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ACTA ARITHMETICA
XIII (1967)

Interpolation of the Dirichlet divisor problem*
by

HArROLD GEORGE DIAMOND (Princeton, N. J.)

1. The classical divisor problem of Dirichlet is that of finding an
agymptotic estimate ag # — co for the number of ordered pairs of pogitive
integers (m,n) whose product does not exceed x. In the language of

z

multiplicative convolution, the problem is one of estimating [ dn*dn,
1
where dn is the counting measure of positive integers. The estimation
T
of [ dn®, the k-fold convolution of dn for % some positive integer is also
1

well known ([5], Ch. 12).

In this paper we give a reasonable interpretation to the expression
dA” for z an arbitrary complex number and d4 any real valued Borel
meagure on [1, co) with positive point mass at 1. Moreover, we shall
show that there exist numbers ¢; = ¢, a positive number ¢, and a function
J = J (@) = (loge)* such that as z — oo

P 7
(1.1) fcln" = Z ¢ra(loga)*~"+ O (wexp {— (logz)*}).
1 F=1

Let {(s) be the Riemann zeta function and 2 a complex number.
The branch of £(s)* which is real and positive for s and 2 real and s > 1,

2> 0 has a Dirichlet representation > an,n~°%, and the problem of esti-
o

Ne=l
mating [ dn® may be rephraged in zeta function terms as the estimation
1
of 3 tng.
n<x

* This paper was prepared while the author was an N. 8. F. postdoctoral fellow
at the Eidg. Technische Hochschule in Ziiviech and at the Institute for Advanced
Study in Princeton.

I want to thank Raghavan Narasimhan for bringing Selberg’s paper to my
attention and for suggesting several improvements in the present paper.
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This type of problem has been considered in [2], [3], and [4], and

asymptotic expansions for f dn® have been produced. In the present

1
paper, the error term of (1.1) is obtained.

Our method depends on the representation of a measure by an
exponential, and has been exposed in [1]. This method requires the assump-
tion of the prime number theorem with remainder term. As a converse
to our main result, we show how knowledge of the asymptotic behavior

@
of fdn® leads to the prime number theorem.
i

An idea important to the present problem, that of an exponential
of a measure, has been sebt out in detail in a previous paper [1]. Conse-
quently, we shall only give a sketch of this material here.

2. Let O denote the collection of complex valued set functions with
support eontained in [1, co) which, when restricted to bounded Borel
gets, are finite measures. In the sequel, “measure” is always to be under-
stood as “element of M? and “set” as “bounded Borel set”. Measures
will be represented by such symbols as d4. The agsociated distribution

€Z @

+ @
function A (x) is defined to be [ dA, which we write more simply as [dA.
1— 1

Define dA*dB, the multiplicative convolution of the measures dA
and dB, by
[ ad(s)aB),

sleEl

leA*dB:
B

for B any set. dA*dB also belongs to I and satisfies the following
equation:

[ad+dB = [ A(@fdB() = [ B@jt)aA).

Let dp be the measure which assigns the value 1 (resp. 0) to any set which
includes (resp. excludes) the point 1. (M, +, *) is a commutative algebra
over R or C with dp as unib. Define d4° = dp for all ¢4 ¢ and 44"
by dA"™ = dA™'*dd, n =1, 2,... A mapping L: M — M iy defined by

[Lad = [logtad(t).
i il
I satisfies L(dA*dB) = (LdA)*dB-+d4 +(LdB).

A set of seminorms [|*|ls, 1 <& < oo, is defined on M by the total
variation of an element of M on [1, #]. These seminorms induce a topology
on M satisfying the first axiom of countability. For each we[1, o),
(M, 4+, *, ||"|), the normed algebra of restrictions of elements of m
to [1,«], is a Banach algebra.

icm®

Interpolation of the Dirichlet divisor problem 153

We say that a measure @4 <O has an inverse if there exists a dB <M
such that d4 =dB = dp. If an inverse exists, it is unique. The invertible
elements of M are precisely those with non zero point mass at 1, and Wé
designate this subset of M by M,. An inversion formula that’ will be
of use later is the following: (dp - dt)*(dp — dt/t) = dp, where dt is Borel-
Lebesgue measure on [1, co). '

If d4 is an arbitrary element of 9N, then there exists daeIM such

i sy s . ad
that d4 = ™, where the exponential is defined by Y da"/n! and is con-
M=)

vorg‘en? in the topology of M. The meagure da, which we call the logarithm
of d4, is uniquely determined, modulo 2=idp, by the following equations:

Lda = (LdA)*dA™" and
da{l} =log(d4{1}).
Conversely, a pair of measures da and d4 which satisfy (2.1) also

. . d
satlfi‘!fl{dfhe equation d4 = ¢ If d4 = ¢™ and dB = ¢®, then dA+dB

(2.1)

In particular we have the following exponential formulas which we
T

willlater need: dp 4 dt = ¢%, where () = S (A—t"Nadtflogt; and dn = ¢
{ ’
wheve II (1) = }1/k, the sum extending over all numbers of the form

Ik . s .

P% p a prime and % & positive integer, satisfying p* < 2. In consequence
of (2.1), these formulas are proved by establishing the truth of the
following equations:

L dv = {L(dp-+ at)}*(dp + dr)~* Lall = Lanxan™.

Alternatively, the exponential formulas ma; i i
. PO ¥ be obtained by appl
the Mellin transform: v

and

Ja~*(dp (2) + da) = s/(s—1),
f.‘n”“(l-n () = £(s)

fm—sdr(m) =logs/(s—1),
fw”“dﬂ(m) =log&(s).

From the exponential representation we see that any measure d4 ¢,
Dossesses precisely n distinet nth roots in 9N, where an nth root of d4
is a measure dB ratisfying dB" = d4.

For da a logarithm of dA, the nth roots are given by

dBk = W GM/n,

wp; an n'(‘fh root of unity, ¥ =0,1,..., n—1. The dB; are nth roots and
are distinet. Any ath root of d4 is itself a member of 9N, and as such
has an exponential representation dB = ¢®. Since

and

ndb = da (modulo 2nidp), db = da/n (modulo 2=i dp[n),
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and

dab __ 6da/n+2nikdp n dajn

8 = (€

Thus our list of nth roots is exhaustive.

Let My, be the subset of 9N, consisting of real valued measures
with positive point mass at 1. If dA <My, by (2.1), there exigts a real
valued de whose exponential is dA. If 2 is an arbitrary complex number
and dA eMy,., define dA° by dA? = %, where da is the unique real
valued logarithm of d4.

The following three remarks show our definition of 44 to be a reason-
able one. We agsume here that ¢4 eM,, and we have gelected the deter-
mination of the logarithm da which is real at 1. First, in the case that
¢ is a rational number p/g, d4° already exists as (AAPWT or (gAMTP,

I we take the determination of these expressions that is positive at 1,
they each equal &1 Thug the new definition of d4” agrees with the pre-
vious one in the case that both are applicable.

Second, suppose ¢ is a real irrational number and {z,} is any sequence
of rational numbers whose limit is z. Assume further that for each n we
have selected the determination of dA which is positive at 1. Then
dA® - §A® in the topology of 9R. The proof of this statement follows
from the continuity of the exponential map ([1], Ch. 2).

Third, under suitable convergence hypotheses, the Mellin transform
of a multiplicative convolution equals the product of the transforms. Our
definition of zth power interpolates this property to non integer values
of 2. Specifically, assume that there exigtys an n such that as z — oo,

f |da] = 0(z").

1

Then the three Mellin integrals
f 2" da(x),
exist, at least for Res >z, and on this set

[am*a4%(@) = {[o* a4 @)}

f o *dA(z), and f a~dA® ()

Tn the sequel we will want to express zth powers using the binomial
theorem. We now prove this representation equivalent to that given
by the exponential. With an obvious normalization, assume dA {1} =1

LEmMA 2. Let d4 = ¢ = dp+dB, with dB{1} = 0. For any #<C,

)

g = Y (j) dB'.

J=0
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Proof. If # is a positive i r, 670§ i
- T ve integer, ¢** ig the z-fold convolution of a4,
2

y (j) AB' = (dp--ABY.

7=0
Each is equal to ¢4° and there is nothing more to prove
If z is not a positive intege = 2\ iy -
p nteger, set dg = )} i dB x¢~"% Tt suffices

to prove that dg = _dp. The erux of the argument is to show that Lig =0
which in turn implies that dg = 0 on (1, co). Verification that d {1} = 2{
completes the demonstration that dg = dp. “i =
In the rema.inder of the argument we shall make rearrangements
of ;.md do .tern‘lwme operations on power series in measures. The justifi-
f:a,tlon,-wyhmh is analogous to that for functions of a complex variabl
is explicitly carried out in [1], Ch. 2. *
Recall that for the operator I the followi ion i i
axbitnars QA ad 2B owing equation is valid for

L(dA*dB) = (L dA)*dB+dA*(L dB).

Thus
o0 (=]
Ldg = 2(;) JAB s LaBw ey )_:'(j) B+ "% (— 4T da)
’ F=1 F=0 '
By (2.1),
Ldw=1I 1o -
Thus o (dp+dB)*(dp+dB)™" = (LdB)*(dp-+dB)™.

Lig = e“”d“*LdB*(dp+dB)‘1*{2 (j) jAB s (dp+dB)—z Y (j) dB’}.

The last “factor” of the convolution may be rewritten as

Sl a0+ ()i- () o

The three terms in the curly bracket sum to ze ‘all § 7

Ldg = 0. This completes thS; proof of Lemma (;0, oraly =0, and thus
' We‘ conclude this section with the remark that while membership
in M, is a sufficient condition for a measure to have nth roots, it is by
10 means necessary. An example of a meagure not in 9N, Which, has nth
roots is df which, for each positive integer n equals {(log#)~'d¢/I'(»)}",

“with » = 1/n. This is go since the Mellin transform of (log?)’~*dt is

TI'(»)(s—1)~, and the claimed representation holds by the Fourier

“uniqueness theorem.
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3. In the previous section we established the exigtence of zth roots
of arbitrary measures in 90, . We now consider the problem of estimating
the asymptotic behavior of f dn®. Our method depends on approximating
dn? by (dp -+ dt)°, and we blegin by deriving an asymptotic formula for
f - a

THEoREM 3. Let 2K, K a compact set, define

Tolw) = [ (dp+at),
1

and for n=1,2,... let

z-—l)2 I'(n)

(3.1) Oy == lny = (n—l T'(2) .

There exists o constant & depending only on I such that as @ — oo

logz

(3.2) T,(z) = D) anz(loge)"+ 0(loghw).

The 0- is uniform for ze K. Further, if € =z, = 2, (K) and N is any number
less than }loga,

N
(3.3) T, (%) = 2 an(loge)"+ 2ay 6z(logm)™ Y + 0 (log" ),
n=1

where 8 is @ number of modulus smaller than one. If z is any positive integer,
the series terminates after z terms and is exact.

Remarks. 1) It is important to note in (3.3) that , is independent
of N; otherwise we would have only an asymptotic expansion, which
is inadequate for our purposes.

2) We soon will see that

1 & I'(n+e)

T {2) = ﬂ'z—)

~ - (loga)™.
< I'(n+1)2
The series i a generalized hypergeometric function of loga and is known
([61, [7]) to have an asymptotic expansion. However, we know of no
treatment of this function which yields an error term of the type given
here.

3) Omne might suspect that an asymptotic series whose terms initially
decrease and then increase would best be approximated by terminating
near the term of lowest value. For our function, that proves indeed to be
the case.
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Proof. It is always assumed in what follows that 2 belongs to a com-
pact set K. Under this restriction, all estimates will be uniform in . The

constants arising in estimates will be denoted by %, and may have different
values in different places. ‘

If # is a positive integer we note that

To(@) =1, € >1 and T,.(2) = fj!z(m/t)(dPJI_dt).
1

The proof in this case is completed in the obvious way by induction
Henceforth we assume that 2 is not a positive integer. We represent

(dp+dty’ by (dp—t~'dt)~° and expand the latter measur ; i
theorem: easure by the binomial

T,(0) = j(dp—t_ldt)‘“ - 2(;z)f(—t‘ldt)" - Zw‘(;z) (—loga)[j!.

7=0

For z not a negative integer we write (_;z) as (—1) _Tleti) giving

_ I()r(j+1)’

the claimed generalized hypergeometric function. ok
For y > 1, set

oo

Py = 3 (7) (—oVsit.

=0

We will r'epresent F Dby a finite series plus an error term. The method
of proof is to represent F' as a contour integral, appropriately deform
the contour, and expand the integrand as a series in gyt

The contour integral. By evaluating the residue at the origin,

1
Py =5 [a—yeetcia,

[t}=r

where 7¢(0,1). Setting v =1—1%, we have

. -1
7o) = 57 [ e
& & —_— —_ U

where € is a curve of winding number 1 with respect to % = 1 and which
does not crogs the negative real axis. Let € = €,—@,, €, the circle
# = 1--ye* with 0 varying from —n-+0 to n—0 and €, a curve from
1——.y—i0 t0 1—y--40 which does not cross the negative axis and is at
positive distance from the origin. We have

[ = 0",
€1
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and thus
1 .
Ply) =5 f +0(")
g
2

We want to let €, come near the origin. If Res < 1, this may be
done with no further changes. If Rez =1, we first integrate by parts

g = [Rez] times and obtain
2¢--1
1 I'(l—e) = { 9 } —n &
Fy) = ex 21’,1 1—w)""du-0y"
() 27:’L ( z) P 1w Py () ( ) FO(y )y
where #' = 2—gq and the P,’s are some polynomials. The exact form of

the P,,’s does not concern us, but we note that Py, is of highest degree, g.
Note also that since # is assumed not to be a positive integer,
(1—#)[I'(1—2") is finite.
Now we take €, as a curve along the (slit) negative axis from 1 —y—i0
to zero and back to 1—y-¢0 and write

I'(l—z)

sin e’
Ir(1—2')

Ply) = fy)+ 0",

~re
Y-1

fl) =f t'”'exp{1+t1213 (A5 "at

9
msion of the imtegrand. Now, in place of exp {lek:t—} we write

7
élex, L} and set # = ty/(1+1%):

Y1
N = D Puy)yf T [ a”
n T=0

z:(l__w/y)z’-[-n—-ze——mdm .

Expand w+"~% in a power series in afy about the origin.
For fixed series is absolutely and uniformly convergent for
0 <oy — have now

d y—-1

— g o1 2Fn—2) . g !
F@) = & 3P}y g( Y o [ e,

Estimate the integral differently, depending on whether or not j is
less than y: If j <y,

¥-1 ) o0
[ @6 %o = I'(j+1—2)— [,
-1

0 v
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and

‘ f |<ma«zw+‘l-~ ¢ f o2 < kg (y— 1Y eV,

azy—1 -1

-1

If j >y, we estimate f #~%¢"ds by (y—1) times the maximum of the

integrand on [0,y —1]: | f | <y (y—1)**e™Y. The constants % and %,
[}

are independent of y and j.
‘We have

«GZP

( 2 ) (—1)9" 1T+ 1—2)+ E(y),

E‘(g/): {2‘13” 2

e

o J
=0l M-y} = ot
i=0

Rearranging the series for f in decreasing powers of y, we find that
there exist coefficients b; = by, and a number % = k(K) such that

f) =¢ D byt o0,
0<si<y
Il—2) sinnz

Recalling that &' +¢ = Tl—z+q)
—_— kil

z and setting a;,, = (—1)

7
we have an expansion of the desired form.

Bvaluation of the coefficients. The simplest method we know for
finding the a; is first to do so under the assumption that Rez < 1, and
then show that the formula is valid to the right of that line.

If Rez < 1, we need perform no integration by parts, ' =2, and
FPu(y)(1—u)™ = (1—u)"". We find that

, ) I(j+1—2)(—1 51+ 00",

sinme —1
ry) = 3 ("
®) —— ¢ ;

0<j<y

and, by the fact that I'(1—
(3.1).

2)I'(#) = n/sinme, the numbers a; are as in
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If Rez >1, we proceed inductively, using the following relation
between T,,, and T,:
T.(x) szH (dp -+ at)~ —fl’z+1(r/t (dp — " dt)

x

= Loy (@) — [ Moy, (1)1 d.

1

Now replace T, by its asymptotic expansion and repeatedly integrate
by parts the expression

Za'n..-{-l f 10gt) - dt.
Ty

We find the following equations eonnectmg {@nclney and {dyop iy
(3.4) awh—-—Za’,ZH. —— o =1,3,...

We know that formula (3.1) is valid for Rez < 1. Assume its
truth for Rez < ¢, ¢ an arbitrary positive integer. Solving equation (3.4)
recursively for a;.,;, j=1,2,..., we find that (3.1) is valid for
Rez < ¢+ 1, completing the induction.

Formula (3.3) is established by using (3.2) and estimating

logz

Zanw(logm)z‘“ by the geometric series aya(loga)™V 2 (2/3)" on N1

n\slogw and by (2 logm) (maw(logm) W) on 2 logm] W< n <loga.
This completes the proof of Theorem 3.

4. In this section we apply the results of the eavlier sections to the
x

problem of estimating [ dn®.
1

TarOREM 4. Let dn be the counting measure of positive integers, 2 ek, I{
@

@ compact set in C, and N, (x) = [ dn’. There ewist numbers Gy = Cy, O POST-
1

e number o, and a f'mz.atimz J = J(x) = (logo)* such that as z - oo
N, (z) = Zc,m(logm)’“j—{—O(wcxp{ (log@)*}).

The estimate is uniform in ¢ for z¢ K. The {es} are defined by the formula
2—n 2 I'(m) n
2(-%) (o) P e,

F(s) = Fa(s) = {L(s)(s—1)/s}"

where “
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ond o' = af(1-+a), where a is a number for which the inequality
T
lx— flogidﬂ(t)} < Azexp {— (logx)?}
1

is true for all sufficiently large .

Remark. If z is a positive integer, ¢; = 0 for & > 2, and our result
reduces to a form of the classical theorem on the divisor problem. Our
method is of little interest in this case, since the usual proof ([5], Ch. 12)
is simpler, makes no appeal to the prime number theorem, and gives
a sharper error estimate. However, the classical proof applies only when #
is an integer.

Proof. In order to compare N (x) with T,(z) we need some integral
estimates which we give here.

LeMMA 4.1. Let v(x) and II(x) be as defined in Section 2. Let v(x)

z .
= [t (@l —dv)(t) and assume the prime number theorem in the form
1

flogtdﬂ(t) = 54 O (vexp {—log“=}).
1

Then »(z) = O(exp{——log“w}).

Proof. »(x) = [ — f The first integral is convergent and may be
1

evaluated by noting tha,t;

[r* (I~ dz) = log {£(s)(s—1)/s}.

1
Since the last expression tends to zero as s — 14, we have, by Abel’s
o
continuity theorem, [ = 0.
1

The second integral may be evaluated by partial integration, with
the aid of the prime number theorem, giving

0 ( exp{ 10(gl;g il )+ 0 {fexp(—]og“t)

tlogt}'

If & is sufficiently large, the last integral is less than
exp(—log®z)logz f t~tlog~*tdt = exp{—log®s},
@

and the proof is complete.

Acta Arithmetica XIIIL 2
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LEMMA 4.2. Suppose that |v(z)| < Agexp{—Ilog°z}, 1 <@ < oo. Let
m(x) = f (Av)". Then there emists  constant A, such that for each positive
imteger 7; and all » =1,

[Pa(@)] < ndqy(210glog em+- A,)"texp {~— (n"logm)*}.

The proof proceeds by using induction on n and the representation
Uy () = fx dv,*dv. The convolution integral iy cvaluated by iterated
integmtiort — in one order over one region, in reverse order over another.
The details are carried out in [1], section 3.3.

LeMmA 4.3. Let

(%) = @u(z) = fcz"’”——l and o' = af(l+a).
For b = 2(1fa")M?, 1
p(x) = O(exp{— (blogz)*}).
Proof. By the preceding lemma,

lp(2)] < 4, Z 2" (21oglog e+ A )" exp { — (0~ log )} /I (n).
1

N o0
Take N = [(logw)”(logloga)™*/*] and write the last sum as 3 -- P
1 N1

N
E exp{— (N"'loga)"} 4, |2|exp {2 |¢|loglogew+ A, |2}

1

< kyexp{— (logwloglogz)”} (loga)™s,

ZO: < 4, S‘ [ (2loglog e+ A, Y~ [I'(n

N+1 N+1
< 24, eV (21oglog w4 A )Y (N 1)
< kexp{—j(logwloglogz)®}.

Adding the two sums we find that
¢(@) = O (exp{—L(loglogm)* (logm)*}),

which is somewhat more than was claimed in the statement of the lernma.

The (loglog®)® factor has been deleted and the b entered in the interest
of simplicity.

Leyma 4.4,
E
fez(dn_dr) = (mexp{— (b’logw)“'}),
1

any fiwed b' satisfying 1 < b’ < b.
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Proof. f ez“w‘d’) = f 1%, since multiplication by ¢ is a homo-
morphism Wlth respect to multlphcatlve convolution. Now the last integral
equals 1+ j tdp(t), and the proof is completed by integration by parts

1

and use of the preceding lemma.
Proof of the theorem. We have

T @z

N (z) = fezdn — j (sz*ez(dII—dz)

i i
Vo VZ aft vz

e dl 3 11— dl) moivm 2(dT—dx)
= [ T,(t) -4 1} { 1f A )}cZTz(t)—-l’z(lm)‘lf ¢
1

= I+ II4-1IT.
II and IIT may be estimated by using the leading term of the asymptotic

v
approximation of 7, the estimate of [¢**~%), and the fact that
1
14T, = 16€%] < P < = (dp + )" < dp+ Ty dt-+ Fo(logt)™ 1 dt.

We find that

N.(z) = f T, (/1) OO 4 0 (we™).

"In the last integral, i lies in [1,1/5]. By (3.3) we may estimate
To{zft) by ;
@ z\" @ w)*""
= ] = Zar{log =
7 Zan(logt) +26taJ( ogt ,
Tax 1
with J = (log@)* < }loga <tlog(#/t). Using the fact that ay = 0 {I'(J + %)},
we find that
@ z—J
ay (logT)
Vz

v
[ 20
b=l t

< 20|(logVay~7 IP(T+ ) [ 167 = 0(we™).

1

‘ 6z(dr[— dz) ]

To evaluate

Ve J

@ z\*" )
DX
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we write

21 2—n
(log %) as  (logw)®™" (1 — _l_og_t)

logx

and expand the last factor by the binomial theorem. We must now estimate

Vz Vz
[ (—logty ™ = [ (~logty (dp -+ dp) (1).
1 1
) w . o0 00
For j < J = (loge)”, write the last expression as [ — [. As in earlier
arguments, toore

[=P01) = {{£()(s—1) 57}V, .

1

]/f_ is estimated by integrating by parts and using Lemma 4.3 and the
fact that for b = 2(1/a")"'*, log'texp {— (blogt)*} is decreasing for ¢ >V,
We find that

l f.< A(logVz) exp{—(blogVa)}.
Ve

For j>J, log’texp{——(blogt)‘”} is increasing for 1 gtsﬂ/;, and also
in this case

Va
kf (—10gt)id¢(i)‘ < 4 (log Va )+ exp {— (blog Va)*}.

The same constant 4 is valid for all §, 0 <j < oo.
We now have

Vo J w o
f Z @y (log E) A0
=1 n=1 ' ?
J J
hl a,
=1

=nz aloga)=" '(*7") 7¢(1) (loga)™ + R (),

=0
where R(z) is of the order
J o0 —
e s—n\| (QogV )+t —
Z]anm(logm) ]2 ( ; )’ fogay exp {— (blog Vo )*}.
No== =0

. P —mn —_N—
To estimate R, majorlze( j ) by ( "j [z|)< —1Y and sum the series

in j .to yield & 2"logs. The series in may be estimated by its first term,
for its terms decrease geometrically. We find that R () = O (we”).
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We change the order of summation of

J

J
Z ana(loga)y™" Z (z;n) FP(1)(loga)™

n=1 j=0

to
2J

J
Sy.3 oy

=1 N4f=1 T=J+1 NtJ=1

n,J

Ay

We estimate the second double sum:

~ 2—n I'(n+j+k) .
lay| < I'(n+k); ‘( i ) < ?(‘H)F(j—l—l) H

and, by Cauchy’s inequalities, for ¢ a fixed number between 0 and 1,

\PO(1)] < keI T (j+1).
With these approximations, we see that the second double sum is 0 (we™).
Collecting the various O-estimates and setting ¢; = 3 an(z;”)ﬁ’m(l) ,

we have An=t
J

Na(w) = D) eun(loga)™"+0(ae™),

t=1

J = (logx)¥, &’ = a/(1+a), where & is the index from the prime number
theorem. This completes the proof of Theorem 4.

5. In the present section we prove a converse of Theorem 4: an
assumption upon N,(z) leads to the prime number theorem. We give

three results, for 2 in different ranges. The first of these, with z = —1
is a form of the classical theorem that Y u(n) = o(x) (x the Mobius
n<r

funetion) implies the prime number theorem. The second, with z near zero,
uses an idea that appeared in [4]; namely, to interpret snitably the equation

d
II(®) = —az—Nz(w)lz=o-

The third, which uses any value of z in (0, 1), exploits the fact that N,(z)
and N,_.(2) are o(z).
TamormM 5.1. Let N_(x) = O(wexp {— (ogx)*}) for some a’(0,1)
x

and let li(w) = o+ [(logt)'di. Then, for any fized number g <1,
2

() = li(w)+ O (wexp{— (eloga)"}).
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_ THEOREM b5.2. Let ¢;; be as in Theorem 4, and suppose that for some
integer v = 2 the equation

v—1
Na(m) = D epa(loga)~!+ 0 {w(loga)"}

j=1

holds wniformly for all & in some real interval (0, &). Then, for any fimed
positive number &,

(5.1)

II(z) = li(w)+ O {w(loga)’~"%}.

THEOREM 5.3. Suppose there ewists one value of 2 in (0, 1) for which
(5.1) holds with v = 3. Then

I (z) ~1i(z).
Proof of Theorem 5.1. Let

p(w) = flogtdﬂ(t), p(z) = chlln*dn‘l = n(x)—y -+ R(x),
1 1

where
x
R(@) = [(Ldn—dn*dt+ydn)«dn~".
1
To estimate R note that
v
ldn! = e < o™ = dn  and fL dn—dn#*dt-+ydn = 0 (logy).
1

Let @, = wexp{—(loga)*} and 2, = z/s,.
x wjt

R@) = [ {[ Lan—dneai+yan}in= )+

+ _fl Ny (@t)— N—y ()T dn— dn* Gt i}

= O(wexp{— (logz,)*}log?s),
and this implies Theorem 5.1.

Proof of Theorem 5.2. For # any number satisfying 0 <« |g| <1
we have C ’

with & (Ne(@)— 1) = 1T(2)+ R(),

R(2) =lfn§z “fdﬂ"'/az! = 0(|z;f2¢zm/m) = 0(|2|®).

On the other hand, assuming # lies in (0, ),

v—1

& (W () — 1) = qu%m(logw)z"’—fl—{— 0 {z 'z (logz)*"}.
j=1

hm@
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Take z — (loga)™""* and note that 2 ¢, — I'(j) as # - 0. This gives the
desired result. To obtain a better error term, one estimates the rapidity
of convergence of z7'¢, as z — 0.

Proof of Theorem 5.3. We will show that ¢(#) ~ @, where u(x)

z
= [logtdll(t). Since dn® = ¢ the following formula is a consequence
1

of (2.1):
sdy = 2Ll = Ldn"+dn™".

The idea used here is to approximate Ldn® by measures that are more
easily convolved with dn™® In the classical case (¢ = 1) this procedure
enables one to show that y(2) = O(z), but no more than that. In the
present case we can show that both N,(») and Ny_,(z) are o{z), and with
this fact deduce the prime number theorem.

TEMMA. Let v be any fized number in (0,1). Then

N,(z) = fdfn’ = o(x).

1

Proof. Let
— 4 x
A =T N, (@)|N,(@), 0<N(o)= [ < [ =N(2)=0<4<1.
1 1
By (2.1)
x z
(5.2) fLan =r [ No(/t)dy (1),
1 1

and we estimate the last integral in terms of A using the fact that

& x
[ Nuwldy) = [LaN, = N,(#)loga+0(2)
1 1
and Chebychev’s estimate y(#) = O(x). We integrate the first integral
in (5.2) by parts and conclude that 4 = lim N, (x)[N,(») <rA. Since 4
iy finite and 1—# >0, 4 = 0. This completes the proof of the
lemma.

From the power series of the exponentials, we see that |dn~%| < an’,
for 2 positive. Let

b, = zf (Na(t) — o5t (logt)Y)t™%dt  and

1

by = 1— Copftss(1—2).

Then
[ (Lan®—zdtxdn®-+bydn+bydn’) = 0 (w(loga)™7),
1
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and

z
wp(z) = deaf*dn“z

1

T— &

» @
(2dt*dn’+ by dn -+ bydn®) *dn =%+ O{Itﬂ(logex/t)”‘”dnz(t)}.
1

kg
Integration of the O-term by parts yields O{N,(z)}. Also, Jdn*dn~®
1

= N, (), and each of the last two expressions is of magnitude o(x).
Thus p(z) = -+ o(x), and the proof is complete.
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ACTA ARITHMETICA
XIIT (1967)

Approximation to real numbers by quadratic irrationals
by

H. DaveNpPorRT (Cambridge) and WOLFGANG M. ScaMIDT (Boulder, Colo.)

1. Introduction. It is well known that if ¢ is any real number, not
itself rational, there are infinitely many rational approximations p/q
to & which satisfy
1) |E—plal <q .

Many different proofs have been given (see [1], chapters 1-3). . )

In this paper we investigate the analogous problem of approximation
to a real number £, not itself rational or a quadratic irrational, by rationals
or quadratic irrationals. If o is rational or quadratic irrational, then a
satisfies a unique equation

(2) za*+yatz =0
with relatively prime integral coefficients @, ¥, 2, not all zero, and with
the polynomial
f(6) = w62 +yb+2
jrreducible over the rationals. We define the height H(a) of a by
(3) H(a) = max(lzl, y], |2))-

Our main result is as follows. .
THEOREM. For any real & which is not rational or quadratic @.rmtwa?al,
there are infinitely many rational or real quadratic irrational a which satisfy
(4) |é—a| < OH(a)™,
where
Co if |8l <1,
e i >,

160
and C, is any fiwed number greater than 5~ ==17-77... ) .
The relation between the cases |§ < 1 and |£] > 1 is very simple.

If [£] <1 and & = 1/¢, and if o, =1/a, then H(a,) = H(a) and
[&,— oy = |(§—a) 10yl

(8) 0
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