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1. Let 2 = (A, F) be an abstract algebra. By A™ we shall denote
the set of all algebraic operations of » variables in this algebra, and by
A™Y the subset of A™ consisting of all operations depending on at
most k variables. By 2A™ we shall denote the algebra (A™, F). (For
the definitions of other notions used in this note see [3].)

By S(2) we shall denote the set of all natural numbers n > 2 for
which the set A™\ A4™"~) is not empty. The set () was investigated
by Urbanik [8] for idempotent algebras (i. e. for algebras without non-
trivial algebraic operations of one variable). He gave a full description
of possible sets S(2[) in this case. Moreover, Plonka [6] proved that if
there exists in 2 a symmetric binary operation depending on both
variables, and the algebra has no algebraic constants, then S(2)
=(2,3,...).

Marczewski [4], P 527, put forward the following conjecture:

(C,) If the algebra 2 has two bases of different cardinalities, then
SA) = (2, 3,...).

This conjecture is equivalent with the following one:

(C,;) If there exist rational integers = > m >1 such that the
algebras A™ and A™ are isomorphic, then S(A) = (2, 3, ...).

Indeed, if (C,) is true and an algebra 2 has two bases of different
cardinalities, then by theorem 1 of [1] it follows that for some n >m > 1
the algebras 2A™ and 2A™ are isomorphic, hence S(2A) = (2,3,...)
by (C.).

Assume now that (C,) is true. If for some n > m > 1 the algebras
2A™ and A™ are isomorphic, then the algebra 2A™ has two bases of
different cardinalities and from (C,) follows S(2A™) = (2, 3,...). Now
it remains to observe that S(2A™) < §(A), and so SA) =(2,3,...).

(Note that in general the sets S(2) and S(A™) can be different,
e.g. when Y is idempotent and n = 1.)
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The conjecture can also be stated without use of algebraic concepts:

(C;) Let X be an arbitrary infinite set. Consider a one-to-one
mapping between X™ and X" (m # m). Suppose it is defined by

Yi = fi(@y1y ...y Tp) (t=1,2,...,m),
T = 0¥y -y Ym) (1 =1,2,...,n).

Let £ > 2 be a given rational integer. Then among the superpo-
sitions of fi,...,fmy91y.--y9s and the trivial operations there is
a function depending on exactly k variables.

(The equivalence of (C;) and (Cs) follows from theorem 2 in [1].
Compare also [2] and [7].)

The purpose of this note is to give some partial results concerning
this conjecture. We prove (C,) in the cases m = 1 and m = 2, and show
that 2e8(2A) without restriction on m. We shall work actually under
less stringent conditions than the hypothesis in (C;) as we assume merely
that 2™ has a generating system (not necessarily a basis) of m elements.

It should be noted that there exist algebras having bases of m and n
elements (m s n) such that A" consists of the trivial operation e(z) = x
only. Indeed, let X be an arbitrary infinite set and consider a one-to-one
mapping between X™ and X" which acts trivially on the diagonals,
i. e. transforms (z,z,...,2,x)eX™ in (z,2,...,z,x)eX". Suppose that
mapping is defined by (1) and take F = (fiy...yfmy G1y-++y gn). Let
A = (X, F). Then the algebra (A™, F) has bases of m and n elements,
and obviously all algebraic operations of one variable are trivial.

(1)

2. Suppose n > 2, and A™ has a generating system consisting of
m < n elements. Then there exist f,,...,fncA™ and g,,..., goecA™
such that

(2) w)'=gi(f1(wl7-°-7mn)7-"7fm(a"17°"7mn))

holds for j =1,2,...,n. (See e. g. [1], th. 2, [2], [7].)

THEOREM 1. Assume that n>2 and A™ has m generators with
m < n. Let f,, ..., f, be algebraic operations satisfying (2) with suitable
Gisens Gne A™. Then there are at least 2" —2™ substitutions

, 1, 2, ...,n
I = A<ar<2, k=1,2,...,n)
Ay Qgy eeey Oy

such that not all operations fi(I) = fi(@a,y ...y @a,) (¢ = 1,2, ..., m) depend
on at most one variable.

COROLLARY 1. If an algebra has mo algebraic operations depending
on exactly two variables, then every basis in this algebra has the same
cardinal number.
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(Note that if an algebra has no algebraic operations depending on
exactly two variables, and has only a finite number of algebraic opera-
tions depending on exactly one variable, then this corollary follows at
once from a theorem of B. J6nsson and A. Tarski (see [2]).)

COROLLARY 2. If U is an idempotent algebra such that the algebra A™
has a generating system consisting of m << n elements, then S(A) = (2, 3, ...).

THEOREM II. The conjecture (C,) holds for m =1 and m = 2.

COROLLARY 3. Under the assumptions of theorem 1 with m = 3 one
has 3¢S (A).

3. Proofs.

LEMMA 1. If the algebra U™ has a generating system consisting of m
elements, then the algebra A*"~™ has also a generating system consisting
of m elements.

(In the case when this generating system is a basis this lemma is
a direct consequence from the fact that the powers of all bases in an
algebra form an arithmetical progression. See [1], [3], [7]).

Proof. Let [hy,..., h,] denote the subalgebra of A*"~™ generated
by hyy.ooybr. A8 [fyy ooy fu]l = [21y ..., 2,], We have

2[(2n-m) = [‘vla ceey mzn_m] = [fl’ °-°7fm’ Lpg1y ooy x2n—m]
= [.fl(fl’"'7fm’wn+l7°"?m2n—m)7"'7fm(f11"'7f7n’wn+l7"')w2n—m)]°

Proof of theorem I. Let § be the set of all substitutions I such
that f;(I) depends on at most one variable for ¢+ =1,2,..., m. For I8
there is fi(I) = fi(xj,1), where fi(2) = fi(z,2,...,2) and ji(I) =1
or 2. Let T be the set of all m-tuples (¢,,...,%,) with 1 <t; < 2.

Consider now the mapping 8: 8§ — T defined by

BI) = (j1(I)y -y Jm(I)).
Observe that from B(I,) = f(I,) follows I, = I,. Indeed, if

1, 2,...,n 1,2,...,n .
Il=(’ ’ 7.) and Ig=(,’ ’ )’

b1y lay ceey tn JisJeyeee9dn

then
Ty, = gk(fl(Il)7 "'7f‘m(Il)) = gk(f1(12)7 --°7fm(12)) = Tjp»

hence %, = j for k =1,2,...,m and so I, = I,. It follows that the
set § contains at most as many elements as the set 7. Consequently, there
are at most 2™ substitutions in 8 and the theorem follows.

Proof of corollary 1. As 2"—2™ is positive, it follows the
existence of I such that some operation f;(I) depends on exactly
two variables.
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Proof of corollary 2. By a theorem of K. Urbanik (see [8]) and
using the just proved theorem, it follows that in this case the set S ()
is of one of the following forms:

(i) 8(A) = (2,3,...). In this case there is nothing to prove.

(ii) S(A) = (2,3,..., R) with some R, and A being a diagonal
algebra (see [5] for definition and properties). But in a diagonal algebra
all minimal generating systems have the same cardinality, which
contradicts our assumption.

(iii) S(A) = (2,3,...,R) v (R'+1,R'+2,...) and YA being of the
form %A = (4, {d} v F), where (4, {d}) is a diagonal algebra of dimension
R and F is a set of operations such that the set of all algebraic operations
of R variables of (4, {d}) coincides with A®. From the properties of
diagonal algebras it follows easily that all bases in A® have the cardin-
ality R and no set of less than R elements can generate A%, contrary
to our assumption. The corollary is thus proved.

LEMMA 2. If the algebra A™ (n # 0,1) has a system of generators
consisting of one element, then (2,3,...,n) = S(A).

Proof. Here m =1, and so we have

$i=gi(f1(m19---7wn)) (t=1,2,...,m)

with suitable f,e A™, g, ..., goe AY.
Let Fr(®yy .oy ) = f1(@yy ooy Ty Tiey ...y ) for £ =1,2,..., n. The
operation F} depends on k variables, because for ¢ =1,2,..., k

@ = gi(Fr(ry ...y @)

and so the lemma is proved.

To prove the theorem in the case m = 1 it is now sufficient to
observe that if A™ has a system of generators consisting of one element,
then by repeated application of lemma 1 one can obtain the existence
of arbitrary large N such that A has a system of generators consisting
of one element, and the result follows by lemma 2.

LEMMA 3. If the operations @,, gsy ..., gn Satisfying (2) with m <n
depend on at most one variable, then S(A) = (2, 3,...).

Proof. Suppose gi(z,,...,,) depends on the variable x only.
As n > m, there exist ¢ ## j such that k; = k;. Then
Ty = éi(fki(wl7 sery $n))7
&y =gf(fki(a717---’wn))7 where éa(m) = G2, 2, ..., 2).
If now F(x,y) = fy,(»,...,2,y,2,...,2), where the variable y is

substituted on the j-th place, then the operation F(x,y) generates the
algebra A® and the lemma follows by the just proved part of our theorem.
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LEMMA 4. Suppose the operation f(xy, ..., x;) e A® depends on s # 0,1
variables x; , ..., x; . Suppose the operations f,, ..., f1eA® do not depend
on r variables x;,...,x; . Suppose, moreover, that there exist h;(Yo, Y1,
vy Y) e AU (5 =1,2,...,7) such that
(3) Ty = h:l(f(wly vy @)y J1(@ry ooy Bh)y ooy fe(@yy ey mk))
holds for j =1,2,...,7r.

Let Fy(uy, ..., u,) be algebraic operations depending on all variables
Upyeeey Uy, (1 =1,2,...,7) and suppose that the mapping of A% in A
induced by F; is a mapping onto A.

If now

G(uf, ..., '“’;ll)’ uf, ..., ué?, cey Uiy, uz(':.)’ Lipy 1y ooy i) = (@1, ..oy )
with @, = Fy(uf), ..., ud)) (j=1,2,...,7),
then the operation G depends on all variables u(’,...,; , i.e. it is an
operation depending on exaclly z,+ z,+...+ 2.+ 8—1r variables.

Proof. Let r+1 < p <s. As f depends on the variable x;,, there

exist a,,..., a4z, beA such that
flay,y ..., &) # fag, ..., @i,—1y b, LS PR a).
There exist c{",...,¢{’eA such that for j =1,2,...,r we have
Fj((}?), ceey Cg)) = aij. Then
Gel", .y ap ey a) = f(ay,.., a)
# f(ay, ..., i1y b, Bifyt1y ooey ax)
=G, ...,¢0, a,y..., @y by i,y ey B)
consequently, G depends on the variable j, -

Now put in (3)

@y, = F;(u, ..., ug)) for j=1,2,...,r.
It results
Fj(uii)’ MR u;:'))

= hf(G('“(ll)a ceey “a(z:)’ Bipyrr oo Tig)s J1(@ry ooy Ta)y ooy fe( @1y o ey wk))’
because the operations f,, ..:, fi do not depend on x;; and so do not
change after the just made substitution.

It follows that @ depends on every variable u{’,...,u{), because
otherwise the operations F; would not depend on all variables. The lemma
is thus proved.

Proof of theorem II. Thus m = 2. In view of lemma 1 it is
sufficient to. prove that (2,3,...,n) =« S(2). Suppose that 2 <r < n,
and r¢8(A), i.e. A” = A"V, In view of theorem I we may assume
that r 2. From the same theorem we infer that there exists such
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1,..., n
7 =( y ooy )
Gry ooy Ay
(1 <a; <r, and all numbers 1,2,...,r occur among a,,...,a,) that
one of operations f,(I), fo(I) depends on at least two variables. We may

freely assume that fl(I ) depends on at least as many variables as f,(I)
does. We have

a substitution

fill) = oy (@5 ...y 2,_) and fo(I) = P2y g ooy &y,_ )

with 1 < %, jr <. Suppose that ¢, depends on ; , ..., #;, and ¢, depends
on &, ...,;, where t <s <r—1.

In the sequence %, ..., %, j;, ..., j: must occur all numbers from the
set (1,2,...,7), because z, = gi(p,, ;) for +=1,2,...,n Conse-
quently, ¢, has to depend on at least »r — s variables on which ¢, does
not depend. Moreover, we may assume that at least one of the opera-
tions g; depends on two variables, because otherwise we could apply
lemma 3 to get the desired result. Let ¥ be this operation. Now we can
apply lemma 4 with f=¢,, fi=¢s, =9y, F,=...=F,_,=DF1.
It follows the existence of an algebraic operation depending on exactly
2(r—s8)+s8—r+s8 =r variables, in contradiction to our assumption.
Thus A" %= A", hence reS(A), and so the inclusion (2,3,...,n)
< 8(2U) is proved. As observed before the theorem follows.

Proof of corollary 3. Suppose m = 3. If 3¢S (2), then the opera-
tions ¢,,..., 9, depend on at most two variables. Without restrictions
we may assume that n >10 by lemma 1. Suppose g¢;(x,, Ty, T3)
= hi(wy,, @) for © =1,2,...,n. There must be at least three indices
’1:1, 7:2, 1:3 such that kil = kiz = ki3 and lil =, = . Then

2
Ly = hi,-(fkil(wu sy wn)yflil(wu sy mn)) j=1,2,3.

If we put here x; = &; for all ¢ +# i,,17;, then we see that the
operations F'; and F, which result from fkil resp. fli, by this substitution
form a set of generators for the algebra 2A®, and from theorem II it
results S(2A) = (2, 3, ...) contrary to our assumption that 3¢8(). Thus
3e8(AU), and the corollary is proved.
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