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1. Introduction. The present work aims at transfering some concepts
of thermodynamiecs to population genetics. The concept of entropy plays
an important role in thermodynamies. It is on this concept that modern
information theory is based. The latter has already been applied to
a description of the mechanism of transmitting parental characteristics
to posterity. Since a population is a set of specimens, the concept of
entropy should be used freely enough in population genetics to investigate
the development of a population. Statical models, e. g. the Hardy-Weinberg
model [13], are used in most treatises on genetics. In the present paper
an isolated population is treated as an analogue to a closed thermody-
namical syvstem. There are given some definitions concerning isolated
populations as well as the conditions for their development.

Under “isolated population” we mean a Mendel-type population
isolated in the geographical sense ([3], [5], [6]), 1. e. such a population
in which the heredity factors are invariable with respect to time and
which develops itself under constant environmental influence. Moreover,
it is assumed that the isolated population consists of a sufficient number
of specimens of a given species, their crossing being random. We shall
consider such a population as a system developing in time.

We assume that the development of an isolated population is an
irreversible process. Taking an arbitrary generation of the successive
generations of a given population as the initial one, it will characterize
the initial state of the population. Each successive generation will then
represent the state of the population at the moment under -consi-
deration.

The state of a specimen is characterized by a number of features.
Here we assume that each specimen is characterized by a finite number
of constant quantitative characteristics. To put it another way, we limit
our consideration to grown-up specimens which have accomplished their
physical development but have not yet entered into the process of ageing.
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Such characteristics could be the height, the length of different bones,
the dimensions of the skull, etc., while in lower organisms the main charac-
teristics are the dimensions of the cell. All these characteristics are constant
for a given period of time and no internal change of specimens is observed.
These characteristics are conditioned by the joint genetic effect of many
genes situated at different loci. The separate effect of each of these genes
is very insignificant which means that the features under investigation
are continuously distributed within the population.

Thus the state of a separate specimen is determined by the values
of its characteristics, while the state of the whole population is determined
by the joint probability distribution of these characteristics. The change
in these characteristics from generation to generation is the cause for
each successive generation to enter into a new stage of development.
However, we may assume that at some moment the population reaches
such a state where the effect of all factors is equal to zero. This would
be determined by isolation, the irreversibility of the development, and
the tendency for stabilization. We shall call such a state of a given isolated
population an equilibrium state. There are two reasons for the stability
of a once reached equilibrium state. The first of them is the equilibrium
between mutations and eliminations of the genes, while the second one
is the equilibrium between favourable heterozygotes and unfavourable
homozygotes ([3], [11]). Consequently, the equilibrium is a state of the
population that cannot be changed except by external factors (such as
migrations, changes of environment, etc.).

We should note, however, that in the development of an isolated
population the results of the random crossing become more and more
miscellaneous, due to mutations and recombinations. It follows that
the state of the population becomes more and more indefinite. The entropy
1s a measure for the indefiniteness of a system. Thus, it could be assumed
that the entropy of an isolated population grows from generation to genera-
tion. Irrespectively of the increase of entropy, the lack of external influences
is noticeable in the stabilization of other parameters of the probability
distribution of characteristics in an isolated population. It could be assumed
that under conditions excluding external influences the mean values,
the variances, and the covariances of the characteristics do not change
from generation to generation. This would yield the statement that the
entropy of the distribution of characteristics is bounded. We may expect
that an isolated population reaches its equilibrium state if and only if
the entropy of the joint distribution of characteristics reaches its maximum
value. These assumptions will be considered in detail in the following
section. Some rather interesting inferences of our assumptions will also
be indicated.
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2. The mathematical model. Let us consider a dynamic population
determined by the sequence of probability distributions of n-dimensional
random vectors (X, X, ..., X®) Lk =0,1,2,..., having probability
densities f® (2, ,, ..., ©,). The density f*(a,, «,, ..., «,) characterizes
the k-th generation of the dynamic population, while

H" = H(f(k)) = E{-——l()g‘f(k)(wl, Lay eony n)}y

provided that it exists, is the entropy the k-th generation.
If in a given dynamic population the densities f®(x,, u,, ..., x,)
are equal for all generations, thus if

k
(1) f( )('Tl’ Loy eeey '/I"n) :f(‘TH Loy eoey £y)

holds, this population will be called a population at equilibrium.

If (1) is valid from some k >0 onwards only, we say that the
population reaches its equilibrium at the k-th generation.

A dynamic population is called isolated if for k¥ = 0,1,2,... the
following conditions are satisfied:

(a) BXP =m;, i=1,2,...,n;
(b) EUXD —m)(XP—my) | = dyg, 0,5 = 1,2,...,n;
(¢) H® o gE+D,

(d) equality in (c¢) holds if and only if H* is the maximum entropy
value H,,, in the class of probability distributions with first and second
moments given by (a) and (b).
The following theorem may be proved for the maximum entropy:
THEOREM. If f = f(®,, Xy, ..., x,) Ssatisfies conditions (a) and (b)
in the definition of an isolated population, the equality H(f) = H
satisfied if and only if f is the n-dimensional normal density.

max 18

To prove the theorem we will use the following
LeMMA. If the functions f(x) = f(xy, Xyy...y2,) and fo(x) =
= fo(¥1y Xgy ..., x,) defined in R, salisfy the conditions

(1) f®)=0 and fy(@e) >0 for all xek,,
(ii) J'f(w)dm = [fo(w)de =1,
Ry,
(iii) ff x)logf, (x = ffo(w)logfo(w)dmi
R, Ry
then

(2) J f()logf(w)de > jfo(w)logfo )de,
R,
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where the equality holds if and only if f(x) = fo,(®) almost everywhere.

Proof of the lemma. Let us note at the beginning that the first two
derivatives of the function ¢(z) = xlogx are:

¢ (2) =logat1, ¢ (2)=1a.

As for # > 0 the second derivative is positive, ¢ (x) is a convex function
and for arbitrary » > 0 and v > 0 we have the inequality (here we assume
that ¢(0) = 0):

(3) p(u)—¢@(v) = nlogu—vlogv = (v—v)(logv+1).

In (3) equality holds if and only if » = v.
Putting « = f(®) and » = f,(x), and integrating both sides of (3)
we may use the assumptions of the lemma and obtain

[ f(x)1ogf (x)— fo () logf, (x) |dae >

RIL
> [ [f(x)—fo(@)] [logfy(x)+1]dx =
Ry,
= [ f(a)logfy(x)dx— [ fo(x)logfy(x)dw-+
Rn Rn
-+ ff(,l:)da:— ffo(.x)d.t: = 0
Ry Ry,

Therefrom immediately follows inequality (2). Finally, as in (3) the
equality sign is valid if and only if # = v, in (2) we have an equality only
when f(x) = f,(®) almost everywhere. Thus the lemma is proved.
Proof of the theorem. Let A be the determinant of the symmetric
matrix {1;;} and A4; the cofactor of the element 1;;. The function

1
ol YTy Pl — 57 E Aij(wg—mi) (2, —m,
o) = @ny B (4] [ m)]

is the probability density of a n-dimensional normal distribution and
it satisfies conditions (a) and (b) of the definition of an isolated population.

Let f(x) be any arbitrary n-dimensional density which also satisfies
conditions (a) and (b). In order to prove the theorem it is sufficient to
show that the functions f,(or) and f(x) satisfy the conditions of the lemma.

Conditions (i) and (ii) are implied by the type of the function f,(x)
and by the fact that both functions are probability density functions.
In order to check condition (iii) we compute

logfo(®) = —»ﬁZAw —m;) (x;—m;)+C
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where € = —log[(27)"?V|A4]].
Hence

IA ZAUI%[(‘”i_mi)("’i—”"/i)f(e’lf)dw%-c ff(:n)daz =

2

1 ' " '
— T oq Aijdii+C = _.,,2__*_6’
and, analogically,
n
ffO(w)logfo(vI’)dx e __§7+C.
Rn

Consequently, condition (iii) is also satisfied and the lemma may
be applied. This ends the proof of the theorem.

It follows from the theorem just proved, that an isolated population
is at equilibrium if and only if f©(x,,,,...,x,) is the n-dimensional
normal density. On the other hand, two requirements:

1° fE Dy g ony @) # fO (), @y ony @)

2° f®(p x5, ...,x,) to be the density of a n-dimensional normal

distribution,
form a necessary and sufficient condition for an isolated population
to be at equilibrium, starting from the Kk-th generation (£ > 0).

3. Discussion and biological inferences. Under the assumption that
entropy increases with the development of the isolated population, while
the mean values and the second moments remain constant, we have
proved that the distribution of the characteristics at a population equi-
librium is a normal distribution. This may be one of the possible explan-
ations of the fact that most characteristics really have a normal distri-
bution. This explanation is different from the usually given explanations
based on the Moivre-Laplace theorem or on the central limit theorem
of probabhility theory.

Known genetic models are built predominantly on the basis of
Laplace’s theory and the Mendel laws. The first adequate genetic model
was given by Hardy and Weinberg in 1908. Liater on there appeared many
other models based on the same probability schemes but much more
developed and elaborate. Such are the models of Bernstein [1], Fisher [5],
[6], Feller [4], Kempthorne [8], and other ones. These models refer to
isolated characteristics, i. e. a simple genetic characteristic is assumed
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to be any characteristic which may be treated as a separate unit (cf. [7]).
The laws of Mendel refer also to simple characteristics.

According to the model of Hardy and Weinberg the population
reaches its equilibrium already at its second generation, i.e. the fre-
quences of the genotypes remain constant from the second generation
onwards. This model could be generalized to the case with more genes
under investigation but this would require the additional assumption
of the independence of genes. That means that the loci at which these
genes are situated should not be linked. Otherwise, the more linked the
revelant loci are, the more distant in time the population equilibrium
is (cf. [13]). Hence it follows that on one hand the equilibrium of the
population would depend on the number and the situation of the observed
genes, while on the other hand these models do not reflect the changes
in time and the development of the characteristics in (uestion.

In the model presented in this paper the normal distribution of
characteristics results from the equilibrium state of a given isolated
population. This seems to fall in line fairly well with the observed reality.
When investigating a given population, observations are to be carried
out on separate specimens. On the ground of obtained measurements
the parameters of the population and the distribution of the characteristies
could be found. This allows for an immediate checking of the accepted
assumptions. Strictly speaking, this enables us to check the adequateness
of the model describing the development and the equilibrinm state of
a population.

The following biological inferences could be made:

1° An isolated population has not reached its equilibrium if we can
find among the observed characteristics a characteristic with entirely
non-normal distribution.

2° The maximum entropy of a population is

H,ux = log[(2re.)"2V|A]1,

where |4| is the generalized variance or the determinant of the matrix
of second moments. Tt follows that the maximum entropy is determined
by the generalized variance of the observed characteristics only. Therefore
the conditions in the definition of an isolated population might be
weakened accordingly; one could assume that only the generalized variance
of the distribution of characteristics does not change from generation
to generation. It could also be noted that between the determinant A
and the determinant P of the correlation matrix the following relation
holds A = d%03...00P. For n = 1 the determinant A is the ordinary
variance o2, while for n = 2 it takes the form A = o;0;(1 — 02%), where o
is the correlation coefficient.
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3” The greater the maximum entropy of the population, the greater
the mean amount of information and, for the case of fixed variances,
the more uncorrelated the characteristics.

4° Different populations could be compared on the basis of the pre-
ceding remark. That means that a population with greater entropy is
more advanced towards stabilization. It is evident that in the compared
populations the same characteristics are to be considered.

5° On the basis of 3° it is possible to compare two groups of charac-
teristics of one and the same population. If it is proved that one of the
groups has a smaller entropy, the characteristics would be more more
correlated and so some of them could be eliminated.
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L. BONEVA (Sofia)
MATEMATYCZNY MODEL POPULACJI IZOLOWANE] W STANIE ROWNOWAGI
STRESZCZENIE

Praca niniejsza stanowi prébe zbudowania matematycznego modelu rozkladu
cech w danej populacji izolowanej, znajdujacej sie w stanie réwnowagi.

W tym celu wykorzystuje si¢ pewne pojecia termodynamiki. Zaklada sie, ze
izolowana populacja jest analogiem zamknietego systemu termodynamicznego, a roz-
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woj populacji jest procesem nieodwracalnym. Poniewaz populacja stanowi zbiér indy-
widudéw, wygodnie jest posluzyé si¢ pojeciem entropii przy badaniu rozwoju danej
populacji.

Przy budowie samego modelu zaklada sie, Zze dynamiczna populacja jest okre-
slona przez ciag rozkladow n-wymiarowyech ciaglych zmiennych losowych (X(lk), ng),
<., X®) o gestosciach fW(z,xy,...,a20) kK =0,1,2,..., przy czym gestosé
f® (@, ,, ..., xa) charakteryzuje k-te pokolenie, a H(¥) jest entropig k-tego pokolenia.

Dowodzi si¢, ze przy pewnych zaloZeniach entropia populacji jest maksymalna
wltedy i tylko wtedy, gdy f(x,, %5, ..., xa) jest gestoscia rozkladu n-wymiarowego
rozkladu normalnego.

W pracy wysnuwa sie ponadto pewne wnioski o zachowaniu si¢ cech w popu-
lacji, bedacej w stanie rownowagi, oraz podaje si¢ pewne wnioski o charakterze bio-
logicznym.

JI. BOHEBA (Codun)

MATEMATHUYECKAS MOJEJIb W30JIMPOBAHHON ITOIYJISALINU
B COCTOAHUU PABHOBECHA

PE3IOME

Hacroautaa padoTra siBasieTcA HONBITKOI NOCTpOEHHMA MaTeMaTH4YeCKOil Mopmean
paclupenejieHMM IPU3HAKOB [AHHOW M30JNPOBAHHOII monyaauuu, HaxopAmeiica
B COCTOAHNM pABHOBECHUA.

C 3Toif 1171610 NCNOALBYIOTCA HEKOTOpPBIC IIOHATHA TepMoguHaMuku. Ilpuanmaercs,
UTO HM30JMpPOBAHHAH MONYJIAIMA ABJIACTCS AHAJOrOM 3aMKHYTOH TepMOIMHAMHYECKOIl
CUCTeMBbl, a pa3BUTHE NOMYJIALNMH — HeoOpaTMMHIM mpoueccoM. Tark KaK MONyJANNA
AABJIHETCA COBOKYINHOCThI0O UHINBUIYYMOB, TO IIpM HCCJIETOBAHUM Pa3BHUTHA NAHHOII
MOMYJIANUN BBITOJIHO UCHOJb30BaTh NOHATHE JHTPONUHU.

Ilpu mocrpoenuu camoii Mopgenum NMpUHUMAETCH, YTO AUHAMUYECKAA HOMYJAILUA
OIpe/JesIeHa MOCJEeK0OBATCIBHOCTbIO paCHpeaelieHIl n-MEepHHX HeNpepHBHHIX Cay4aii-
HEIX BeJUUUH (ng), ng), oos X9, c maornocramu ¥ (zy, 2y, ..., 20), F=0,1,2,...,
npu uyeM k-Toe moko/JeHne XapaKTepu3yeTcs nnomocnlof("')(xl, ceesZn), A H® _ 9HTpO-
nuA k-Toro moxo.eHust.

Ipn nexoTOpBIX OrpaHMYEHUAX [IOKABBIBACTCH, 4YTO BHTPOIHUS MOMYJIALUN
ABJISIETCH MAKCMMAJIBHOl TOrjJa M TOJAbLKO TOrjaa, korma f(zy, ..., xn) — MJIOTHOCTH
7.-MePHOro HOPMAJbHOI'O pacIpeneJeHum.

Jdanee BBHICKA3BHIBAKTCA HEKOTOpHle IPEANOJIOMEHUA O IOBeJeHWHM INPU3HAKOB
OOMYJIANNU B PABHOBECHM M [ENAIOTCA HEKOTOpHE OMOJOrMuUecKHUe BHIBOMHL.



