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The number of solutions of a system of equations
in a finite field
by

CuarrLes WiLLS (Cleveland, Ohio)

1. Introduction. Let GI'(g), where ¢ = p% p prime, denote the finite
field of order g. Let %, ..., ku, 8y, ..., 8; denote positive integers, a,, ..., a,
nonzero elements of GF(q), and b; (¢ =1,2,...,n,j =1,2,...,t) arbi-
trary elements of GF(¢). Let

(1.1)

j=1
We consider the number N of solutions in GF (¢) of the system of equations
i
(1.2) Y=+ Ybyay  (i=1,2,...,n)
Fe=1

where for ¢; as in (1.1)

(1.3) 6 #0 (6=1,2,...,n)
and
(1.4) Wp # ape; (0 FE Ry, b =1,2,...,n).

L. Carlitz and the author [1] proved that fort =1, N = ¢+0(¢*?)
as ¢ — co. Here the following generalization is proved:

TuroreM 1. The number of solutions of the system (1.1) satisfies
N =q40(") (g o).

As in [1] the proof uses the Riemann hypothesis for an algebraic
function field over GF(g), proved by A. Weil [3]. If we use a weaker
result of Davenport [2], we have

¥ =¢+0(")

for some ¢ > 0.
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2, Preliminary lemmas. We shall use the following three lemmas.
The first two are well known. The third is proved in [1].

Let x, v denote characters of the multiplicative group of GIF(g)
and put

(2.1) e(a) = @™ (acGR(g)),
where -
ta) =a+a ... 4a" .
Also put
() = D) ela)x(a)
a
Then we have
LemMA 1. The quantity
le()l = ¢, T
X F Xo
T(1) = —1, ’

where y, denotes the principal character.
Let ¢ > 0 and put

= Ye(al') (aeGF(q)).
[

LEMMA 2. For a #0
?

B(ayt) = >'y(a)7(F)
3

where the summation s over all nonprincipal characters such that y;t = 1.
Now let >0 and Ay, ..., %, be arbitrary positive integers. For
i=1,...,r let y; denote a character satistying
hy .
(2.2) wi'=y, (0 =1..,7.
For r > 1 put

Ty = T(0y...y¢)

D e(erhte e d) py () ol ()
2,

I

Aereshe
where the summation is over all My ooy 2 eGR(g) for which 4y -b... 44, = 0,
the y; are any nonprincipal chalacters smtlsfymg (2.2), and ¢y, ..., ¢, e GF(g).

We then have
LeMMA 8. If piwg...p £ 9y or if of,...

To(eyyony0p) = O(g" V0

y 6 are nob all equal, then

(r = 2).
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3. Proof of Theorem 1. Let L be the set of n-tuples (4, ..
X the set of t-tuples (wy, ...,
of elements of GI(g). Then

vy n)
Ym0
x), and Y the set of n-tuples (y,, ..., ¥,),

i
(3.1) "N = ;10[2:‘ A ((li‘|‘£brijm;f—y€“)]

n

=D (22 “) Z”(;: glibﬁ-’ﬁ?")eF 2_? /h-!/fi).

L de=1

Let L, be the set of r-tuples (4,, ...,
and let ¥, be the set of (y,,...,

(3.1) containg (7;)

) of nonzero elements of GI(q),
9r) of arbitrary elements of GF(g). Then
terms like

r t
(3.2) " 5’ ( z a) 2 ( > > by e(— 2,1 o)

[ X, Py =1 f==1

(j =1,...,t have been obtained from
by; by renumbering (in a different way for each of

where a,...,a and b,,-,...,b,/
Gyyoeny Oy a0 by, ..,

n . .
the ( ,r) oceurrences) in such a way that, after renumbering, A, 2,... 4, # 0,

ppy = ... = A = 0. Conditions (1.3) and (1.4), with » replaced
by 7, now hold for a,...,a. and by, ..., by, since these conditions are
symmetrical.

We now decompose (3.2) further. After another renumbering, if
necessary, we have for some », 0 < v <t,

’ 0 j=1,...,u
(3.3) DT S A
= =0 (j=u+1,...,1).
Let X, be the set of u-tuples (@, ..., x,) of arbitrary elements of GF(g).
Then. (3.2) is composed of

i=1

)fenm (cach the result of a different renum-
bering) of the form (3.4) for each v = 0,1, .

(3.4) gl “Z (Z At )2(5( §1 22 711;0”1)2 (*EANJ?{)
(2533 Tl
q"‘”‘i““M(r, wy.
Now
M(r, u) =Z (21 (L,)ﬂb(zlibm&)n — iy )
I, =l =1 i=l

which by Lemma 2 is

ge(zziai)ﬂ%% (Zhbw) T(W)ﬂ%w(—
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which becomes
» u r r U r

38 X [Tetwa [] et Xe( Y mas) [Tw—=2) [T (3 2idas),

7,y i=1 j=1 I, i=1 i=l j=1 i1
where ¥, ranges over the rtuples (y,, ..., w,) of nonprincipal characters
such that ¢l = g, (4 = 1,...,7), and &, ranges over the u-tuples (py, ..., Pr)
such that ¢f =g, (j =1, ..., u).

The inner sum of (3.5) is

.
(3.6) n"/’i(cikl)TM_u( ’—cl—lalu“‘cz—lam M) —(';'_lar: 0,..., 0)
=1
w
where now ¢; = 3b;(i=1,...,7) and ¢ %0 (i =1,...,7) by (1.3)
f=1

and the fact that the ¢; are symmetrical in the by so that the renumbering
is irrelevant. Now the first » terms —¢7'a; (4 = 1,...,7) are all different,
50 by Lemma 3,

M (7 w) = O(gHFOHRD) = 0(+18) (0 <r <),
but
. M0, ) = ¢
Hence
-1 n t
qu — gn+t+ Zo(qw!-u)_i_ 2 Z q“”_r_“()(q”“'”z),
U==0 Ta=l U=0
so that

N = qt_l_o(qt—lli)
as was to be proved.
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Corrigendum to the paper
“On a theorem of Bauer and some of its applications”
(Acta Arvithmetica 11 (1966), pp. 333-344)
by

A. SomNzen (Warszawa)

In Theorem 4 (p. 335) the assumption must be added that the
multiplicity of each zero and pole of g(w) is relatively prime to =/p.
Without this assumption the theorem is false, ag the example (1) p. 115
of the paper “Polynomials of cortain special types” (these Acta 9(19064),
pp. 107-116) shows.
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