In this section we show that the only functions F(z) that “lower”
the algebra A,, are the constant functions. This will follow rather easily
from the following

LueMMA. Let F(x)eGy, 0 < s < 1. Let U be an interval where F' (x) > 0.
Let W be an open set contained in the image of U under F. Then F~ L),
the composition inverse of the restriction of F to U, is in G, in W.

Proof. We have for 2¢U, F~' (F(z)) = 2. Write

1
L
@)

G (2) =

Then G, ()@, in T, since G4(2) is a composition of (d/dz)F (x) <G with 1/z,
which is analytic in the range of (d/dz)F (), for xeU. Write now

y=TF(x), Gn(@)=G61(2)Gn1(x).

Then clearly

d‘"r
W (T (y)) = Gnlz).

Thus, we have to show |G,(z)] < O"n™". Since G(z)e s, we have

16 ()] < B (n )5,

(This is equivalent to the definition of G, in section 1, and is more suitable
for our calculations here.) ‘

Gl@) = G4 (@) Gy (3) = G4 (2) [G1(2) s (@)]" =

1 Ey+1
_ k +1 Ko\ ik +1—ky)
(2) ( )Gll B (1) ( 1 )G 1 ()
k12='o k kgl kz;
Fp—3+1
2 (kn_a—{];l—kn_z) GFn—a+1~n=2) () G2 ().
n—2

Ry, Ta=0
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Theorefore
1
1
)| < B Y (,c )[(1—761)!]”“2
Ep=0 1 Ieg
kp—g+1

B (’“~ + "‘H) [y +1 — ) 1 [ (e 1) 1]
]l.n_zzo 'n—2

1 k141
<p[ Y (kll) A=kt Y (7“1"‘732"7“2) (g t1—k)! 3.

k=0 Fiy=0 123
Ry —gt1

ky_g

. (k“-“'l “7”'L"2)<7cn‘3+1—k-n-g)1<7an_2~>~-1>!]1’3
Ky—g=0

s
— gl [975_231(_3):) ,] < O,
257 (n —2)!

Thus, the lemma is proved.
We are now in position to prove

THEOREM. Let F(x) be defined in an open set I, and let 0 < s <1.
Then if F(f(w))e U 4., for all f(x)eA,, with D(F) > R(f), then F(x)
0<r<s

is a constant.
Proof. If F satisties the hypothesis, then since U 4, < 4,,

0<r<s
we have Fel,. If ¥ is not a constant function, there is an open set

U = D(F) such that F'(z) 5 0 in U. To fix ideas, we assume [—1, 1] < T,

F(0) = 0. Let W be an open neighbourhood of 0 which is contained in

the image of [—1, 1] under F(x). Let F~'(y) be the composition inverse

of F(z). We have F~'(y)e@, in W. Thus, for all feds with R(f) =« W we

have F~Yf(x))ed,, R(Ff())) « [—1,1]. Thus for all these 5

F(F(f))e\U 4,. That is, felJA,. This contradicts U4, # 4,, and
r<s

r<8 <8
the theorem is proved.
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