FASC. 1

ON MAPPINGS BETWEEN QUASI-ALGEBRAS

 \mathbf{BY}

J. SŁOMIŃSKI (TORUŃ)

A theory of mappings between quasi-algebras is a generalization of that of homomorphisms. A homomorphism between quasi-algebras of the type F is any mapping φ which fulfils the following basic mapping formulas:

(1)
$$\varphi(f(x, \xi < n(f))) = f(\varphi(x_{\xi}), \xi < n(f)),$$

where $f \in F$ is an operator symbol. The mappings φ which satisfy the basic mapping-formulas of the form

(2)
$$\varphi(f(x_{\xi}, \, \xi < n(f))) = \tau(\varphi(x_{\xi}), \, \xi < n(f)),$$

where $f \in F$ and τ is a G-term belonging to P(f), are P-homomorphisms between quasi-algebras of the type F and of the type G. For a theory of P-homomorphisms see my paper [4].

The general basic-mapping-formula has the following form:

(3)
$$\varphi_{\mu}(f(x_{\xi}, \, \xi < n(f))) = \tau(\varphi_{\sigma}(x_{\xi}), \, \sigma < \alpha, \, \xi < n(f)),$$

where $\mu < a$, f is an operator symbol in F, and τ is a G-mapping-term.

The systems φ_{σ} , $\sigma < a$, of mappings of quasi-algebras of the type F into quasi-algebras of the type G, which satisfy a family P of general basic mapping-formulas, are called systems of P-mappings. A theory of systems of P-mappings between algebras with finitary operations is given by Fujiwara [1]. In this paper we give a generalization of this theory not only for arbitrary algebras but also for quasi-algebras with infinitary partial operations. Moreover, we obtain the existence theorems on \Im -free systems of \Im -P-mappings and \Im -P-direct sum of quasi-algebras for arbitrary quasi-primitive class \Im of quasi-algebras, and for any family P of general basic mapping-formulas. We also consider the notion of independence with respect to any family P of general basic mapping-formulas, i. e. P-independence, and we obtain some results similar to those of Marczewski [2] and Schmidt [3].

§ 1. Quasi-algebras. Let k be any ordinal number and let A be any set. By a k-ary partial operation in A we understand any mapping f of

a subset of the set A^k (of all sequences of the type k in A) into A. The value of k-ary partial operation f in A for a sequence $(a_{\xi} < k)$ — if it exists — will be denoted by $f(a_{\xi}, \xi < k)$. The partial operations defined on the whole set A^k are called k-ary operations in A. Let $G = \{g, \ldots\}$ be any set of operator symbols. By n(g), where $g \in G$, will be denoted the rank of the operator symbol g, i. e. the ordinal number n for which g is n-ary. Any system

$$A = \langle A, (g_A, g \in G) \rangle,$$

where A is a set and g_A is an n(g)-ary partial operation in A for all $g \in G$, is called a *quasi-algebra of the type* G. If, moreover, in the system A a g_A is an operation in A for $g \in G$, then A is said to be an algebra of the type G. In the sequel the quasi-algebras will be denoted by A, B, C, \ldots and their sets by A, B, C, \ldots

A subset B of a set A is called closed with respect to a k-ary partial operation f in A provided that, for all sequences $(b_{\xi}, \xi < k)$ belonging to B^k , if f is defined for $(b_{\xi}, \xi < k)$ then the value $f(b_{\xi}, \xi < k)$ belongs to B. Let $A = \langle A, (g_A, g \in G) \rangle$ be any quasi-algebra of the type G and let B be a subset of A closed with respect to g_A for all $g \in G$. Then the subset B and also the system $B = \langle B, (g_B, g \in G) \rangle$ where $g_B = g_A | B$, is called a subquasi-algebra of A. Any intersection of subquasi-algebras of A is also a subquasi-algebra of A. Thus for any subset M of A there exists the least subquasi-algebra \overline{M} of A containing M called generated by M. If $\overline{M} = A$, then M is said to be a set of generators for A. Let $A = \langle A, (g_A, g \in G) \rangle$ and $B = \langle B, (g_B, g \in G) \rangle$ be two quasi-algebras of the type G. A mapping h of A into B is said to be a homomorphism of A into B provided that for all $g \in G$ and all sequences $(a_{\xi}, \xi < n(g)) \in A^{n(g)}$ if g_A is defined for $(a_{\xi}, \xi < n(g))$, then g_B is defined for the sequence $(h(a_{\xi}), \xi < n(g))$, and, moreover, that we have

$$h(g_A(a_\xi, \xi < n(g))) = -g_B(h(a_\xi), \xi < n(g)).$$

A homomorphism h of A into B is called *strong* provided that, for all $g \in G$ and all sequences $(a_{\xi}, \xi < n(g)) \in A^{n(g)}$, if g_B is defined for $(h(a_{\xi}), \xi < n(g))$, then there are elements $a'_{\xi} \in A$, $\xi < n(g)$ such that $h(a'_{\xi}) = h(a_{\xi})$ for $\xi < n(g)$, and that g_A is defined for $(a'_{\xi}, \xi < n(g))$. The one-to-one homomorphisms are *isomorphisms*. Homomorphisms between algebras are always strong.

Let T be any set and let $A_t = \langle A_t, (g_{A_t}, g \in G) \rangle$, for $t \in T$, be any quasi-algebra of the type G. Let us denote by $A = \underset{t \in T}{\mathbf{P}} A_t$ and $A' = \underset{t \in T}{\mathbf{S}} A_t$ the cartesian product and direct sum of sets A_t , i. e. A is the set of all mappings $\varphi \colon T \to \bigcup_{t \in T} A_t$ with $\varphi(t) \in A_t$ for $t \in T$, and $A' = \{(t, a) \colon t \in T, \}$

 $a \in A_t$ is the set of all pairs (t, a), where $t \in T$ and $a \in A_t$. The quasi-algebra $A = \langle A, (g_A, g \in G) \rangle$, where g_A , for $g \in G$, is an n(g)-ary partial operation in A such that g_A is defined for $(\varphi_{\xi}, \xi < n(g))$ if and only if, for all $t \in T$, g_{A_t} is defined for $(\varphi_{\xi}(t), \xi < n(g))$, and in which we have

$$g_{A}(\varphi_{\xi}, \, \xi < n(g)) = \varphi$$
 with $\varphi(t) = g_{At}(\varphi_{\xi}(t), \, \xi < n(g))$

for all $t \in T$, is called the direct product of quasi-algebras A_t , $t \in T$. The quasi-algebra $A' = \langle A', (g_{A'}, g \in G) \rangle$, where $g_{A'}$, for $g \in G$, is defined for a sequence $((t_{\xi}, a_{\xi}), \xi < n(g))$ if and only if there exists an element $t_0 \in T$ such that $(t_{\xi}, a_{\xi}) = (t_0, a_{\xi}), \xi < n(g)$, and where g_{At_0} is defined for $(a_{\xi}, \xi < n(g))$, and in which, moreover, we have

$$g_{A'}((t_{\xi}, a_{\xi}), \xi < n(g)) = (t_{0}, g_{A_{\xi_{0}}}(a_{\xi}, \xi < n(g))),$$

is called the direct sum of quasi-algebras A_t , $t \in T$. The direct product and direct sum of quasi-algebras A_t , $t \in T$, will be denoted by $\underset{t \in T}{P} A_t$ and $\underset{t \in T}{S} A_t$ respectively. Let p_t be the natural projection of A onto A_t (i. e. $p_t(\varphi) = \varphi(t)$ for $\varphi \in A$) and let i_t be the natural injection of A_t into A (i. e. $i_t(a) = (t, a)$). Then p_t is a homomorphism of $A = \underset{t \in T}{P} A_t$ onto A_t and i_t is an isomorphism of A_t into $A' = \underset{t \in T}{S} A_t$. Moreover, i_t is a strong isomorphism of A_t onto $i_t(A_t)$.

If h is a homomorphism of a quasi-algebra A into a quasi-algebra B, then h considered as a subset of $A \times B$ is a subquasi-algebra of the direct product $A \times B$ of A and B such that

(*) for all $a \in A$ there exists one and only one element $b \in B$ with $\langle a, b \rangle \in h$.

The converse is not always true. Any subquasi-algebra h of $A \times B$ which has the property (*) is said to be a full-homomorphism of A into B. Every homomorphism h of A into B is a full-homomorphism of A into B, but a full-homomorphism of A into B is not always a homomorphism of A and B. It is easy to verify that for algebras the notions of homomorphism, strong homomorphism and full-homomorphism are identical. The subquasi-algebras h of the direct product $A \times B$ of quasi-algebras A and B such that

(**) for all $a \in A$ there exists at most one element $b \in B$ with $\langle a, b \rangle \in h$

are called partial-homomorphisms of A into B. Let h be a partial-homomorphism of A into B. Then the sets $p_1(h)$ and $p_2(h)$, where p_1 and p_2 are the natural projections of $A \times B$ onto A and B, are said to be the domain and the image of h. If $\langle a, b \rangle \in h$, then $a \in p_1(h)$, $b \in p_2(h)$, and

the element b will be denoted by h(a). If the domain of h is the whole set A, then h is a full-homomorphism of A and B. Now we observe that

- (1.1) If A and B are algebras and h is a partial-homomorphism of A into B such that a set of generators for A is contained in the domain of h, then h is a full-homomorphism and also a homomorphism of A into B.
- (1.2) If A is an algebra and h is a partial-homomorphism of A into B such that the image of h contains a set of generators for B, then h is a partial-homomorphism of A onto B.

Now we shall give a definition of Peano-algebra. An algebra

$$G^* = \langle G^*, (g_{G^*}, g \in G) \rangle$$

of the type G is said to be a *Peano-algebra* of the type G generated by a set Y if it has the following properties:

(1.a) the elements in Y are not values of the operations g_{G^*} , $g \in G$, for elements in G^* ,

(1.b) for all $g, g' \in G$, and all sequences $(w_{\xi}, \xi < n(g))$ and $(w'_{\xi}, \xi < n(g'))$ of elements in G^* the relation

$$g_{G^{\bullet}}(w_{\xi}, \, \xi < n(g)) = g'_{G^{\bullet}}(w'_{\xi}, \, \xi < n(g'))$$

implies g = g' and $w_{\xi} = w'_{\xi}$ for $\xi < n(g) = n(g')$,

(1.c) the set Y generates the algebra G^* .

There are Peano-algebras of the type G generated by arbitrary sets. For a construction of Peano-algebras see my paper [4]. The Peano-algebras have an important property which is given in the following theorem:

THEOREM 1. Let $G^* = \langle G^*, (g_{G^*}, g \in G) \rangle$ be a Peano-algebra of the type G generated by a set Y and let $A = \langle A, (g_A, g \in G) \rangle$ be an arbitrary quasi-algebra of the type G. Then for every mapping $\psi \colon Y \to A$ the subquasi-algebra $\overline{\psi}$ of $G^* \times A$ generated by ψ is a partial-homomorphism of G^* into A. If A is an algebra, then $\overline{\psi}$ is a homomorphism of G^* into A.

For a proof of Theorem 1 see my paper [4] (proof of theorem (2.7)). From Theorem 1 it follows that the Peano-algebra of the type G generated by a set Y is uniquely determined up to isomomorphisms by the cardinal number of set Y, and since it is the absolutely free algebra of the type G freely generated by Y, it is denoted by Free (G, Y). By virtue of Theorem 1, Peano-algebra of the type G may be considered as an algebra of G-terms. Let $G^* = \operatorname{Free}(G, X)$ be a fixed Peano-algebra of the type G generated by the set $X = (x_0, x_1, \ldots, x_{\xi}, \ldots, \xi < \beta)$ composed of different elements x_{ξ} . The elements in G^* are called G-terms, the elements in X may be considered as individuum-variables. If a G-term τ

belongs to the subalgebra of G^* generated by variables $(x_0, x_1, \ldots, x_{\xi},$..., $\xi < \varrho$), then we shall write $\tau = \tau(x_{\xi}, \, \xi < \varrho)$ (1). Let $\tau = \tau(x_{\xi}, \, \xi < \varrho)$ be any G-term and let $A = \langle A, (g_A, g \in G) \rangle$ be an arbitrary quasi-algebra of the type G. Then the G-term τ defines in the set A a ϱ -ary partial operation. We define τ_A as follows. Let $(a_{\xi}, \, \xi < \varrho)$ be a sequence of the type ϱ in A and let ψ be a mapping of X into A such that $\psi(x_{\xi}) = a_{\xi}$ for $\xi < \varrho$. By Theorem 1, the subquasi-algebra $\bar{\psi}$ of $G^* \times A$ generated by ψ is a partial-homomorphism of G^* into A. The partial operation τ_A is defined for $(a_{\xi}, \, \xi < \varrho)$ if and only if the G-term τ belongs to the domain of $\overline{\psi}$. Moreover, we put $\tau_A(a_{\xi}, \, \xi < \varrho) = \overline{\psi}(\tau)$. The partial operation τ_A defined above is said to be defined by G-term τ in quasi-algebra A. If A is an algebra, then τ_A is an operation. The partial operation τ_A may be also considered as one of the type X, i. e. τ_A is defined for $\psi \in A^X$ if and only if τ belongs to the domain of $\overline{\psi}$ and if, moreover, we have $\tau_A(\psi)$ $= \bar{\psi}(\tau)$. The pairs $\langle \tau, \vartheta \rangle$, where τ and ϑ are G-terms, are called G-equations. The G-equation $\langle \tau, \vartheta \rangle$ will be also denoted by $\lceil \tau = \vartheta \rceil$. A G-equation $\lceil \tau = \vartheta \rceil$ is said to be valid in a quasi-algebra A of the type G if $au_A = \vartheta_A$, i. e. if for all $\psi \in A^X$ we have $\overline{\psi}(\tau) = \overline{\psi}(\vartheta)$ provided that τ_A and ϑ_A are defined for ψ . The set of all G-equations which are valid in a quasi-algebra A of the type G will be denoted by E(A). Let E_0 be a set of G-equations. By $G(E_0)$ will be denoted the class of all quasi-algebras Aof the type G such that $E_0 \subset E(A)$. The classes of the form $G(E_0)$ are called equationally definable.

§ 2. A theory of P-mappings between quasi-algebras. Let $\Phi = (\varphi_{\sigma}, \sigma < \alpha)$ and $X = (x_{\xi}, \xi < \beta)$ be arbitrary sets. The elements in Φ and in X may be considered as mapping and individuum-variables. The pairs $\langle \varphi_{\sigma}, x_{\xi} \rangle \in \Phi \times X$ will be also denoted by $\varphi_{\sigma}(x_{\xi})$. Let us denote by $G_{\sigma}^{*} = \operatorname{Free}(G, \Phi \times X)$ the Peano-algebra of the type G generated by the set $\Phi \times X$. The elements in the algebra G_{σ}^{*} are called G-mapping-terms. If a G-mapping-term τ belongs to the subalgebra of G_{σ}^{*} generated by elements $\varphi_{\sigma}(x_{\xi})$, $\sigma < \alpha_{1}$, $\xi < \beta_{1}$, then we shall write

(***)
$$\tau = \tau(\varphi_{\sigma}(x_{\xi}), \, \sigma < \alpha_{1}, \, \xi < \beta_{1}).$$

Let $B = \langle B, (g_B, g \in G) \rangle$ be an arbitrary quasi-algebra of the type G and let τ be any G-mapping-term which fulfils the relation (***). Then the G-mapping-term τ defines in B a partial operation τ_B , the domain of which is a set of some $a_1 \times \beta_1$ -matrices over B. Let $(b_{\sigma\xi}, \sigma < a_1, \xi < \beta_1)$ be any $a_1 \times \beta_1$ -matrix over set B and let $\psi \colon \Phi \times X \to B$ be a mapping

⁽¹⁾ Let us observe that the meaning of the notation $\tau = \tau(x_{\xi}, \xi < \varrho)$ given in this paper is different from that in my paper [4]. In [4] the relation $\tau = \tau(x_{\xi}, \xi < \varrho)$ means that the set $(x_{\xi}, \xi < \varrho)$ is the support of the term τ . Obviously, if the relation $\tau = \tau(x_{\xi}, \xi < \varrho)$ holds in the sense of [4], then the relation $\tau = \tau(x_{\xi}, \xi < \varrho)$ holds also in the sense of this paper, but the converse is not true.

such that $\varphi_{\sigma}(x_{\xi}) = b_{\sigma\xi}$ for $\sigma < \alpha_1, \, \xi < \beta_1$. By Theorem 1, the subquasialgebra $\overline{\psi}$ of $G_{\sigma}^* \times B$ genereted by ψ is a partial-homomorphism of G_{σ}^* into B. The partial operation τ_B is defined for $(b_{\sigma\xi}, \, \sigma < \alpha_1, \, \xi < \beta_1)$ if and only if τ belongs to the domain of $\overline{\psi}$. Moreover, we put

$$\tau_{\mathbf{R}}(b_{\sigma\xi}, \, \sigma < a_1, \, \xi < \beta_1) = \overline{\psi}(\tau).$$

The partial operation τ_B defined above is called defined in quasialgebra B by G-mapping-term τ . The partial operation τ_B may be also considered as one of the type $\Phi \times X$, i. e. for all mapping ψ of $\Phi \times X$ into B, τ_B is defined for ψ if and only if τ belongs to the domain of $\overline{\psi}$, and if, moreover, we have $\tau_B(\psi) = \overline{\psi}(\tau)$. The pairs $\langle \tau, \vartheta \rangle$, where τ and ϑ are G-mapping-terms, are called G-mapping-equations. A G-mapping-equation $\langle \tau, \vartheta \rangle$ will be also denoted by $\Gamma \tau = \vartheta \Gamma$. A G-mapping-equation $\Gamma \tau = \vartheta \Gamma$ is said to be valid in a quasi-algebra B of the type G, if $\tau_B = \vartheta_B$, i. e. if for all mappings ψ of $\Phi \times X$ into B we have $\overline{\psi}(\tau) = \overline{\psi}(\vartheta)$ provided that τ_B and ϑ_B are defined for ψ .

Now let us consider two sets $F = \{f, ...\}$ and $G = \{g, ...\}$ of operator symbols. The elements of the Peano-algebra $F^* = \text{Free}(F, X)$ of the type F generated by X we shall call F-terms and the pairs of F-terms we shall call F-equations.

Now we shall give a definition of basic mapping-formulas. An identity of the form

(i)
$$\varphi_{\mu}(f(x_{\xi}, \xi < n(f))) = \tau(\varphi_{\sigma}(x_{\xi}), \sigma < \alpha, \xi < n(f)),$$

where $\mu < a$, $f \in F$, and τ is a G-mapping-term which fulfils the relation (***) for $a_1 = a$, and $\beta_1 = n(f)$, is called a basic mapping-formula (of φ_{μ} concerning f).

Let $A = \langle A, (f_A, f \in F) \rangle$ and $B = \langle B, (g_B, g \in G) \rangle$ be two quasialgebras of the type F and G, respectively, and let $H = \{h_\sigma, \sigma < a\}$ be a system of mappings h_σ of A into B. We say that the system H of mappings of A into B fulfils the basic mapping-formula (i) provided that for every sequence $(a_\xi, \xi < n(f)) \in A^{n(f)}$, if f_A is defined for $(a_\xi, \xi < n(f))$, then τ_B is defined for $(h_\sigma(a_\xi), \sigma < \alpha, \xi < n(f))$ and that, moreover, we have

$$h_{\mu}(f_{A}(a_{\xi}, \, \xi < n(f))) = \tau_{B}(h_{\sigma}(a_{\xi}), \, \sigma < \alpha, \, \xi < n(f)).$$

Let P be any family of basic mapping-formulas (see (i)). Then P is said to be a $P_{F,G}$ (φ_{σ} , $\sigma < \alpha$)-family of basic mapping-formulas. Let P be any $P_{F,G}(\varphi_{\sigma}, \sigma < \alpha)$ -family of basic mapping-formulas and let A and B be any quasi-algebras of the type F and G. A system $H = \{h_{\sigma}, \sigma < \alpha\}$ of mappings of A into B is called a system of P-mappings of quasi-algebra A into quasi-algebra B if system H fulfils every basic mapping-formula (i) belonging to P. Now we observe that

(2.1) If $H = \{h_{\sigma}, \sigma < a\}$ is a system of P-mappings of a quasi-algebra A of the type F into a quasi-algebra B of the type G, and q is a homomorphism of B into a quasi-algebra C of the type G, then the system $q \cdot H = \{q \cdot h_{\sigma}, \sigma < a\}$ is a system of P-mappings of A into C.

Proof. Let (i) be any basic mapping-formula belonging to P. We have

$$qh_{\mu}(f_{\mathbf{A}}(a_{\xi}, \, \xi < n(f))) = q(\tau_{\mathbf{B}}(h_{\sigma}(a_{\xi}), \, \sigma < \alpha, \, \xi < n(f)))$$

= $\tau_{\mathbf{C}}(qh_{\sigma}(a_{\xi}), \, \sigma < \alpha, \, \xi < n(f)),$

provided that f_A is defined for $(a_{\xi}, \xi < n(f))$, i. e. H fulfils the basic mapping-formula (i). Thus $q \cdot H$ is a system of P-mappings of A into C.

(2.2) If q is a homomorphism of a quasi-algebra A of the type F into a quasi-algebra A' of the type F, and $H = \{h_{\sigma}, \sigma < \alpha\}$ is a system of P-mappings of A' into a quasi-algebra B of the type G, then the system $H \cdot q = \{h_{\sigma}q, \sigma < \alpha\}$ is a system of P-mappings of A into B.

Proof. Let (i) be any basic mapping-formula belonging to P. We have

$$egin{aligned} h_{\sigma}ig(qig(f_{m{A}}(a_{\xi},\,\xi < n(f)ig)ig) &= h_{\sigma}ig(f_{m{A'}}ig(q(a_{\xi}),\,\xi < n(f)ig)ig) \ &= au_{m{B}}ig(h_{\sigma}ig(q(a_{\xi})ig),\sigma < a,\,\xi < n(f)ig) &= au_{m{B}}ig(h_{\sigma}q(a_{\xi}),\,\sigma < a,\,\xi < n(f)ig) \end{aligned}$$

provided that f_A is defined for $(a_{\xi}, \xi < n(f))$, i. e. the system $H \cdot q$ fulfils the basic mapping-formula (i). Thus $H \cdot q$ is a system of P-mappings of A into B, and theorem (2.2) is proved.

Let P be any $P_{F,G}(\varphi_{\sigma}, \sigma < a)$ -family of basic mapping-formulas and let, for each pair $(\varphi_{\mu}, f) \in \Phi \times F$, $P_{\varphi_{\mu}, f}$ be the set of basic mapping-formulas of φ_{μ} concerning f, which is an element of P. The family P is said to be proper if for each pair $(\varphi_{\mu}, f) \in \Phi \times F$, $P_{\varphi_{\mu}, f}$ is a one-element set. If P is a proper $P_{F,G}(\varphi_{\sigma}, \sigma < a)$ -family of basic mapping-formulas, then for any $\mu < a$ and any $f \in F$ there exists one and only one basic mapping-formula (i) in P of φ_{μ} concerning f. In this case the G-mapping-term τ which appears in (i) and which is uniquely determined will be denoted by $P(\varphi_{\mu}, f)$. Hence the basic mapping-formulas in the proper $P_{F,G}(\varphi_{\sigma}, \sigma < a)$ -family P have the following form:

$$(i') \varphi_{\mu}(f(x_{\xi}, \, \xi < n(f))) = P(\varphi_{\mu}, f)(\varphi_{\sigma}(x_{\xi}), \, \sigma < \alpha, \, \xi < n(f)),$$

where $\mu < \alpha$, $f \in F$ and $P(\varphi_{\mu}, f)$ is a G-mapping-term belonging to the subalgebra of G_{σ}^{*} generated by $(\varphi_{\sigma}(x_{\xi}), \sigma < \alpha, \xi < n(f))$.

Let P be any proper $P_{F,G}(\varphi_{\sigma}, \sigma < \alpha)$ -family of basic mapping-formulas and let $\mathbf{B} = \langle B, (g_{\mathbf{B}}, g \in G) \rangle$ be an arbitrary quasi-algebra of the type G. We define a quasi-algebra $P(\mathbf{B})$ of the type F, which will be

called the P-product system over B, as follows. At first let us consider the set $P(B) = B^a$ of all sequences $(b_{\xi}, \xi < a)$ of the type a in B. In the set $P(B) = B^a$ we introduce the n(f)-ary partial operations $f_{P(B)}$ in the following way. The partial operation $f_{P(B)}$ is defined for a sequence $((b_{\sigma\xi}, \sigma < a), \xi < n(f))$ of the type n(f) in B^a if and only if $P(\varphi_{\mu}, f)_B$ is defined for the $a \times n(f)$ -matrix $(b_{\sigma\xi}, \sigma < a, \xi < n(f))$ for all $\mu < a$. Moreover, we put

$$(4) \quad f_{P(\mathbf{B})}((b_{\sigma\xi}, \, \sigma < \alpha), \, \xi < n(f)) = (P(\varphi_{\mu}, f)_{\mathbf{B}}(b_{\sigma\xi}, \, \sigma < \alpha, \, \xi < n(f)), \, \mu < \alpha).$$

The quasi-algebra $P(\mathbf{B}) = \langle P(B), (f_{P(\mathbf{B})}, f \in F) \rangle$ of the type F is said to be the P-product system over \mathbf{B} . Let us denote by p_{σ} , $\sigma < \alpha$, the natural projections of $P(B) = B^{\alpha}$ onto $B_{\sigma} = B$. Now we prove

(2.3) For every proper $P_{F,G}(\varphi_{\sigma}, \sigma < \alpha)$ -family P of basic mapping-formulas and for every quasi-algebra \mathbf{B} of the type G the system $Pr = \{p_{\sigma}, \sigma < \alpha\}$ of natural projections p_{σ} of P(B) onto $B_{\sigma} = B$ is a system of P-mappings of the P-product system $P(\mathbf{B})$ over B into \mathbf{B} .

Proof. By (4), we have

$$p_{\mu} \left(f_{P(\mathbf{B})} \left((b_{\sigma \xi}, \, \sigma < \alpha), \, \xi < n(f) \right) \right)$$

$$= p_{\mu} \left(P(\varphi_{\mu}, f)_{\mathbf{B}} \left(b_{\sigma \xi}, \, \sigma < \alpha, \, \xi < n(f) \right), \, \mu < \alpha \right)$$

$$= P(\varphi_{\mu}, f)_{\mathbf{B}} \left(b_{\sigma \xi}, \, \sigma < \alpha, \, \xi < n(f) \right)$$

$$= P(\varphi_{\mu}, f)_{\mathbf{B}} \left(p_{\sigma} \left((b_{\sigma \xi}, \, \sigma < \alpha) \right), \, \sigma < \alpha, \, \xi < n(f) \right),$$

i. e. the system Pr fulfils the basic mapping-formula (i). Thus (2.3) is proved.

Now we shall show a fundamental theorem:

THEOREM 2. Let $A = \langle A, (f_A, f \in F) \rangle$ and $B = \langle B, (g_B, g \in G) \rangle$ be any quasi-algebras of the type F and G, and let P be an arbitrary proper $P_{F,G}(\varphi_{\sigma}, \sigma < a)$ -family of basic mapping-formulas. Then a system $H = \{h_{\sigma}, \sigma < a\}$ is a system of P-mappings of A into B if and only if the direct product h of h_{σ} , $\sigma < a$, i. e. the mapping $h: A \to P(B) = B^a$, such that

$$h(a) = (h_{\sigma}(a), \, \sigma < a) \quad \text{for} \quad a \in A,$$

is a homomorphism of A into P(B), where P(B) is the P-product system over B.

Proof. Let us suppose that h is a homomorphism of A into P(B). Then we have $h_{\sigma} = p_{\sigma}h$, where p_{σ} is the natural projection of $P(B) = B^a$ onto $B_{\sigma} = B$, for $\sigma < a$. Hence it follows that $H = Pr \cdot h$, where $Pr = \{p_{\sigma}, \sigma < a\}$. By theorem (2.3), the system Pr is a system of P-mappings of P(B) into B, and thus, by theorem (2.2), the system $H = Pr \cdot h$ is

a system of P-mappings of A into B. Conversely, assume that H is a system of P-mappings of A into B. Then we have

$$\begin{split} h\left(f_{\boldsymbol{A}}(a_{\xi},\,\xi < n(f)\right) &= \left(h_{\mu}\left(f_{\boldsymbol{A}}(a_{\xi},\,\xi < n(f)\right),\,\mu < \alpha\right) \\ &= \left(P(\varphi_{\mu},f)_{\boldsymbol{B}}\left(h_{\sigma}(a_{\xi},\,\sigma < \alpha,\,\xi < n(f),\,\mu < \alpha\right) \right. \\ &= f_{P(\boldsymbol{B})}\left(\left(h_{\sigma}(a_{\xi}),\,\sigma < \alpha\right),\,\xi < n(f)\right) = f_{P(\boldsymbol{B})}\left(h(a_{\xi}),\,\xi < n(f)\right) \end{split}$$

provided that f_A is defined for $(a_{\xi}, \xi < n(f))$, i. e. h is a homomorphism of A into P(B). Thus Theorem 2 is proved.

From Theorem 2 if follows

(2.4) Let A and B be two quasi-algebras of the type F and G and let P be any proper $P_{F,G}(\varphi_{\sigma}, \sigma < \alpha)$ -family of basic mapping-formulas. If $H = \{h_{\sigma}, \sigma < \alpha\}$ and $H' = \{h'_{\sigma}, \sigma < \alpha\}$ are two systems of P-mappings of A into B, and if H and H' are the same on a set of generators for A, then H and H' are identical, i. e. H = H'.

Proof. Let h and h' be the direct products of h_{σ} , $\sigma < a$, and h'_{σ} , $\sigma < a$, respectively. By Theorem 2, h and h' are two homomorphisms of A into P(B). But by the assumption of (2.4), h and h' are the same on a set of generators for A, and thus h = h'. Hence it follows that H = H' and theorem (2.4) is proved.

If in Theorem 2 we assume that A and B are algebras with finitary operations, then from Theorem 2 we obtain Theorem 1.1 in paper [1] of Fujiwara.

A. Direct products of P-mappings. Let P be an arbitrary $P_{F,G}(\varphi_{\sigma}, \sigma < \alpha)$ -family of basic mapping-formulas and let $H_t = \{h_{t\sigma}, \sigma < a\}$, for $t \in T$, be a system of P-mappings of a quasi-algebra $A = \langle A, (f_A, f \in F) \rangle$ of the type F into a quasi-algebra $B_t = \langle B_t, (g_{B_t}, g \in G) \rangle$ of the type G. Let $H = \{h_{\sigma}, \sigma < a\}$ be the direct product of systems H_t , $t \in T$, i. e. H is a system of mappings of A into $B = P_t$ such that, for all $\sigma < \alpha$ and for all $a \in A$, we have

$$h_{\sigma}(a) = \varphi$$
 with $\varphi(t) = h_{t\sigma}(a)$ for all $t \in T$.

The direct product H of the systems H_t , $t \in T$, of P-mappings is also a system of P-mappings. This follows from the theorem:

THEOREM 3. The direct product $H = \{h_{\sigma}, \sigma < a\}$ of the systems $H_t = \{h_{t\sigma}, \sigma < a\}$, $t \in T$, of P-mappings of a quasi-algebra A of the type F into quasi-algebra B_t , $t \in T$, of the type G is a unique system of P-mappings of A into the direct product $B = \underset{t \in T}{P} B_t$ such that $H_t = p_t \cdot H$ for $t \in T$ (i. e. $h_{t\sigma} = p_t h_{\sigma}$ for all $\sigma < a$ and all $t \in T$), where p_t is the natural projection of B onto B_t .

Colloquium XV.

Proof. Let (i) be any basic mapping-formula belonging to P. The system H fulfils the basic mapping-formula (i). Indeed, for all sequences $(a_{\xi}, \xi < n(f))$ belonging to the domain of f_A , we have $h_{\mu}(f_A(a_{\xi}, \xi < n(f))) = \varphi$ with $\varphi(t) = h_{t\mu}(f_A(a_{\xi}, \xi < n(f))) = \tau_{B_t}(h_{t\sigma}(a_{\xi}), \sigma < \alpha, \xi < n(f))$ for all $t \in T$, and thus, by the definition of direct product of quasi-algebras, $\varphi = \tau_B(h_{\sigma}(a_{\xi}), \sigma < \alpha, \xi < n(f))$; therefore

$$h_{\mu}(f_{\mathbf{A}}(a_{\xi},\,\xi < n(f)) = \tau_{\mathbf{B}}(h_{\sigma}(a_{\xi}),\,\sigma < a,\,\xi < n(f)),$$

i. e. we have proved that the system H fulfils the basic mapping-formula (i). Hence H is a system of P-mappings of A into B. Obviously $H_t = p_t H$ for $t \in T$, and thus Theorem 3 is proved.

B. Direct sums of P-mappings. Let P be an arbitrary $P_{F,G}(\varphi_{\sigma}, \sigma < a)$ -family of basic mapping-formulas and let $H_t = \{h_{t\sigma}, \sigma < a\}$, for $t \in T$, be a system of P-mappings of a quasi-algebra $A_t = \langle A_t, (f_{A_t}, f \in F) \rangle$ of the type F into a quasi-algebra $B = \langle B, (g_B, g \in G) \rangle$ of the type G. Let $H = \{h_{\sigma}, \sigma < a\}$ be the direct sum of systems H_t , $t \in T$, i. e. H is a system of mappings of the direct sum $A = \sum_{t \in T} A_t$ of sets A_t into the set B such that, for all $\sigma < a$, all elements $t \in T$ and all $(t, a) \in A$, we have $h_{\sigma}((t, a)) = h_{t\sigma}(a)$. The direct sum H of systems H_t , $t \in T$, of P-mappings is also a system of P-mappings. This follows from the next theorem.

THEOREM 4. The direct sum $H = \{h_{\sigma}, \sigma < a\}$ of the systems $H_t = \{h_{t\sigma}, \sigma < a\}$, $t \in T$, of P-mappings of quasi-algebras A_t of the type F into quasi-algebra B of the type G is a unique system of P-mappings of the direct sum $A = \sum_{t \in T} A_t$ of quasi-algebras A_t into the quasi-algebra B such that $H_t = H \cdot i_t$ for $t \in T$ (i. e. $h_{t\sigma} = h_{\sigma}i_t$ for all $t \in T$ and all $\sigma < a$), where i_t is the natural injection of A_t into A.

Proof. Let (i) be an arbitrary basic mapping-formula in P. The system H fulfils this basic mapping-formula. Indeed, we have

$$egin{aligned} h_{\mu}ig(f_{m{A}}ig((t_{\xi},\,a_{\xi}),\,\xi < n(f)ig)ig) &= h_{\mu}ig(f_{m{A}}ig((t_{0},\,a_{\xi}),\,\xi < n(f)ig)ig) \ &= h_{\mu}ig(ig(t_{0},\,f_{m{A}t_{0}}ig(a_{\xi},\,\xi < (f)ig)ig) = h_{t_{0}\mu}ig(f_{m{A}t_{0}}ig(a_{\xi},\,\xi < n(f)ig)ig) \ &= au_{m{B}}ig(h_{t_{0},\sigma}(a_{\xi}),\,\sigma < lpha,\,\xi < n(f)ig) = au_{m{B}}ig(h_{\sigma}ig((t_{0},\,a_{\xi})ig),\,\sigma < lpha,\,\xi < n(f)ig) \ &= au_{m{B}}ig(h_{\sigma}ig((t_{\xi},\,a_{\xi})ig),\,\sigma < lpha,\,\xi < n(f)ig) \end{aligned}$$

for all sequences $(t_{\xi}, a_{\xi}) = (t_0, a_{\xi}), \, \xi < n(f)$ belonging to the domain of f_A , i. e. we have proved that H fulfils the basic mapping-formula (i). Thus H is a system of P-mappings of A into B. Obviously, we have $H_t = H \cdot i_t$ for all $t \in T$, and therefore Theorem 4 is proved.

C. \mathfrak{V} -P-mappings. Let P be any $P_{F,G}(\varphi_{\sigma}, (\varphi_{\sigma}, \sigma < a)$ -family of basic mapping-formulas and let $A = \langle A, (f_A, f \in F) \rangle$ be any quasi-algebra of

the type F. Moreover, let \mathfrak{B} be an arbitrary class of quasi-algebras of the type G. The pairs (H, B), where $B \in \mathfrak{V}$ and $H = \{h_{\sigma}, \sigma < a\}$ is a system of P-mappings of A into B, are called systems of \mathfrak{V} -P-mappings of quasi-algebra A. Now we introduce some relations between systems of \mathfrak{V} -P-mappings of A. Let (H, B) and (H', B'), where $H = \{h_{\sigma}, \sigma < a\}$ and $H' = \{h'_{\sigma}, \sigma < a\}$, be two systems of \mathfrak{V} -P-mappings of quasi-algebra A. We say that:

- 1. $(H, \mathbf{B}) \leq (H', \mathbf{B}')$ if there exists exactly one homomorphism q of \mathbf{B} into \mathbf{B}' with $H' = q \cdot H$ (i. e. with $h'_{\sigma} = q \cdot h_{\sigma}$ for all $\sigma < \alpha$),
- 2. $(H, \mathbf{B}) \equiv (H', \mathbf{B}')$ if there exists exactly one strong isomorphism q of \mathbf{B} onto \mathbf{B}' with $H' = q \cdot H$.

A system (H, \mathbf{B}) of \mathfrak{V} -P-mappings of quasi-algebra A is said to be \mathfrak{V} -free if for every system (H', \mathbf{B}') of \mathfrak{V} -P-mappings of quasi-algebra A we have $(H, \mathbf{B}) \leq (H', \mathbf{B}')$. Now we prove that

(2.5) If there exists an \Im -free system of \Im -P-mappings of quasi-algebra A, then it is uniquely determined up to the relation \equiv

Proof. Let (H, \mathbf{B}) and (H', \mathbf{B}') be two \mathfrak{B} -free systems of \mathfrak{B} -P-mappings of quasi-algebra A. Then $H' = q \cdot H$ and $H = q' \cdot H'$, where q and q' are homomorphisms of \mathbf{B} into \mathbf{B}' and of \mathbf{B}' into \mathbf{B} , respectively. Hence $H' = q \cdot q' \cdot H'$ and $H = q' \cdot q \cdot H$. But we also have $H' = i' \cdot H'$ and $H = i \cdot H$, where i' and i are the identity isomorphism of \mathbf{B}' onto \mathbf{B}' and of \mathbf{B} onto \mathbf{B} , respectively, and thus, by 1, $q \cdot q' = i'$ and $q' \cdot q = i$. Hence it follows that q' and q are one-to-one and onto, and, moreover, that $q' = q^{-1}$. Therefore q is a strong isomorphism of \mathbf{B} onto \mathbf{B}' and we obtain the relation $(H, \mathbf{B}) \equiv (H', \mathbf{B}')$. Hence (2.5) is proved.

A class \Im of quasi-algebras of the type G is called *quasi-primitive* if it is closed with respect to direct products, subquasi-algebras and strong isomorphic images. Now we prove a general existence theorem.

THEOREM 5. Let P be any $P_{F,G}(\varphi_{\sigma}, \sigma < \alpha)$ -family of basic mapping-formulas and let \mathfrak{B} be any quasi-primitive class of quasi-algebras of the type G. Moreover, let $A = \langle A, (f_A, f \in F) \rangle$ be an arbitrary quasi-algebra of the type F. Then there exists the \mathfrak{B} -free system of \mathfrak{B} -P-mappings of quasi-algebra A.

Proof. By virtue of theorem (2.3) of my paper [4] there exists a number \overline{m} such that $|B| \leq \overline{m}$ for all quasi-algebras B of the type generated by sets M with $|M| \leq |A| \cdot \overline{a}$ (where |Y| and a denote the cardinal numbers of the set Y and of ordinal number a, resp.). Let E be an arbitrary set with $|E| \geq m$. Let us denote by P(A, B), where B is a quasi-algebra of the type G such that $B \subset E$, the set of all systems λ of P-mappings of A into B, and let H_B be the direct product of all systems $\lambda \in P(A, B)$. By Theorem 3, H_B is a unique system of P-mappings of A into the direct power $B^{P(A,B)}$ such that $p_{\lambda}H_{B} = \lambda$, where $\lambda \in P(A, B)$

and p_{λ} is the natural projection of $B^{P(A,B)}$ onto $B_{\lambda} = B$. Let H be the direct product of all systems $H_{\mathbf{B}}$ of P-mappings, where $\mathbf{B} \in \mathfrak{B}$ and $\mathbf{B} \subset E$. By virtue of Theorem 3, H is a unique system of P-mappings of A into direct product $P B^{P(A,B)}$ of all direct powers $B^{P(A,B)}$, where $B \in \mathfrak{V}$ and $B \subset E$, such that $H_B = q_B \cdot H$, where q_B is the natural projection of $P B^{P(A,B)}$ onto $B^{P(A,B)}$. Let C be the subquasi-algebra of $P B^{P(A,B)}$ generated by $\bigcup_{\sigma < a} h_{\sigma}(A)$, where h_{σ} , $\sigma < a$, are the mappings of the system H, i. e. $H = \{h_{\sigma}, \sigma < \alpha\}$. Obviously, $C \in \mathfrak{B}$. Now we prove that the pair (H, C) is the \mathfrak{V} -free system of \mathfrak{V} -P-mappings of quasi-algebra A. Let (H', B'), where $H' = \{h'_{\sigma}, \sigma < a\}$, be an arbitrary system of \mathfrak{V} -Pmappings of A. Let us denote by $D = \overline{\bigcup_{\sigma < a} h'_{\sigma}(A)}$ the subquasi-algebra of B' generated by $\bigcup_{\sigma < a} h'_{\sigma}(A)$. Obviously, $D \in \mathfrak{V}$ and $|D| \leqslant \overline{\mathfrak{m}}$. Hence it follows that there exists a quasi-algebra B with $B \subset E$ such that B is strongly isomorphic to D. Let i be a strong isomorphism of B onto D. By the definition of quasi-primitive class, $\mathbf{B} \in \mathfrak{V}$. Then we have $H' = q \cdot H$, where $q = ip_{\lambda}q_{B}|C$ with $\lambda = i^{-1}H'$, and thus we obtain the relation $(H, C) \leqslant (H', B')$, i. e. (H, C) is the \mathfrak{V} -free system of \mathfrak{V} -P-mappings of A. Theorem 5 is proved.

D. \mathfrak{V} -P-direct sums of quasi-algebras. Let P be an arbitrary $P_{F,G}(\varphi_{\sigma}, \sigma < a)$ -family of basic mapping-formulas and let \mathfrak{V} be any quasi-primitive class of quasi-algebras of the type G. Let T be any set and let $A_t, t \in T$, be any family of quasi-algebras of the type F. Moreover let $A = \sum_{t \in T} A$ be the direct sum of quasi-algebras A_t . By virtue of Theorem 5 there exists the \mathfrak{V} -free system (H, C), where $H = \{h_{\sigma}, \sigma < a\}$, of \mathfrak{V} -mappings of quasi-algebra A. The quasi-algebra C is called the \mathfrak{V} -P-direct sum of quasi-algebras A_t , $t \in T$, and we denote $C = \mathfrak{V}$ -P- $\sum_{t \in T} A_t$. The \mathfrak{V} -P-direct sum of quasi-algebras A_t , $t \in T$, is, by (2.5), uniquely determined up to isomorphisms. Now we prove

THEOREM 6. Putting for all $t \in T$, $H_t = H \cdot i_t = \{h_\sigma i_t, \sigma < \alpha\}$, where i_t is the natural injection of A_t into $A = \sum_{t \in T} A_t$, we obtain a family of systems of P-mappings of quasi-algebras A_t into $C = \mathfrak{V}-P-\sum_{t \in T} A_t$ which has the following property:

(5) for each quasi-algebra $\mathbf{B} \in \mathfrak{V}$ and each family H'_t , $t \in T$, of systems of P-mappings of quasi-algebras A_t into quasi-algebra \mathbf{B} , there exists one and only one homomorphism q of C into \mathbf{B} such that $H'_t = q \cdot H_t$ for all $t \in T$.

Proof. By theorem (2.2), $H_t = H \cdot i_t$ are systems of *P*-mappings for $t \in T$. Let H' be the direct sum of systems H'_t , $t \in T$, of *P*-mappings.

By Theorem 4, H' is a unique system of P-mappings of $A = \underset{t \in T}{S} A_t$ into B such that $H'_t = H' \cdot i_t$ for $t \in T$. The pair (H', B) is a system of \mathfrak{B} -P-mappings of A. Since (H, C) is the \mathfrak{B} -free system of \mathfrak{B} -P-mappings of A, then we have the relation $(H, C) \leq (H', B)$. Thus, by the definition of relation \leq , there exists exactly one homomorphism q of C into B such that $H' = q \cdot H$. Hence we have $H'_t = H' \cdot i_t = q \cdot H \cdot i_t = q \cdot H_t$ for all $t \in T$, and thus Theorem 6 is proved.

If H is one-to-one, i. e. if each mapping h_{σ} , $\sigma < a$, in H is one-to-one, then the \Im -P-direct sum C of quasi-algebras A_t is said to be proper. In this case the systems H_t , $t \in T$, given in Theorem 6, are also one-to-one. The one-to-one systems of \Im -P-mappings of quasi-algebras are called the systems of \Im -P-extensions of those quasi-algebras. Hence, by Theorem 6, we obtain immediately

(2.6) The proper \mathfrak{I} -P-direct sum of quasi-algebras A_t $t \in T$ exists, if and only if the direct sum A of quasi-algebras A_t , $t \in T$, has a system of \mathfrak{I} -P-extensions.

A pair $\langle \{H_t\}_{t\in T}, B \rangle$, where $B \in \mathfrak{V}$ and $\{H_t\}_{t\in T}$ is a family of systems of P-mappings of quasi-algebras A_t , $t \in T$, of the type F into quasi-algebra B, is called a system of common \mathfrak{V} -P-mappings of quasi-algebras A_t , $t \in T$. If moreover, all systems H_t , $t \in T$, are one-to-one, then this pair is said to be a system of common \mathfrak{V} -P-extensions of quasi-algebras A_t , $t \in T$. Let $H = \langle \{H_t\}_{t\in T}, B \rangle$ and $H' = \langle \{H_t'\}_{t\in T}, B' \rangle$ be two systems of common \mathfrak{V} -P-mappings of quasi-algebras A_t , $t \in T$.

We say that:

- 1. $H \leqslant H'$ if and only if there exists exactly one homomorphism q of B into B' such that $H'_t = q \cdot H_t$ for all $t \in T$,
- 2. $H \equiv H'$ if and only if there exists exactly one strong isomorphism q of B onto B' with $H'_t = q \cdot H_t$ for all $t \in T$.

A system H of common \mathfrak{B} -P-mappings of quasi-algebras A_t , $t \in T$, is said to be \mathfrak{B} -free if, for every system H' of common \mathfrak{B} -P-mappings of quasi-algebras A_t , $t \in T$, we have the relation $H \leq H'$. The \mathfrak{B} -free system of common \mathfrak{B} -P-mappings of quasi-algebras A_t , $t \in T$, is uniquely determined up to the relation \equiv . Now we prove

THEOREM 7. Let P be any $P_{F,G}(\varphi_{\sigma}, \sigma < \alpha)$ -family of basic mapping-formulas and let \mathfrak{V} be any quasi-primitive class of quasi-algebras of the type G. Moreover, let $A_t, t \in T$, be an arbitrary family of quasi-algebras of the type F. Then there exists the \mathfrak{V} -free system of common \mathfrak{V} -P-mappings of quasi-algebras $A_t, t \in T$.

Proof. Let (H, C) be the free system, which exists by Theorem 5, of \mathfrak{B} -P-mappings of the direct sum A of quasi-algebras A_t , $t \in T$. The quasi-algebra C is the \mathfrak{B} -P-direct sum of quasi-algebras A_t , $t \in T$. By

Theorem 6 the pair $H = \langle \{H_t\}_{t \in T}, C \rangle$, where $H_t = H \cdot i_t$, is the \mathfrak{V} -free system of common \mathfrak{V} -P-mappings of quasi-algebras A_t , $t \in T$. Thus Theorem 7 is proved.

From (2.6) immediately results

- (2.7) There exists the proper \mathfrak{V} -P-direct sum of quasi-algebras A_t , $t \in T$, if and only if there exists a system of common \mathfrak{V} -P-extensions of A_t , $t \in T$.
- **E.** P-independence. Let P be an arbitrary $P_{F,G}(\varphi_{\sigma}, \sigma < \alpha)$ -family of basic mapping-formulas. Let us consider the notion of independence with respect to P-mappings, i. e. the notion of P-independence. Let $A = \langle A, (f_A, f \in F) \rangle$ and $B = \langle B, (g_B, g \in G) \rangle$ be any quasi-algebras of the type F and G. A subset M of A is called B-P-independent if every system $\Psi = \{ \psi_{\sigma}, \sigma < \alpha \}$ of mappings of M into B can be extended to a system $H = \{ h_{\sigma}, \sigma < \alpha \}$ of P-mappings of \overline{M} into B (i. e. h_{σ} is an extension of ψ_{σ} for all $\sigma < \alpha$), where \overline{M} is the subquasi-algebra of A generated by M. Let us denote by P-ind* M and P-ind M the class of all quasi-algebras B of the type G such that M is B-P-independent and, respectively the class of all algebras B of the type G such that M is B-P-independent. Then we have

THEOREM 8. The classes P-ind* M and P-ind M are primitive, i. e. closed with respect to subquasi-algebras, direct products, and homomorphic images.

Proof. Obviously, these classes are closed with respect to subquasi-algebras. Let us suppose that $B_t \in P$ -ind* M ($B_t \in P$ -ind M) for $t \in T$. Let $B = P B_t$ be the direct product of B_t and let $\Psi = \{ \psi_{\sigma}, \, \sigma < a \}$ be any system of mappings of M into B. Let us consider the systems Ψ_t $=\{p_t\psi_\sigma,\,\sigma<\alpha\}=p_t\cdot\Psi,$ where $t\in T$ and p_t is the natural projection of **B** onto B_t , of mappings of M into B_t . These systems can be, by the supposition, extended to systems H_t , $t \in T$, of P-mappings of \overline{M} into B_t . Let H be the direct product of systems H_t , $t \in T$. By Theorem 3, H is a unique system of P-mappings of \overline{M} into B such that $H_t = p_t \cdot H$ for $t \in T$. Hence it follows that H is an extension of Ψ , and thus $B \in P$ -ind* M $(\boldsymbol{B} \in P\text{-ind } M)$. Therefore the classes P-ind * M and P-ind M are closed with respect to direct products. Now we prove that these classes are closed with respect to homomorphic images. Let us assume that $\mathbf{B} \in P$ -ind* M ($\mathbf{B} \in P$ -ind M) and that q is a homomorphism of \mathbf{B} onto C. Let $\Psi = \{\Psi_{\sigma}, \, \sigma < a\}$ be a system of mappings of M into C. Let us denote by $\chi = \{\chi_{\sigma}, \, \sigma < a\}$ a system of mappings of M into B such that $\Psi = q \cdot \chi$, i. e. $\psi_{\sigma} = q\chi_{\sigma}$, for $\sigma < a$. Let H be a system of P-mappings of \overline{M} into B being an extension of χ . Then, by theorem (2.1), the system $q \cdot H$ is a system of P-mappings of \overline{M} into C which is obviously an extension of Ψ ,

and thus $C \in P$ -ind* M ($C \in P$ -ind M). This completes the proof of Theorem 8.

From Theorem 2 results

(2.8) If P is a proper $P_{F,G}(\varphi_{\sigma}, \sigma < \alpha)$ -family of basic mapping-formulas, then a subset M of a quasi-algebra A of the type F is B-P-independent, where B is any quasi-algebra of the type G, if and only if M is P(B)-independent (i. e. independent with respect to ordinary homomorphisms), where P(B) is the P-product system over B.

Proof. Assume that M is P(B)-independent. Let $\Psi = \{\psi_{\sigma}, \, \sigma < a\}$ be any system of mappings of M into B. The direct product h of all mappings ψ_{σ} , $\sigma < a$, is a mapping of M into $P(B) = B^a$. Let \bar{h} be the homomorphism of \overline{M} into P(B) being an extension of h. By Theorem 2 (see also (2.3) and (2.2)) the system $H = Pr \cdot \bar{h} = \{p_{\sigma}\bar{h}, \sigma < a\}$, where p_{σ} is the natural projection of $P(B) = B^a$ onto $B_{\sigma} = B$, is a system of P-mappings of M into B which is obviously an extension of Ψ . Thus M is B-P-independent. Conversely, assume that M is B-P-independent. Let ψ be any mapping of M into $P(B) = B^a$. The system $Pr \cdot \psi = \{p_{\sigma}\psi, p_{\sigma}\}$ $\sigma < \alpha$, where p_{σ} is the natural projection of $P(B) = B^{\alpha}$ onto $B_{\sigma} = B$, is a system of mappings of M into B. Let $H = \{h_{\sigma}, \, \sigma < a\}$ be the system of P-mappings of \overline{M} into **B** being an extension of the system $Pr \cdot \psi$ and let h be the direct product of all mappings h_{σ} , $\sigma < a$. By Theorem 2, h is a homomorphism of \overline{M} into P(B). Obviously, h is an extension of ψ . Therefore M is P(B)-independent. This completes the proof of theorem (2.8).

From (2.8) results

(2.9) If M is an absolutely free of the type F subset of an algebra A of the type F (i. e. M is D-independent for all algebras D of the type F, or, in other words, every mapping of M into D can be extended to a homomorphism of \overline{M} into D), then M is B-P-independent for each algebra B of the type G and for each proper $P_{F,G}(\varphi_{\sigma}, \sigma < a)$ -family P of basic mapping-formulas.

Proof. The P-product system P(B) over any algebra B of the type G is an algebra of the type F, and therefore M is P(B)-independent. Hence, by (2.8), M is B-P-independent. Thus theorem (2.9) is proved.

In the sequel we shall consider the notion of P-independence with respect to an arbitrary proper $P_{F,G}(\varphi_{\sigma}, \sigma < \alpha)$ -family P of basic mapping-formulas only. The algebra $F^* = \operatorname{Free}(F, X)$ of F-terms as a Peano-algebra is, by Theorem 1, absolutely free of the type F freely generated by X and thus theorem (2.9) may be applied to this algebra. By theorem (2.9), X is a set of generators for F^* such that X is B-P-independent for any algebra B of the type G, in particular X is G^*_{σ} -P-independent, where

 $G_{\sigma}^* = \operatorname{Free}(G, \Phi \times X)$ is the algebra of G-mapping-terms. Let us remind that $\Phi = \{\varphi_{\sigma}, \sigma < a\}$ and $X = \{x_{\xi}, \xi < \beta\}$, and let us consider the mappings $i_{\sigma}, \sigma < a$, of X into G_{σ}^* such that $i_{\sigma}(x_{\xi}) = \varphi_{\sigma}(x_{\xi}) = \langle \varphi_{\sigma}, x_{\xi} \rangle$ for all $\sigma < a$ and $\xi < \beta$. The system $I = \{i_{\sigma}, \sigma < a\}$ can be, by (2.9), extended to a system $J_{p} = \{j_{\sigma}, \sigma < a\}$ of P-mappings of the algebra F^* into the algebra G_{σ}^* . Hence we have $j_{\sigma}(x_{\xi}) = \varphi_{\sigma}(x_{\xi})$ for all $\sigma < a$ and $\xi < \beta$. For any $\mu < a$ and any F-term $\tau \in F^*$, we put $P(\varphi_{\mu}, \tau) = j_{\mu}(\tau)$. Let us observe that

(2.10) For any system $H = \{h_{\sigma}, \sigma < a\}$ of P-mappings of a quasi-algebra A of the type F into a quasi-algebra B of the type G, and for every F-term $\tau = \tau(x_{\xi}, \xi < \varrho)$, we have

$$h_{\mu}(au_{A}(a_{\xi},\,\xi$$

provided that τ_A is defined for $(a_{\xi}, \xi < \varrho)$ and $\mu < a$.

Proof. At first we remark that

(6)
$$\tau_{P(\mathbf{B})}((b_{\sigma\xi}, \sigma < \alpha), \xi < \varrho) = (P(\varphi_{\mu}, \tau)_{\mathbf{B}}(b_{\sigma\xi}, \sigma < \alpha, \xi < \varrho), \mu < \alpha)$$

provided that P(B) is the P-product system over B, and that $\tau_{P(B)}$ is defined for $(b_{\sigma\xi}, \sigma < \alpha), \xi < \varrho)$. Indeed, by the definition of partial operations defined by terms in quasi-algebras, we have

$$\tau_{P(B)}((b_{\sigma\xi}, \sigma < a), \xi < \varrho) = \overline{\psi}(\tau),$$

where $\bar{\psi}$ is the homomorphism of F^* into P(B) being an extension of a mapping $\psi \colon X \to P(B)$ such that $\psi(x_{\xi}) = (b_{\sigma\xi}, \sigma < a)$ for $\xi < \varrho$. Let us denote by $\bar{\psi}'$ the homomorphism of G^*_{σ} into B, which is an extension of a mapping $\psi' \colon \Phi \times X \to B$ such that $\psi'(\varphi_{\sigma}(x_{\xi})) = b_{\sigma\xi}$ for $\sigma < a$ and $\xi < \varrho$. Let $Pr = \{p_{\sigma}, \sigma < a\}$ be the system of natural projections p_{σ} of $P(B) = B^a$ onto $B_{\sigma} = B$. The systems $H = Pr \cdot \bar{\psi} = \{p_{\sigma}\bar{\psi}, \sigma < a\}$ and $H' = \bar{\psi}' \cdot J_p = \{\bar{\psi}'j_{\sigma}, \sigma < a\}$, are, by theorems (2.3), (2.2) and (2.1), systems of P-mappings of F^* into B which are the same on the set X of generators for F^* . Hence, by (2.4), H = H', i. e. we have $p_{\mu}\bar{\psi} = \bar{\psi}' \cdot j_{\mu}$ for all $\mu < a$, and thus for $\tau \in F^*$ we obtain $p_{\mu}\bar{\psi}(\tau) = \bar{\psi}'j_{\mu}(\tau)$. Then $p_{\mu}\tau_{P(B)}(\psi) = \bar{\psi}'(P(\varphi_{\mu}, \tau)) = P(\varphi_{\mu}, \tau)_{B}(\psi')$ for all $\mu < a$, whence

$$p_{\mu}ig(au_{P(oldsymbol{B})}ig((b_{\sigma \xi},\,\sigma < a),\,\xi < arrhoig)ig) = P(arphi_{\mu},\, au)_{oldsymbol{B}}(b_{\sigma \xi},\,\sigma < a,\,\xi < arrho) \ ext{for all} \quad \mu < a.$$

Hence we obtain relation (6). By Theorem 2, the direct product h of h_{σ} , $\sigma < \alpha$, is a homomorphism of A into P(B). Hence, using (6), we have

$$egin{aligned} hig(au_{m{A}}(a_{m{\xi}},\,m{\xi}$$

But, by the definition of h,

$$h(\tau_A(a_{\xi},\,\xi<\varrho))=(h_{\mu}(\tau_A(a_{\xi},\,\xi<\varrho)),\,\mu<\alpha)$$

and thus

$$h_{\mu}(au_{m{A}}(a_{m{\xi}},\,m{\xi}$$

Theorem (2.10) is proved.

Now we prove

THEOREM 9. A subset M of a quasi-algebra A of the type F is B-P-independent, where B is an algebra of the type G and P is any proper $P_{F,G}(\varphi_{\sigma}, \sigma < \alpha)$ -family of basic mapping-formulas, if and only if each equality $\tau_{A}(m_{\xi}, \xi < \varrho) = \vartheta_{A}(m_{\xi}, \xi < \varrho)$, where m_{ξ} are different elements in M and τ and ϑ are F-terms, implies the following equalities: $P(\varphi_{\mu}, \tau)_{B} = P(\varphi_{\mu}, \vartheta)_{B}$, $\mu < \alpha$ (resp. the G-mapping-equations $P(\varphi_{\mu}, \tau) = P(\varphi_{\mu}, \vartheta)$ for $\mu < \alpha$ are valid in B).

Proof. Let us assume that M is B-P-independent. Let $(b_{\sigma\xi}, \sigma < a, \xi < \varrho)$ be any $a \times \varrho$ -matrix over B and let ψ_{σ} , $\sigma < a$, be mappings of M into B such that $\psi_{\sigma}(m_{\xi}) = b_{\sigma\xi}$ for $\sigma < a$ and $\xi < \varrho$. The system $\Psi = \{\psi_{\sigma}, \sigma < a\}$ can be extended to a system $\overline{\Psi} = \{\overline{\psi}_{\sigma}, \sigma < a\}$ of P-mappings of A into B. But, by (2.10), we have

$$egin{aligned} \overline{\psi}_{\mu}ig(au_{m{k}},\,\xi$$

and also

$$\overline{\psi}_{\mu}\big(\tau_{\boldsymbol{A}}(m_{\xi},\,\xi<\varrho)\big) = \overline{\psi}_{\mu}\big(\vartheta_{\boldsymbol{A}}(m_{\xi},\,\xi<\varrho)\big) = P(\varphi_{\mu},\,\vartheta)_{\boldsymbol{B}}(b_{\sigma\xi},\,\sigma<\alpha,\,\xi<\varrho).$$

Hence $P(\varphi_{\mu}, \tau)_{B}(b_{\sigma\xi}, \sigma < \alpha, \xi < \varrho) = P(\varphi_{\mu}, \vartheta)_{B}(b_{\sigma\xi}, \sigma < \alpha, \xi < \varrho)$, i. e. $P(\varphi_{\mu}, \tau)_{B} = P(\varphi_{\mu}, \vartheta)_{B}$ for all $\mu < \alpha$. This completes the proof of necessity. Now we give a proof of sufficiency. Let $F_{0}^{*} = \text{Free}(F, M)$ be the Peanoalgebra of the type F generated by M, i. e. the absolutely free algebra of the type F freely generated by the set M. Let $\Psi = \{\psi_{\sigma}, \sigma < \alpha\}$ be any system of mappings of M into B. By theorem (2.9), the system Ψ can be extended to a system $\overline{\Psi} = \{\overline{\psi}_{\sigma}, \sigma < \alpha\}$ of P-mappings of F_{0}^{*} into F_{0}^{*} into

(7) if
$$\chi(w) = \chi(w')$$
, then $\overline{\psi}_{\mu}(w) = \overline{\psi}_{\mu}(w')$ for all $\mu < \alpha$.

Indeed, let χ be defined for w and w' and let $\chi(w) = \chi(w')$. The elements w and w' can be represented in the form

$$w = \tau_{\mathbf{F_0^*}}(m_{\xi}, \, \xi < \varrho)$$
 and $w' = \vartheta_{\mathbf{F_0^*}}(m_{\xi}, \, \xi < \varrho)$.

Then $\chi(w) = \tau_{A}(m_{\xi}, \xi < \varrho)$ and $\chi(w') = \vartheta_{A}(m_{\xi}, \xi < \varrho)$. Since $\chi(w) = \chi(w')$, we have the equality $\tau_{A}(m_{\xi}, \xi < \varrho) = \vartheta_{A}(m_{\xi}, \xi < \varrho)$. Hence, by the supposition, $P(\varphi_{\mu}, \tau)_{B} = P(\varphi_{\mu}, \vartheta)_{B}$ for all $\mu < \alpha$. But, by (2.10), we have

$$egin{aligned} \overline{\psi}_{\mu}(w) &= \overline{\psi}_{\mu}ig(au_{m{ au}_{m{0}}}^{ullet}(m_{m{\xi}},\,m{\xi} < arrho)ig) = P(arphi_{\mu},\, au)_{m{B}}ig(\overline{\psi}_{\sigma}(m_{m{\xi}}),\,\sigma < lpha,\,m{\xi} < arrho) \\ &= P(arphi_{\mu},\,artheta)_{m{B}}ig(\overline{\psi}_{\sigma}(m_{m{\xi}}),\,\sigma < lpha,m{\xi} < arrhoig) = \overline{\psi}_{\mu}ig(artheta_{m{F_0^{m{\phi}}}}(m_{m{\xi}},\,m{\xi} < arrho)ig) \\ &= \overline{\psi}_{\mu}(w') \quad ext{for all} \quad \mu < lpha. \end{aligned}$$

Hence lemma (7) is proved. From (7) it follows that the mappings h_{σ} : $\overline{M} \to B$ such that $h_{\sigma}(a) = \overline{\psi}_{\sigma}(w)$, where $a = \chi(w)$, may be considered as functions on \overline{M} , where \overline{M} is the subquasi-algebra of A generated by M. It may be verified that the system $H = \{h_{\sigma}, \sigma < a\}$ is a system of P-mappings of \overline{M} into B being extension of system Ψ , i. e. the set M is B-P-independent. This completes the proof of sufficiency and thus also the proof of Theorem 9.

Let $\mathfrak A$ and $\mathfrak B$ be any classes of quasi-algebras of the type F and G. And let P be any proper $P_{F,G}(\varphi_{\sigma}, \sigma < \alpha)$ -family of basic mapping-formulas. A subset M of a quasi-algebra A of the type F is called:

- 1. \mathfrak{B} -P-independent for all $\mathbf{B} \in \mathfrak{B}$,
- 2. \mathfrak{A} -free if M is B-independent for all $B \in \mathfrak{A}$.

The family P is said to be:

- 3. $(\mathfrak{A}, \mathfrak{B})$ -universal if every \mathfrak{A} -free set is \mathfrak{B} -P-free,
- 4. $(\mathfrak{A}, \mathfrak{B})$ -constructor if $P(B) \in \mathfrak{A}$ for all $B \in \mathfrak{B}$, where P(B) is the P-product system over B.

Let us observe that

(2.11) If P is $(\mathfrak{A}, \mathfrak{B})$ -constructor, then P is $(\mathfrak{A}, \mathfrak{B})$ -universal.

Proof. Let a set M be \mathfrak{A} -free and let $\mathbf{B} \in \mathfrak{A}$. Since $P(\mathbf{B}) \in \mathfrak{A}$, then the set M is $P(\mathbf{B})$ -independent and thus, by (2.8), M is \mathbf{B} -P-independent, i. e. M is \mathfrak{A} -P-free. This completes the proof of (2.11).

Now let us assume that $\mathfrak U$ is an equationally definable class of algebras of the type F. Then we have the following theorems.

(2.12) The family P is $(\mathfrak{U}, \mathfrak{V})$ -universal if and only if P is $(\mathfrak{U}, \mathfrak{V})$ constructor.

Proof. Assume that P is $(\mathfrak{A}, \mathfrak{B})$ -universal. Let $\lceil \tau(x_{\xi}, \xi < \varrho) \rceil = \vartheta(x_{\xi}, \xi < \varrho) \rceil$ be an arbitrary F-equation valid in \mathfrak{A} (i. e. valid in each algebra in \mathfrak{A}) and let $\mathbf{B} \in \mathfrak{B}$. Let $((b_{\sigma\xi}, \sigma < a), \xi < \varrho)$ be any elements in $P(\mathbf{B})$, which is the P-product system over \mathbf{B} . Let us denote by $\mathbf{W} = \operatorname{Free}(\mathfrak{A}, M)$ the \mathfrak{A} -free algebra freely generated by $M = (m_{\xi}, \xi < \varrho)$, where m_{ξ} are different elements. Since P is $(\mathfrak{A}, \mathfrak{B})$ -universal, M is \mathfrak{A} -P-free. Hence there exists a system $H = \{h_{\sigma}, \sigma < a\}$ of P-mappings

of W into B such that $h_{\sigma}(m_{\xi}) = b_{\sigma\xi}$ for $\sigma < a$ and $\xi < \varrho$. By Theorem 2, the direct product h of all h_{σ} , $\sigma < a$, is a homomorphism of W into P(B). Hence we have

$$\begin{split} \tau_{P(\mathbf{B})} \big((b_{\sigma\xi}, \, \sigma < \alpha), \, \xi < \varrho \big) &= \tau_{P(\mathbf{B})} \big(\big(h_{\sigma}(m_{\xi}), \, \sigma < \alpha \big), \, \xi < \varrho \big) \\ &= \tau_{P(\mathbf{B})} \big(h(m_{\xi}), \, \xi < \varrho \big) = h \big(\tau_{\mathbf{W}}(m_{\xi}, \, \xi < \varrho) \big) = h \big(\vartheta_{\mathbf{W}}(m_{\xi}, \, \xi < \varrho) \big) \\ &= \vartheta_{P(\mathbf{B})} \big(h(m_{\xi}), \, \xi < \varrho \big) = \vartheta_{P(\mathbf{B})} \big(\big(h_{\sigma}(m_{\xi}), \, \sigma < \alpha \big), \, \xi < \varrho \big) \\ &= \vartheta_{P(\mathbf{B})} \big(b_{\sigma\xi}, \, \sigma < \alpha \big), \, \xi < \varrho \big), \end{split}$$

i. e. the F-equation $\lceil \tau = \vartheta \rceil$ is valid in P(B) and thus $P(B) \in \mathfrak{A}$. The converse implication follows from (2.11) and thus theorem (2.12) is proved. Let us assume that \mathfrak{A} and \mathfrak{A} are any equationally definable classes of algebras of the type F and G respectively. Then we have

(2.13) The family P is $(\mathfrak{A},\mathfrak{B})$ -universal (resp. $(\mathfrak{A},\mathfrak{B})$ -constructor) if and only if, for all F-terms τ and ϑ , the validity of the F-equation $\lceil \tau = \vartheta \rceil \text{ in the class } \mathfrak{A} \text{ implies the validity of } G\text{-mapping-equations } \lceil P(\varphi_{\mu}, \tau) = P(\varphi_{\mu}, \vartheta) \rceil \text{ in the class } \mathfrak{B} \text{ for all } \mu < \alpha.$

Proof. This follows from Theorem 9.

Let us denote by $\mathfrak{V}(P,\mathfrak{U})$ the class of all $\boldsymbol{B} \in \mathfrak{V}$ such that the G-mapping-equations $\lceil P(\varphi_{\mu}, \tau) = P(\varphi_{\mu}, \vartheta) \rceil$, $\mu < a$, are valid in \boldsymbol{B} provided the F-equation $\lceil \tau = \vartheta \rceil$ is valid in the class \mathfrak{U} . By $\mathfrak{V}(\mathfrak{U})$ will be denoted the intersection of all classes $\mathfrak{V}(P,\mathfrak{U})$, where P is proper $P_{F,G}(\varphi_{\sigma}, \sigma < a)$ -family of basic mapping-formulas.

(2.14) For every pair $(\mathfrak{A}, \mathfrak{B})$ and every proper $P_{F,G}(\varphi_{\sigma}, \sigma < \alpha)$ -family P of basic mapping-formulas there exists a maximal subclass $\mathfrak{B}_P \subset \mathfrak{B}$ such that P is $(\mathfrak{A}, \mathfrak{B}_P)$ -universal (resp. $(\mathfrak{A}, \mathfrak{B}_P)$ -constructor).

Proof. The class $\mathfrak{V}_P = \mathfrak{V}(P, \mathfrak{U})$ fulfils, by (2.13), the thesis of (2.14). The pair $(\mathfrak{U}, \mathfrak{V})$ is said to be universal (resp. constructor) if for every proper $P_{F,G}(\varphi_{\sigma}, \sigma < \alpha)$ -family P of basic mapping-formulas P is $(\mathfrak{U}, \mathfrak{V})$ -universal (resp. $(\mathfrak{U}, \mathfrak{V})$ -constructor).

(2.15) For every pair $(\mathfrak{A}, \mathfrak{B})$ there exists a maximal subclass $\mathfrak{B}_0 \subset \mathfrak{B}$ such that the pair $(\mathfrak{A}, \mathfrak{B}_0)$ is universal (resp. constructor).

Proof. The class $\mathfrak{B}_0 = \mathfrak{B}(\mathfrak{A})$ fulfils the thesis of (2.15).

Let us assume that F = G. Then we have

(2.16) For every equationally definable class \mathfrak{A} of algebras of the type F there exists a maximal subclass $\mathfrak{A}_0 \subset \mathfrak{A}$ such that the pair $(\mathfrak{A}_0, \mathfrak{A}_0)$ is universal (resp. constructor).

Proof. The class $\mathfrak{A}_0 = \mathfrak{A}(\mathfrak{A})$ fulfils the thesis of (2.16), since we have $\mathfrak{A}_0 = \mathfrak{A}_0(\mathfrak{A}_0)$.

REFERENCES

- [1] T. Fujiwara, On mappings between algebraic systems, Osaka Mathematical Journal 11 (1959), p. 153-172.
- [2] E. Marczewski, Independence and homomorphisms in abstract algebras, Fundamenta Mathematicae 50 (1961), p. 45-61.
- [3] J. Schmidt, Algebraic operations and algebraic independence in algebras with infinitary operations, Mathematica Japonicae 6 (1963), p. 77-112.
- [4] J. Słomiński, A theory of P-homomorphisms, Colloquium Mathematicum 14 (1966), p. 135-162.

DEPARTMENT OF MATHEMATICS, N. COPERNICUS UNIVERSITY, TORUŃ

Reçu par la Rédaction le 12. 1. 1965