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ON MAPPINGS BETWEEN QUASI-ALGEBRAS

BY

J. SLOMINSKI (TORUN)

A theory of mappings between quasi-algebras is a generalization of
that of homomorphisms. A homomorphism between quasi-algebras of the
type F is any mapping ¢ which fulfils the following basic mapping formulas:

(1) olfle, & < () = flol@), & < (),

where feF is an operator symbol. The mappings ¢ which satisfy the
basic mapping-formulas of the form

(2) o(flwes & < n(f) = lp(@), & < n(),

where feF and v is -a G-term belonging to P(f), are P-homomorphisms
between quasi-algebras of the type F and of the type G. For a theory
of P-homomorphisms see my paper [4].

The general basic-mapping-formula has the following form:

(3) oulF@er £ < n(f)) = T(ga(@e); 0 < @, § <n(f),

where x4 < a, f is an operator symbol in F, and v is a G-mapping-term.

The systems ¢,, ¢ < a, of mappings of quasi-algebras of the type F
into quasi-algebras of the type (G, which satisfy a family P of general
basic mapping-formulas, are called systems of P-mappings. A theory of
systems of P-mappings between algebras with finitary operations is
given by Fujiwara [1]. In this paper we give a generalization of this
theory not only for arbitrary algebras but also for quasi-algebras with
infinitary partial operations. Moreover, we obtain the existence theorems
on B-free systems of B-P-mappings and B-P-direct sum of quasi-alge-
bras for arbitrary quasi-primitive class B of quasi-algebras, and for any
family P of general basic mapping-formulas. We also consider the notion
of independence with respect to any family P of general basic mapping-
formulas, i.e. P-independence, and we obtain some results similar to
those of Marczewski [2] and Schmidt [3].

§ 1. Quasi-algebras. Let & be any ordinal number and let A be any
set. By a k-ary partial operation in A we understand any mapping f of
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a subset of the set A* (of all sequences of the type % in A) into A. The
value of k-ary partial operation f in A for a sequence (a;, < k) — if it
exists — will be denoted by f(a:, & < k). The partial operations defined
on the whole set A* are called k-ary operations in A. Let G = {g, ...}
be any set of operator symbols. By n(g), where ge@, will be denoted the
rank of the operator symbol g, i. e. the ordinal number » for which ¢
is nm-ary. Any system

A=<A,(94)9¢G),

where A is a set and ¢, is an n(g)-ary partial operation in A4 for all g <@,
is called a quasi-algebra of the type G. If, moreover, in the system A
a g, is an operation in A for ge@, then A is said to be an algebra of the
type G. In the sequel the quasi-algebras will be denoted by A4,B, C, ...
and their sets by 4, B, C,...

A subset B of a set A is called closed with respect to a k-ary partial
operation f in A provided that, for all sequences (b, &£ < k) belonging
to B, if f is defined for (b, £ < k) then the value f(b;, & < k) belongs
to B. Let A = <{4,(94,9¢Q)) be any quasi-algebra of the type G and
let B be a subset of A closed with respect to g, for all ge@. Then the
subset B and also the system B = (B, (¢gg, gcG)> where gz = g4|B, is
called a subquasi-algebra of A. Any intersection of subquasi-algebras
of A is also a subquasi-algebra of A. Thus for any subset M of A there
exists the least subquasi-algebra M of A containing M called generated
by M. If M = A, then M is said to be a set of generators for A. Let
A=CA,(g4,9¢3d)) and B = (B, (gg, g¢G)) be two quasi-algebras of
the type G. A mapping & of A into B is said to be a homomorphism of A
into B provided that for all geG and all sequences (a;, & < n(g))eA™®
if g4 i8 defined for (a,e, £ < n(g)), then gp is defined for the sequence
(h(ag), &£ < n(g)), and, moreover, that we have

h(galac, & < n(9))) =ga(hlas), & <n(g).

A homomorphism & of A into B is called strong provided that, for
all ge@ and all sequences (a;, & < n(g))ed™, if g, is defined for
(h(ag), £ < n(g)), then there are elements a;ed, & < m(g) such that
h(a;) = h(a;) for & < n(g), and that g, is defined for (a, & < n(g)).
The one-to-one homomorphisms are ¢somorphisms. Homomorphisms
between algebras are always strong.

Let T be any set and let A; = {4y, (94, 9¢G)), for teT, be any

quasi-algebra of the type G. Let us denote by A = P 4, and 4’ = S 4,
teT teT

the cartesian product and direct sum of sets A;, i.e. A is the set of all
mappings ¢: T — |J A; with ¢(t)ed; for teT, and A’ = {(t,a): teT,
teT'
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aeA;} is the set of all pairs (¢, a), where t¢T and aeA,;. The quasi-algebra
A = (A, (gaqy9geG)>, where g,, for ge@, is an n(g)-ary partial operation
in A such that g, is defined for (p;, & < n(g)) if and only if, for all e,
94, is defined for (g(t), & < n(g)), and in which we have

Jalpe, E<n(g) =9 with (1) = g4,(p:(t), & < n(g))

for all teT, is called the direct product of quasi-algebras A,, teT. The
quasi-algebra A’ = (4’', (94, g¢G)), where g4, for ge@, is defined for
a sequence ((te, ag), & < n(g)) if and only if there exists an element #;,e7’
such that (i, a;) = (%, @), & < n(g), and where 9ay, is defined for

(a;y £ < n(g)), and in which, moreover, we have

9a((te; ac), & < n(g)) = (o, 9., (3, & < (9)),

is called the direct sum of quasi-algebras A,, teT. The direct product and

direct sum of quasi-algebras A,, teT, will be denoted by P 4; and S A4,
teT teT

respectively. Let p, be the natural projection of A onto A, (i.e. pi(p)
= @(t) for (;oeA) and let ¢, be the natural injection of A, into A(i. e. 4(a)

= (i, a)). Then p, is a homomorphism of 4 = P A, onto A4, and 4, is an
teT

isomorphism of A, into A’ = S A,. Moreover, i, is a strong isomorphism

teT
of Ag onto ’lq(At)

If » is a homomorphism of a quasi-algebra A into a quasi-algebra B,
then h considered as a subset of 4 X B is a subquasi-algebra of the direct
product AXB of A and B such that

(%) for all aeA there exists one and only one element beB with

{a, b)eh.

The converse is not always true. Any subquasi-algebra h of AXB
which has the property (*) is said to be a full-homomorphism of A into B.
Every homomorphism & of A into B is a full-homomorphism of A into B,
but a full-homomorphism of A into B is not always a homomorphism
of A and B. It is easy to verify that for algebras the notions of homo-
morphism, strong homomorphism and full-homomorphism are identical.
The subquasi-algebras h of the direct product 4 xB of quasi-algebras
A and B such that

(»*) for all aeA there exists at most one element beB with

{a,b)eh
are called partial-homomorphisms of A into B. Let h be a partial-
homomorphism of A into B. Then the sets p,(h) and p,(h), where p,
and p, are the natural projections of A X B onto A and B, are said to be
the domain and the image of h. If {a,b)>eh, then aep,(h), beps(h), and
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the element b will be denoted by & (a). If the domain of 4 is the whole
set A, then A is a full-homomorphism of A4 and B. Now we observe that

(1.1) If A and B are algebras and h is a partial-homomorphism of A
into B such that a set of generators for A is contained in the domain
of h, then h is a full-homomorphism and also a homomorphism
of A into B.

(1.2) If A is an algebra and h is a partial-homomorphism of A into B
such that the image of h contains a set of generators for B, then h
8 a partial-homomorphism of A onto B.

Now we shall give a definition of Peano-algebra. An algebra
G* = <G*7 (9a+s 9€G)D

of the type @ is said to be a Peano-algebra of the type G generated by
a set Y if it has the following properties:

(1.a) the elements in Y are not values of the operations gg., ge@,
for elements in G*,

(1.b) for all g,g’<@, and all sequences (w;, & < n(g)) and (w,
& < n(g')) of elements in G* the relation

gar(wey E< n(g)) = ggo(w:, £ < n(g")

implies g = ¢’ and w; = w; for & < n(g) = n(g’),

(1.c) the set Y generates the algebra G*.

There are Peano-algebras of the type G generated by arbitrary
sets. For a construction of Peano-algebras see my paper [4]. The
Peano-algebras have an important property which is given in the follow-
ing theorem:

THEOREM 1. Let G* = (G*, (g§g+, 9cG)> be a Peano-algebra of the
type G generated by a set Y and let A = (A, (94, 9¢G)> be an arbilrary
quast-algebra of the type G. Then for every mapping y: Y — A the subquasi-
algebra v of G* x A generated by v is a partial-homomorphism of G* into A.
If A is an algebra, then y is a homomoprhism of G* into A.

For a proof of Theorem 1 see my paper [4] (proof of theorem (2.7)).

From Theorem 1 it follows that the Peano-algebra of the type G
generated by a set Y is uniquely determined up to isomomorphisms by
the cardinal number of set Y, and since it is the absolutely free algebra
of the type G freely generated by Y, it is denoted by Free (G, Y).
By virtue of Theorem 1, Peano-algebra of the type G may be considered
as an algebra of G-terms. Let G* = Free(G, X) be a fixed Peano-algebra
of the type G generated by the set X = (zy, 1, ..., %, ..., £ < f) composed
of different elements z;. The elements in G* are called G-terms, the
elements in X may be considered as individuum-variables. If a G-term v
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belongs to the subalgebra of G* generated by variables (zy, 2, ..., o,
...y & < p), then we shall write v = t(x;, &£ < o) (}). Let 7 = 7(x;, & < o)
be any G-term and let A = <{4,(g,, g¢G))> be an arbitrary quasi-algebra
of the type G. Then the G-term r defines in the set A a p-ary partial
operation. We define 7, as follows. Let (a;, £ < o) be a sequence of the
type ¢ in 4 and let y be a mapping of X into A such that y(x;) = a, for
& < p. By Theorem 1, the subquasi-algebra y of G*x A generated by y
is a partial-homomorphism of G* into A. The partial operation 7, is
defined for (a;, £ < p) if and only if the G-term t belongs to the domain
of y. Moreover, we put 74(a;, £ < o) = y(r). The partial operation 7,
defined above is said to be defined by G-term t in quasi-algebra A. If A
is an algebra, then 74 is an operation. The partial operation 7, may be
also considered as one of the type X, i. e. 74 is defined for yeA¥ if and
only if 7 belongs to the domain of y and if, moreover, we have 7 ,(y)
= (7). The pairs {z, ¥, where T and @& are G-terms, are called G-equa-
tions. The G-equation (r,d) will be also denoted by = = & . A G-equa-
tion v = &1 is said to be valid in a quasi-algebra A of the type G if
T, = ¥4, i.e. if for all yeA™ we have y(r) = p(9) provided that 7,
and &, are defined for y. The set of all G-equations which are valid in
a quasi-algebra A of the type G will be denoted by E(A). Let E, be a set
of G-equations. By G(E,) will be denoted the class of all quasi-algebras A
of the type G such that F, « F(A). The classes of the form G(F,) are
called equationally definable.

§ 2. A theory of P-mappings between quasi-algebras. Let @ = (¢,,
o < a) and X = (%, & < f) be arbitrary sets. The elements in & and
in X may be considered as mapping and individuum-variables. The pairs
(@oy Ly ePx X will be also denoted by ¢,(x;). Let us denote by G
= Free(G@, ®x X) the Peano-algebra of the type G generated by the
set ®x X. The elements in the algebra G are called G-mapping-terms.
If a G-mapping-term v belongs to the subalgebra of G; generated by
elements ¢, (), 0 < a;, § < B,, then we shall write

(xkx) T = T(P(%;), 0 < ay, & < By).

Let B = (B, (9g, g¢G@)> be an arbitrary quasi-algebra of the type @
and let 7 be any G-mapping-term which fulfils the relation (#*x). Then
the G-mapping-term v defines in B a partial operation 7, the domain
of which is a set of some a, X ,-matrices over B. Let (b,, ¢ < a,, & < B,)
be any a, X f;-matrix over set B and let y: ®XX — B be a mapping

(1) Let us observe that the meaning of the notation 7 = v(x:, &£ < @) given
in this paper is different from that in my paper [4]. In [4] the relation 7 = (.,
& < p) means that the set (x:, £ < g) is the support of the term r. Obviously, if the
relation T = 7(wg, £ < ¢) holds in the sense of [4], then the relation v = 7 (z¢, & < )
holds also in the sense of this paper, but the converse is not true.



such that ¢,(2;) = b, for ¢ < a;, £ < ;. By Theorem 1, the subquasi-
algebra v of GgxB generetad by y is a partial-homomorphism of G
into B. The partial operation tgz is defined for (b,, o < a,, £ < B,) if
and only if 7 belongs to the domain of y. Moreover, we put

by 0 < a1, E<By) = '7’("7)

The partial operation zz defined above is called defined in quasi-
algebra B by G-mapping-term t. The partial operation vz may be also
considered as one of the type ®x X, i. e. for all mapping y of &#x X
into B, tg is defined for y if and only if v belongs to the domain of y,
and if, moreover, we have tz(y) = (). The pairs ¢z, #), where v and &
are G@-mapping-terms, are called G-mapping-equations. A G-mapping-
equation (7, ®) will be also denoted by '+ = # 1. A G-mapping-equation
Mz = § 1is said to be valid in a quasi-algebra B of the type Q, if 15 = B4,
i. e. if for all mappings y of ®x X into B we have y(r) = (&) provided
that 7z and ¥5 are defined for v.

Now let us consider two sets F = {f,...} and G = {g, ...} of operator
symbols. The elements of the Peano-algebra F* = Free(F, X) of the
type F generated by X we shall call F-terms and the pairs of F-terms we
shall call F-equations.

Now we shall give a definition of basic mapping-formulas. An identity
of the form

(i) vl flwer & < n(h)) = t(palad), 0 < a, & < n(f),

where u < a, feF, and 7 is a G-mapping-term which fulfils the relation
(#xx) for a, = a, and B, = n(f), is called a basic mapping-formula (of ¢,
concerning f). '

Let A =<A,(fq,fcF)> and B = (B, (gg, ge@)> be two quasi-
algebras of the type F and @, respectively, and let H = {h,, 0 < a} be
a system of mappings h, of A into B. We say that the system H of
mappings of A into B fulfils the basic mapping-formula (i) provided that
for every sequence (a;, £ < n(f))eA"", if f, is defined for (a;, & < n(J)),
then vy is defined for (h,(a;), ¢ < a, £ < n(f)) and that, moreover, we
have

h(falae, &€ < n(f) = a(ha(ar), o < a, & < n(f).

Let P be any family of basic mapping-formulas (see (i)). Then P is
said to be a Prg (¢,, 0 < a)-family of basic mapping-formulas. Let P
be any Pgg(p,, 0 < a)-family of basic mapping-formulas and let A
and B be any quasi-algebras of the type F and Q. A system H = {h,,
o < a} of mappings of A into B is called a system of P-mappings of quasi-
algebra A into quasi-algebra B if system H fulfils every basic mapping-
formula (i) belonging to P. Now we observe that



MAPPINGS BETWEEN QUASI-ALGEBRAS 31

(2.1) If H = {h,, 0 < a} t8 a system of P-mappings of a quasi-algebra A
of the type F into a quasi-algebra B of the type G, and q is a homo-
morphism of B into a quasi-algebra C of the type G, then the system
¢-H={qh,, 0 <a} i8 a system of P-mappings of A into C.

Proof. Let (i) be any basic mapping-formula belonging to P. We
have

gh,(falae; & < n(f)) = g(ra(ha(as), o < a, & < n(f)))
= TC(qha(a$)7 c<a,é< n(f)))

provided that f, is defined for (a;, & < n(f)), i.e. H fulfils the basic
mapping-formula (i). Thus ¢-H is a system of P-mappings of 4 into C.

(2.2) If q is a homomorphism of a quasi-algebra A of the type F into
a quasi-algebra A’ of the type F, and H = {h,, 0 < a} is a system
of P-mappings of A’ into a quasi-algebra B of the type G, then the
system H-q = {h,q, 0 < a} i8 a system of P-mappings of A into B.

Proof. Let (i) be any basic mapping-formula belonging to P. We
have

ho(q(falae; & < n(f))) = ho(fala(as), & < n(f))

= 15(ha(9(ap)),0 < a, & < n(f)) = a(h.q(ar), 0 < a, & < n(f)

provided that f, is defined for (a;, & < n(f)), i. e. the system H-q fulfils
the basic mapping-formula (i). Thus H-q is a system of P-mappings of 4
into B, and theorem (2.2) is proved.

Let P be any Prg(p,, 0 < a)-family of basic mapping-formulas and
let, for each pair (¢,, f)e@XF, P, ; be the set of basic mapping-formulas
of ¢, concerning f, which is an element of P. The family P is said to be
proper if for each pair (¢,,f)e@XF, P"’w’ is a one-element set. If P is
a proper Prpg(p,, 0 < a)-family of basic mapping-formulas, then for
any u4 < a and any feF there exists one and only one basic mapping-
formula (i) in P of ¢, concerning f. In this case the (-mapping-term <
which appears in (i) and which is uniquely determined will be denoted
by P(g,,f). Hence the basic mapping-formulas in the proper Pgg(¢,,
o < a)-family P have the following form:

@i’) ‘Pu(f(mef &< n(f))) = P(‘ow)(‘l’a(wé)’ c<a,f< n(f))a

where u < a, feF and P(¢,,f) is a G-mapping-term belonging to the
subalgebra of Gy generated by (¢,(w;), 0 < a, & < n(f)).

Let P be any proper Prg(p,, 0 < a)-family of basic mapping-for-
mulas and let B = (B, (95, g¢G@)> be an arbitrary quasi-algebra of the
type G. We define a quasi-algebra P(B) of the type F, which will be
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called the P-product system over B, as follows. At first let us consider the
set P(B) = B® of all sequences (b, £ < a) of the type a in B. In the
set P(B) = B* we mmtroduce the n(f)-ary partial operations fpg in the
following way. The partial operation fpg, is defined for a sequence
(bogy o < @), & < n(f)) of the type n(f) in B® if and only if P(g,,f)s is
defined for the axn(f)-matrix (b, 0 <a, & <n(f)) for all u<a.
Moreover, we put

(4) fP(B)((baE7 c<a)f< '”'(f)) = (P(‘P;uf)n(baﬁ’ c<a,é< n(f))’ w < a)'

The quasi-algebra P(B) = (P(B), (fpm); feF)) of the type F is
said to be the P-product system over B. Let us denote by p,, 0 < a, the
natural projections of P(B) = B® onto B, = B. Now we prove

(2.3) For every proper Prg(p,, o < a)family P of basic mapping-
formulas and for every quasi-algebra B of the type G the system
Pr = {p,, 0 < a} of natural projections p, of P(B) onto B, = B
i8 a system of P-mappings of the P-product system P(B) over B
into B.

Proof. By (4), we have
2, (fem ((bay 0 < @)y & < n(f)))
= 9, (P(@u Niplbat) 0 < a, £ <n(f)), 4 < q)
= P(@us fp(bosy 0 < a, & < n(f))
= P(9u; N (ps((ba, 0 < @), 0 < a, & < n(f)),

i. e. the system Pr fulfils the basic mapping-formula (i). Thus (2.3) is
proved.

Now we shall show a fundamental theorem:

THEOREM 2. Let A = (A, (f4,feF)) and B = {B, (gg, g¢@)> be any
quasi-algebras of the type F and @, and let P be an arbitrary proper
Pra(psy 0 < a)-family of basic mapping-formulas. Then a system H = {h,,
o < a} 18 a system of P-mappings of A into B if and only if the direct
product h of h,, ¢ < a, i.e. the mapping h: A"— P(B) = B*, such that

h(a) = (hy(a), 0 < a) for acd,

i8 a homomorphism of A into P(B), where P(B) ts the P-product system
over B.

Proof. Let us suppose that h is a homomorphism of 4 into P(B).
Then we have h, = p,h, where p, is the natural projection of P(B) = B*
onto B, = B, for ¢ < a. Hence it follows that H = Pr-h, where Pr
= {p,, 6 < a}. By theorem (2.3), the system Pr is a system of P-mappings
of P(B) into B, and thus, by theorem (2.2), the system H = Pr-h is
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a system of P-mappings of 4 into B. Conversely, assume that H is a system
of P-mappings of A into B. Then we have

h(fA(“E: £ <n(f) = (hu(fd(“e’ E<n(f)p< a)
= (P(pu Np(holas, o < a, &€ <n(f), p < q)
= fra((ha(as), 0 < o), & < n(f)) = frm)(h(ae), & < n(f)

provided that f, is defined for (a;, & < n(f)), i. e. b is a homomorphism
of 4 into P(B). Thus Theorem 2 is proved.
From Theorem 2 if follows

(2.4) Let A and B be two quasi-algebras of the type F and G and let P
be any proper Pra(@,, 0 < a)-family of basic mapping-formulas.
If H={hy0<a} and H = {h,,0 < a} are two systems of
P-mappings of A into B, and if H and H' are the same on a set
of generators for A, then H and H' are identical, i¢.e. H = H'.

Proof. Let h and b’ be the direct products of h,, 0 < a, and h,,
¢ < a, respectively. By Theorem 2, » and A’ are two homomorphisms
of A into P(B). But by the assumption of (2.4), h and k' are the same
on a set of generators for A4, and thus h = h’. Hence it follows that
H = H’ and theorem (2.4) is proved.

If in Theorem 2 we assume that A and B are algebras with finitary
operations, then from Theorem 2 we obtain Theorem 1.1 in paper [1]
of Fujiwara.

A. Direct products of P-mappings. Let P be an arbitrary
Pra(psy 0 < a)-family of basic mapping-formulas and let H; = {hy,, 0 < a},
for teT, be a system of P-mappings of a quasi-algebra A = {4, (f,,
feF)> of the type F into a quasi-algebra B; = <{Bi, (¢g,, §¢G)> of the
type G. Let H = {h,, 0 < a} be the direct product of systems H;, teT,

i.e. H is a system of mappings of 4 into B = P B, such that, for all
teT

o < a and for all aed, we have
h,(a) =¢ with ¢(f) = hy,(a) for all teT.

The direct product H of the systems H;, teT, of P-mappings is also
a system of P-mappings. This follows from the theorem:

THEOREM 3. The direct product H = {h,, o0 < a} of the systems H,
= {hy, 0 < a}, teT, of P-mappings of a quasi-algebra A of the type F
into quasi-algebra By, teT, of the type G 18 a unique system of P-mappings
of A into the direct product B = P B, such that H, = p;-H for teT (i. e.

teT
he = peh, for all ¢ < a and all teT), where p; is the natural projection

of B onto B,.

Colloquium XV. 3
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Proof. Let (i) be any basic mapping-formula belonging to P. The
system H fulfils the basic mapping-formula (i). Indeed, for all sequences
(agy & < n(f) belonging to the domain of f,, we have h,(f4(a;, & < n(f))
= with () = h(fa(a, & < n(f)) = tp,(hs(a), 0 < a, & < n(f)) for
all teT, and thus, by the definition of direct product of quasi-algebras,
¢ = tg(ho(a), 0 < a, &£ < n(f)); therefore

hp(fA(ae’ §< 'n(f)) = TB(ha(ae)y c<a,é< ”(f))’

i. e. we have proved that the system H fulfils the basic mapping-formu-
la (i). Hence H is a system of of P-mappings of A into B. Obviously
H, = p,H for teT, and thus Theorem 3 is proved.

B. Direct sums of P-mappings. Let P be an arbitrary Pgg(e,,
o < a)-family of basic mapping-formulas and let H, = {h, 0 < a},
for teT, be a system of P-mappings of a quasi-algebra A, = {A¢, (fa,,
feF)> of the type F into a quasi-algebra B = (B, (gg, ge@)> of the
type G. Let H = {h,, 0 < a} be the direct sum of systems H;, teT, i.e.

H is a system of mappings of the direct sum 4 = S A, of sets 4, into
teT

the set B such that, for all ¢ < a, all elements te7' and all (¢, a)ed, we
have hc,((t, a)) = hys(a). The direct sum H of systems H,, teT, of P-mapp-
ings is also a system of P-mappings. This follows from the next theorem.

THEOREM 4. The direct sum H = {h,, 0 < a} of the systems H, = {h,,
o < a}, teT, of P-mappings of quasi-algebras A, of the type F into quasi-
algebra B of the type G is a unique system of P-mappings of the direct sum
A = S A, of quasi-algebras A; into the quasi-algebra B such that H, = H -1,

teT
for teT (i.e. by = h,i; for all teT and all 0 < a), where i, i3 the natural

injection of A, into A.
Proof. Let (i) be an arbitrary basic mapping-formula in P. The
system H fulfils this basic mapping-formula. Indeed, we have

h(falltes @)y & < n()) = hu(fa((t, ae), & < n(f)))
= ho((tor Fay (a6 & < (1)) = PrgulF gy (0, & < m())
= tg(hy0(ar), 0 < a, & < n(f) = ta(ha((to, @), 0 < a, & < n(f))
= rB(h,,((te, a)), o <"a, E< 'n'(f))

for all sequences (f;, @;) = (ty, @), & < n(f) belonging to the domain of f,,
i. e. we have proved that H fulfils the basic mapping-formula (i). Thus H
is a system of P-mappings of A into B. Obviously, we have H; = H ‘i,
for all teT, and therefore Theorem 4 is proved.

C. B-P-mappings. Let P be any Prg(p,, (¢, 0 < a)-family of basic
mapping-formulas and let 4 = (A4, (f4,feF)) be any quasi-algebra of
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the type F. Moreover, let B be an arbitrary class of quasi-algebras of
the type G. The pairs (H,B), where BeB and H = {h,, 0 < a} is
a system of P-mappings of A4 into B, are called systems of B-P-mappings
of quasi-algebra A. Now we introduce some relations between systems
of B-P-mappings of A. Let (H, B) and (H', B’), where H = {h,, ¢ < a}
and H' = {h,, 0 < a}, be two systems of B-P-mappings of quasi-algebra
A. We say that:

1. (H,B) < (H', B’) if there exists exactly one homomorphism q of B
into B’ with H' = q-H (i. e. with h, = q-h, for all ¢ < a),

2. (H,B) = (H', B’) if there exists exactly one strong isomorphism q
of B onto B’ with H = ¢q-H.

A system (H, B) of B-P-mappings of quasi-algebra A is said to be
B-free if for every system (H', B’) of B-P-mappings of quasi-algebra A
we have (H,B) < (H', B’). Now we prove that

(2.8)  If there exists an B-free system of B-P-mappings of quasi-algebra A,
then it is uniquely determined up to the relation =

Proof. Let (H,B) and (H'’, B’) be two B-free systems of B-P-
mappings of quasi-algebra A. Then H' = q-H and H = ¢’-H’, where ¢
and ¢’ are homomorphisms of B into B’ and of B’ into B, respectively.
Hence H' = q-q¢'-H' and H = q'-q-H. But we also have H' = ¢ -H’
and H = ¢-H, where i’ and ¢ are the identity isomorphism of B’ onto B’
and of B onto B, respectively, and thus, by 1, ¢-¢’ = ¢ and ¢'-q = 1.
Hence it follows that ¢’ and ¢ are one-to-one and onto, and, moreover,
that ¢’ = ¢~'. Therefore ¢ is a strong isomorphism of B onto B’ and we
obtain the relation (H, B) = (H', B’). Hence (2.5) is proved.

A class B of quasi-algebras of the type @ is called quasi-primitive
if it is closed with respect to direct products, subquasi-algebras and strong
isomorphic images. Now we prove a general existence theorem.

THEOREM 5. Let P be any Prg(p,, 0 < a)-family of basic mapping-
formulas and let B be any quasi-primitive class of quasi-algebras of the
type G. Moreover, let A = (A, (fq,feF)) be an arbitrary quasi-algebra
of the type F. Then there exists the B-free system of B-P-mappings of
quasi-algebra A.

Proof. By virtue of theorem (2.3) of my paper [4] there exists
a number 7 such that |B| < m for all quasi-algebras B of the type
generated by sets M with |M| < |A4|-a (where |Y| and a denote the
cardinal numbers of the set Y and of ordinal number a, resp.). Let E be
an arbitrary set with |E| > M. Let us denote by P(A, B), where B is
a quasi-algebra of the type G such that B = E, the set of all systems A
of P-mappings of A4 into B, and let Hg be the direct product of all systems
AeP(A, B). By Theorem 3, Hy is a unique system of P-mappings of 4
into the direct power BF“B guch that p,Hp = A, where ie<P(A, B)
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and p, is the natural projection of BP*® onto B, = B. Let H be the
direct product of all systems Hp of P-mappings, where B¢ 8 and B < E.
By virtue of Theorem 3, H is a unique system of P-mappings of 4 into
direct product P BP“B) of all direct powers BB where BB and
B c E, such that Hy = qp*H, where qn is the natural projection of
P BF4B onto BP“B), Let C be the subquasi-algebra of P BF4-B)
generated by (U h,(4), where h,, 0 < a, are the mappings of the

o<a

system H, i.e. H = {h,, 0 < a}. Obviously, Ce¢B. Now we prove that
the pair (H, C) is the B-free system of B-P-mappings of quasi-algebra A.
Let (H',B'), where H' = {h,, 0 < a}, be an arbitrary system of B-P-
mappings of A. Let us denote by D = |J h,(A4) the subquasi-algebra

o<a

of B’ generated by | h,(4). Obviously, DeB and |D| < m. Hence it

o<la

follows that there exists a quasi-algebra B with B < F such that B is
strongly isomorphic to D. Let ¢ be a strong isomorphism of B onto D.
By the definition of quasi-primitive class, Be3. Then we have H' = ¢-H,
where g = ip,qg|C with A =4~ 'H', and thus we obtain the relation
(H,C) < (H',B'), i.e. (H, C) is the B-free system of B-P-mappings
of A. Theorem 5 is proved.

D. B-P-direct sums of quasi-algebras. Let P be an arbitrary
Prg(psy 0 < a)-family of basic mapping-formulas and let B be any
quasi-primitive class of quasi-algebras of the type G. Let T be any set
and let A;, teT, be any family of quasi-algebras of the type F. Moreover

let A = S A be the direct sum of quasi-algebras A4;. By virtue of Theorem 5
teT

there exists the B-free system (H, C), where H = {h,, ¢ < a}, of B-
P-mappings of quasi-algebra A. The quasi-algebra C is called the B-P-

direct sum of quasi-algebras A, teT, and we denote C = B-P- S A4,. The
teT

QB-P-direct sum of quasi-algebras 4;, te7, is, by (2.5), uniquely deter-
mined up to isomorphisms. Now we prove
THEOREM 6. Putting for all teT, H; = H-4; = {h,i;, 0 < a}, where 4
is the natural injection of A; into A = S A;, we obtain a family of systems
teT
of P-mappings of quasi-algebras A, into C = B-P- S A; which has the
teT
following property:
(5) for each quasi-algebra BeB and each family H;,teT, of systems
of P-mappings of quasi-algebras A, into quasi-algebra B, there exists
one and only one homomorphism q of C into B such that H;, = q- H,
for all teT.

Proof. By theorem (2.2), H; = H-i; are systems of P-mappings
for teT. Let H' be the direct sum of systems H;,teT, of P-mappings.
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By Theorem 4, H' is a unique system of P-mappings of A = S A4, into B
teT

such that H; = H'-i, for teT. The pair (H',B) is a system of B-P-
mappings of A. Since (H, C) is the B-free system of B-P-mappings of A,
then we have the relation (H, C) < (H', B). Thus, by the definition
of relation <, there exists exactly one homomorphism ¢ of C into B
such that H = ¢q-H. Hence we have H, = H -4, = q-H-i; = q-H; for
all eI, and thus Theorem 6 is proved.

If H is one-to-one, i. e. if each mapping h,, ¢ < a, in H is one-to-one,
then the B-P-direct sum C of quasi-algebras A; is said to be proper. In
this case the systems H;,teT, given in Theorem 6, are also one-to-one.
The one-to-one systems of B-P-mappings of quasi-algebras are called
the systems of B-P-extensions of those quasi-algebras. Hence, by Theo-
rem 6, we obtain immediately

(2.6) The proper B-P-direct sum of quasi-algebras A; teT ewxists, if and
only if the direct sum A of quasi-algebras A;, teT, has a system
of B-P-extensions.

A pair ({H;}i.r, B), where BeB and {H;},r is a family of systems
of P-mappings of quasi-algebras 4;, te7, of the type F into quasi-algebra
B, is called a system of common B-P-mappings of quasi-algebras A;,teT.
If moreover, all systems H;,teT, are one-to-one, then this pair is said
to be a system of common B-P-extensions of quasi-algebras A;,teT. Let
H = ({H})tr, B) and H' = ({H;};r, B'’>) be two systems of common
B-P-mappings of quasi-algebras A;, teT.

We say that:

1. H < H' if and only if there exists exactly one homomorphism ¢
of B into B’ such that H; = q-H, for all teT,

2. H = H' if and only if there exists exactly one strong isomorphism
q of B onto B’ with H; = q-H, for all teT.

A system H of common B-P-mappings of quasi-algebras A, teT,
is said to be B-free if, for every system H’' of common B-P-mappings
of quasi-algebras A;,teT, we have the relation H < H'. The B-free
system of common B-P-mappings of quasi-algebras A;, teT, is uniquely
determined up to the relation =. Now we prove

THEOREM 7. Let P be any Prg(p,, 0 < a)-family of basic mapping-
Jormulas and let B be any quasi-primitive class of quasi-algebras of the
type G. Moreover, let A;,teT, be an arbitrary family of quasi-algebras of
the type F. Then there exists the B-free system of common B-P-mappings
of quasi-algebras A;,teT.

Proof. Let (H, C) be the free system, which exists by Theorem 5,
of B-P-mappings of the direct sum A of quasi-algebras A;,teT. The
quasi-algebra C is the B-P-direct sum of quasi-algebras A;,teT. By
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Theorem 6 the pair H = <{{H;};.r, C)>, where H, = H-4;, is the B-free
system of common <B-P-mappings of quasi-algebras A,,teT. Thus
Theorem 7 is proved.

From (2.6) immediately results

(2.7)  There exists the proper B-P-direct sum of quasi-algebras A, teT,
if and only if there exists a system of common B-P-extensions of

A, tel.

E. P-independence. Let P be an arbitrary Prg(gp,, 0 < a)-family
of basic mapping-formulas. Let us consider the notion of independence
with respect to P-mappings, t.e. the notion of P-independence. Let A
= <A, (fq,feF)> and B = {B, (g9g, 9¢G@)) be any quasi-algebras of the
type F and G. A subset M of A is called B-P-independent if every system
¥ = {y,, 6 < a} of mappings of M into B can be extended to a system
H = {h,, 0 < a} of P-mappings of M into B (i.e. h, is an extension
of y, for all ¢ < a), where M is the subquasi-algebra of A generated
by M. Let us denote by P-ind* M and P-ind M the class of all quasi-
algebras B of the type G such that M is B-P-independent and, respectively
the class of all algebras B of the type G such that M is B-P-independent.
Then we have

THEOREM 8. The classes P-ind* M and P-ind M are primitive, 1. e.
closed with respect to subquasi-algebras, direct products, and homomorphic
images.

Proof. Obviously, these classes are closed with respect to sub-
quasi-algebras. Let us suppose that B;eP-ind* M (B;eP-ind M) for teT.

Let B = P B, be the direct product of B; and let ¥ = {y,, ¢ < a} be any
leT
system of mappings of M into B. Let us consider the systems ¥

= {piyy, 0 < a} = p;-¥, where teT and p, is the natural projection
of B onto B;, of mappings of M into B;. These systems can be, by the
supposition, extended to systems H,, teT, of P-mappings of M into B,.
Let H be the direct product of systems H,;,te7T. By Theorem 3, H is
a unique system of P-mappings of M into B such that H; = p,-H for
teT. Hence it follows that H is an extension of ¥, and thus BeP-ind* M
(BeP-ind M). Therefore the classes P-ind* M and P-ind M are closed
with respect to direct products. Now we prove that these classes are
closed with respect to homomorphic images. Let us assume that
BeP-ind* M (BeP-ind M) and that ¢ is a homomorphism of B onto C.
Let ¥ = {¥,, ¢ < a} be a system of mappings of M into C. Let us denote
by x = {x., ¢ < a} a system of mappings of M into B such that ¥ = q-y,
i. e. Y, = qx4, for 0 < a. Let H be a system of P-mappings of M into B
being an extension of y. Then, by theorem (2.1), the system ¢-H is a
system of P-mappings of M into C which is obviously an extension of 7,
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and thus CeP-ind* M (CeP-ind M). This completes the proof of Theo-
rem 8.
From Theorem 2 results

(2.8) If P is a proper Ppg(p,, 0 < a)-family of basic mapping-formulas,
then a subset M of a quasi-algebra A of the type F is B-P-inde-
pendent, where B is any quasi-algebra of the type G, if and only
if M is P(B)-independent (t. e. independent with respect to ordinary
homomorphisms), where P(B) is the P-product system over B.

Proof. Assume that M is P(B)-independent. Let ¥ = {y,, ¢ < a}
be any system of mappings of M into B. The direct product - of all
mappings v,, 0 < a, is a mapping of M into P(B) = B°. Let % be the
homomorphism of M into P(B) being an extension of h. By Theorem 2
(see also (2.3) and (2.2)) the system H = Pr-h = {p,k, ¢ < a}, where p,
is the natural projection of P(B) = B® onto B, = B, is a system of
P-mappings of M into B which is obviously an extension of ¥. Thus M
is B-P-independent. Conversely, assume that M is B-P-independent.
Let v be any mapping of M into P(B) = B°. The system Pr-yp = {p,v,
o < a}, where p, is the natural projection of P(B) = B® onto B, = B,
is a system of mappings of M into B. Let H = {h,, 0 < a} be the system
of P-mappings of M into B being an extension of the system Pr-y and
let » be the direct product of all mappings h,, ¢ < a. By Theorem 2,
h is a homomorphism of M into P(B). Obviously, & is an extension of .
Therefore M is P(B)-independent. This completes the proof of theorem
(2.8).

From (2.8) results
(2.9) If M is an absolutely free of the type F subset of an algebra A of

the type F (i. e. M is D-independent for all algebras D of the type F,
or, in other words, every mapping of M into D can be extended to
a homomorphism of M into D), then M is B-P-independent for each
algebra B of the type G and for each proper Prg(p,, o < a)-family
P of basic mapping-formulas.

Proof. The P-product system P(B) over any algebra B of the type @
is an algebra of the type F, and therefore M is P(B)-independent. Hence,
by (2.8), M is B-P-independent. Thus theorem (2.9) is proved.

In the sequel we shall consider the notion of P-independence with
respect to an arbitrary proper Prg(9,, 0 < a)-family P of basic mapping-
-formulas only. The algebra F* = Free(¥F, X) of F-terms as a Peano-
algebra is, by Theorem 1, absolutely free of the type F freely generated
by X and thus theorem (2.9) may be applied to this algebra. By theorem
(2.9), X is a set of generators for F* such that X is B-P-independent for
any algebra B of the type @, in particular X is G,-P-independent, where
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G, = Free(G, dXx X) is the algebra of G-mapping-terms. Let us remind
that @ = {p,, 0 < a} and X = {x;, £ < B}, and let us consider the
mappings %, 0 < a, of X into G, such that i,(x;) = @,(@) = {@s, T:)
for all 0 < a and & < B. The system I = {i,, 0 < a} can be, by (2.9),
extended to a system J, = {j,, 0 < a} of P-mappings of the algebra F*
into the algebra Gg. Hence we have j,(#:) = ¢,(x;) for all ¢ < a and
& < pB. For any u < a and any F-term teF*, we put P(p,, 1) = j.(7).
Let us observe that
(2.10) For any system H = {h,, 0 < a} of P-mappings of a quasi-
algebra A of the type F into a quasi-algebra B of the type G, and
for every F-term v = 1(xey £ < p), we have

hu(TA(aer §< 9)) = P(@u, T)B(ha(“e), c<a,é< Q)
provided that T4 is defined for (agy & < o) and p < a.
Proof. At first we remark that

(6) 7oy ((bosy 0 < @), £ < g) = (P(pu; T)p(bag, 0 < @, & < 0), p < q

provided that P(B) is the P-product system over B, and that 7pg, is de-
fined for ((bs, o < a), & < ¢). Indeed, by the definition of partial
operations defined by terms in quasi-algebras, we have

Tem)((boey 0 < ), £ < o) = ¥(7),

where 'y is the homomorphism of F* into P(B) being an extension of
a mapping y: X — P(B) such that y(o;) = (b, 0 < a) for & < p. Let us
denote by %’ the homomorphism of Gy into B, which is an extension of
a mapping y’: ®x X — B such that y'(p,(2;)) = b, for ¢ < a and & < p.
Let Pr = {p,, 0 < a} be the system of natural projections p, of P(B)
= B® onto B, = B. The systems H = Pr-y = {p,p,06 <a} and H’
=y Jp = {¥'j,, 0 < a}, are, by theorems (2.3), (2.2) and (2.1), systems
of P-mappings of F* into B which are the same on the set X of generators
for F*. Hence, by (2.4), H = H', i. e. we have p,y = y'-j, forall u < a,
and thus for 7eF* we obtain p,y(r) = v'j.(r). Then p,7pgE(y) =
V' (P(p,, 7)) = P(p,, 7)g(y’) for all 4 < a, whence

pl‘(tP(Bi((bdf’ c<a)éf< 9)) = P(@u; 1)glbosy 0 < a, & < p)
for all u <a.

Hence we obtain relation (6). By Theorem 2, the direct product A
of hyy 0 < a, is a homomorphism of A into P(B). Hence, using (6), we
have

h(ta(ag, & < Q)) == TP(B)(h(“e)y §< Q) = TP(B)((ha("'e)’ o< a), §< Q)

= (P(¢," T)B(ha(ae), c << a, £ < e)’ u < a).
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But, by the definition of. &,

h(za(ae, & < o) = (hu(talas, £ < o)), n < a)
and thus
h#(TA(a’sv §< Q)) = P(@,, 7)B(ho(a'e)y o<a,é< 9)-

Theorem (2.10) is proved.

Now we prove

THEOREM 9. A subset M of a quasi-algebra A of the type F is B-P-
independent, where B is an algebra of the type G and P is any proper
Ppa(psy 0 < a)-family of basic mapping-formulas, if and only if each
equality ©q4(mg, £ < o) = F4(mg, & < @), where m; are different elements
in M and v and & are F-terms, implies the following equalities : P(gp,, T)p
= P(pu, P)p, u < a (resp. the G-mapping-equations ' P(p,, 1) = P(p,, #) |
for u < a are valid in B).

Proof. Let us assume that M is B-P-independent. Let (b,:, ¢ < a,
¢ < o) be any aX p-matrix over B and let y,, ¢ < a, be mappings of M
into B such that y,(m;) = b, for 0 < a and & < p. The system ¥
= {y,, ¢ < a} can be extended to a system ¥ = {y,, ¢ < a} of P-map-
pings of A into B. But, by (2.10), we have

Vu(ta(mg, & < 0)) = P(g,, )p(vs(me), 0 < a, £ <
= P(‘Pln T)p(besy 0 < a, § < @)
and also

%«("A('mn &< 9)) = Ey(ﬁA(mEa E< 9)) = P(pu, F)p(bee, 0 < a, & < 0).

Hence P(p,, 7)p(bet, 0 < a, £ < @) = P(p,; O)p(beey 0 < a, £ < @), i e.
P(p,, 1)g = P(p,, 3)p for all 4 < a. This completes the proof of necessity.
Now we give a proof of sufficiency. Let Fy = Free(F, M) be the Peano-
algebra of the type F' generated by M, i. e. the absolutely free algebra
of the type F freely generated by the set M. Let ¥ = {y,, 0 < a} be any
system of mappings of M into B. By theorem (2.9), the system ¥ can be
extended to a system ¥ = {y,, 0 < a} of P-mappings of Fy into B. Now
let us consider for meM the identity mapping m — m. By Theorem 1,
there exists a partial-homomorphism y of F; into A (onto the subquasi-
algebra M of A generated by M, see (1.2)) such that y(m) = m for
meM. Let us observe that

(1) if 7(w) = y(w'), then ¥, (w) = y, (') for all 4 < a.

Indeed, let y be defined for w and w' and let y(w) = y(w’'). The
elements w and w’ can be represented in the form

w = -::F.(me, §<eo) and w = 19F*(m5, & < o).
0 0
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Then y(w) = 74(m, & < @) and z(w') = d4(m;, & < ). Since y(w)
= x(w’), we have the equality z4(m:, & < ¢) = &,4(m;, & < 0). Hence,
by the supposition, P(g,, v)g = P(p,, ¥3)g for all 4 < a. But, by (2.10),
we have

WW) = @u("F;(’me’ &< Q)) = P(@,, 7)B(Eo(mf)’ oc<a,é< 9)

= P(‘Pw 0)8('?::("”’6)7 o< ad< 9) = E,u(ﬁl,.;(me’ §< 9))
=y,(w) foral u<a.

Hence lemma (7) is proved. From (7) it follows that the mappings h,:
M — B such that h,(a) = y,(w), where a = y(w), may be considered
as functions on M, where M is the subquasi-algebra of A generated by M.
It may be verified that the system H = {h,, 0 < a} i8 a system of
P-mappings of M into B being extension of system ¥, i.e. the set M
is B-P-independent. This completes the proof of sufficiency and thus
also the proof of Theorem 9.

Let A and B be any classes of quasi-algebras of the type F and G.
And let P be any proper Prg(@,;, 0 < a)-family of basic mapping-formulas.
A subset M of a quasi-algebra A of the type F is called:

1. B-P-free it M is B-P-independent for all B33,

2. U-free if M is B-independent for all Be.

The family P is said to be:
3. (A, B)-universal if every U-free set is B-P-free,
4. (A, B)-constructor if P(B)eA for all BeB, where P(B) is the

P-product system over B.
Let us observe that

(211) If P is (A, B)-constructor, then P is (A, B)-universal.

Proof. Let a set M be U-free and let BeB. Since P(B)e2, then
the set M is P(B)-independent and thus, by (2.8), M is B-P-independent,
i.e. M is B-P-free. This completes the proof of (2.11). )

Now let us assume that 2 is an equationally definable class of
algebras of the type F. Then we have the following theorems.

(2.12) The family P is (A, B)-universal if and only if P is (U, B)-
constructor.

Proof. Assume that P is (A, B)-universal. Let 7(x, £ < o)
= J(x¢, £ < 0) | be an arbitrary F-equation valid in 2 (i.e. valid in
each algebra in ) and let BeB. Let ((b,, 0 < a), £ < g} be any elements
in P(B), which is the P-product system over B. Let us denote by W
= Free(2, M) the U-free algebra freely generated by M = (m,, & < o),
where m, are different elements. Since P is (2, B)-universal, M is
B-P-free. Hence there exists a system H = {h,, 0 < a} of P-mappings
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of W into B such that &,(m;) = b, for 0 < a and & < p. By Theorem 2,
the direct product % of all h,, ¢ < a, i8 a homomorphism of W into P(B).
Hence we have

o) ((Bot) 0 < @), € < ) = Tpg)((hs(me), 0 < a), & < o)
= tpmy(h(me), & < o) = h{vy(me, £ < @)) = h(Dy(me, & < o))
= Dpy(h(me); & < o) = dpuy((ho(me), 0 < a), £ < o)
= Spm)lboe, 0 < 0), £ < 9},

i. e. the F-equation 't = &1 is valid in P(B) and thus P(B)e2. The
converse implication follows from (2.11) and thus theorem (2.12) is
proved. Let us assume that 2 and B are any equationally definable
classes of algebras of the type F' and G respectively. Then we have

(2.13) The family P is (A, B)-universal (resp. (A, B)-constructor) if
and only if, for all F-terms © and &, the validity of the F-equation
Ty =& in the class A implies the validity of G-mapping-equa-
tions TP(@,, 1) = P(p,, 3) in the class B for all u < a.

Proof. This follows from Theorem 9.

Let us denote by B(P, ) the class of all BeB such that the G-
mapping-equations " P(g,, r) = P(g,, #) |, u < a, are valid in B provided
the F-equation 't = & 1is valid in the class Y. By B () will be denoted
the intersection of all classes B (P, A), where P is proper Ppg(p,, 0 < a)-
family of basic mapping-formulas.

(2.14)  For every pair (A, B) and every proper Ppg(p,, ¢ < a)-family P
of basic mapping-formulas there exists a maximal subclass
Bp = B such that P is (A, Bp)-universal (resp. (U, Bp)-construc-
tor).

Proof. The class Bp = B (P, A) fulfils, by (2.13), the thesis of (2.14).
The pair (A, B) is said to be universal (resp. constructor) if for every
proper Prg(p,, 0 < a)-family P of basic mapping-formulas P is (U, B)-
universal (resp. (%, B)-constructor).
(2.15)  For every pair (A, B) there ewists a maximal subclass B, =« B
such that the pair (A, B,) 18 universal (resp. constructor).
Proof. The class B, = B(A) fulfils the thesis of (2.15).
Let us assume that F = G. Then we have

(2.16)  For every equationally definable class 2 of algebras of the type F
there exists a maximal subclass A, = A such that the pair (2Uy,, 2Uy,)
18 universal (resp. constructor).

Proof. The class 2, = () fulfils the thesis of (2.16), since we
have A, = U, (A,).
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