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and

z
wp(z) = deaf*dn“z

1

T— &

» @
(2dt*dn’+ by dn -+ bydn®) *dn =%+ O{Itﬂ(logex/t)”‘”dnz(t)}.
1

kg
Integration of the O-term by parts yields O{N,(z)}. Also, Jdn*dn~®
1

= N, (), and each of the last two expressions is of magnitude o(x).
Thus p(z) = -+ o(x), and the proof is complete.
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Approximation to real numbers by quadratic irrationals
by

H. DaveNpPorRT (Cambridge) and WOLFGANG M. ScaMIDT (Boulder, Colo.)

1. Introduction. It is well known that if ¢ is any real number, not
itself rational, there are infinitely many rational approximations p/q
to & which satisfy
1) |E—plal <q .

Many different proofs have been given (see [1], chapters 1-3). . )

In this paper we investigate the analogous problem of approximation
to a real number £, not itself rational or a quadratic irrational, by rationals
or quadratic irrationals. If o is rational or quadratic irrational, then a
satisfies a unique equation

(2) za*+yatz =0
with relatively prime integral coefficients @, ¥, 2, not all zero, and with
the polynomial
f(6) = w62 +yb+2
jrreducible over the rationals. We define the height H(a) of a by
(3) H(a) = max(lzl, y], |2))-

Our main result is as follows. .
THEOREM. For any real & which is not rational or quadratic @.rmtwa?al,
there are infinitely many rational or real quadratic irrational a which satisfy
(4) |é—a| < OH(a)™,
where
Co if |8l <1,
e i >,

160
and C, is any fiwed number greater than 5~ ==17-77... ) .
The relation between the cases |§ < 1 and |£] > 1 is very simple.

If [£] <1 and & = 1/¢, and if o, =1/a, then H(a,) = H(a) and
[&,— oy = |(§—a) 10yl

(8) 0
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Thus if (4) holds for & and « then
61— o] < CH(a)™*|£ran] < O(1+e) §1H (a))7°

for any fixed ¢ > 0, provided o is sufficiently near to £ Tlence if C is
a permissible constant for |&] < 1, we infer that C (1 &) £2 is a permissible
constant for |£] > 1.

No particular importance attaches to the number 160/9, which could
be reduced at the cost of further complications.

Apart from the value of the constant, the result of the theorem ig
best possible. For if £ is a cubic irrational, the fact that the norm of
#&"+y£ 42 has a positive lower bound for all integers @, ¥, 2, not all 0,
implies that

|22+ £y +2| > D{max(la], ly], 121)} 7%,
where D = D(&) > 0; and from this it is eagily deduced that if o is a root
of (2) then

[é—a| > D, H(a)™, D= Dy§)>0.

The problem of the present paper is a particular case of one investi-
gated by Wirsing [3], arising from the relationship between Mahler’s
and Koksma’s clagsifications of transcendental numbers (see [2], chapter 3).
In this particular case, Wirsing’s inequality (9) would give an exponent
—2— %1/5 in place of —3; but he is primarily concerned with the more
general problem of approximating to real £ by algebraic numbers of
degree at most n. We have no contribution to make to this more general
problem.

The proof of the theorem will be indirect. We can confine ourselves
to the range 0 < £ < 1. So we assume that for a particular £ in this range
and some C; > 160/9 we have

(6) |6—a| > O H (o)™

for all rational or real quadratic irrational « with H(a) sufficiently large.
This will ultimately lead to a contradiction, and the theorem will follow.

2. A lemma. Let & = (z,y,2) be any set of 3 integers, and write
(M 2] = max (o], ly|, Je}).

If ® + 0, and a satisties (2), then H(a) < |a|.
We shall be concerned with two linear forms:

®) P(x) = 26w-+y,
(9) L(x) = 8+ &y+2.

‘which contradicts (6).
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LemMa 1. There is o number €, < 9/160 with the following property:
if &= (®,9,7), where x,y,z are relatively prime integers, and if || is
sufficiently large, then
(10) [P ()| < Oy leel* | L ().

Proof. Take C, so that 07" < €, < 9/160, where C, is the constant
of (6). If the lemma is false, there will be infinitely many & s« 0 satisfying

(11) 1L(x)] < 07 |P(x)] |oe|®.

We now distinguish two cases.
(a) For infinitely many of these a we have |P(x)| > |&|™". For the
polynomial f(0) = 0*x-+0y+= we have

J(&) = L(x), f'(§ =P(=),
and therefore
IF(& < O (8)] 1ol
() = 21wl < 2| < 2|f ()] |l
We may suppose without loss of generality that f(&) > 0. Let # be the
real number determined by |p— &| = C;|e|~% and (y— &)f'(£) < 0. Then

f(m) = £(&)+(—8f (§)+ % (n— £ (£)
< |f (&)l {07 — 0GR 27} < O,
provided |x| is sufficiently large. Hence f(6) = 0 has a real root a

with |§—a| < 0, |2|~%, and for this « we have H(a) < |&|. Thus we have
a contradiction to (6).
(b) In the alternative case, we have |P(x)| < |2 for all = satisfying
(11) with |@| sufficiently large. From the identity
y:—4oe = P*(x)—4aL(x)
we obtain
[y — dae] < || 40| 05 o] < 1,

whence y2 = 4a2. Since x,y,2 are relatively prime, this implies that
2 = 4uy = +2uv, 2 = 402 where u,v are integers, and now

L(x) = 4 (&u+v)%

_Since |L(z)| is small, and 0 < & < 1, we have 0 < [v] < u| and 2| < w2

By (11) and the hypothesis of the present case,
[gu-+ol* < 07 fl~*.

Taking o = —o/u we geb .

l6—al <05 ™ = 07 H (o),
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3. The sequence of minimal points. For each real X >>1 we consider
the finite set of integer points & % 0 satisfying

le] < X.

The values of L(x) at these points are distinct, since L(x%) does not vanish
at any integer point other than the origin. We choose the unique point
for which L(x) has its least positive value, and call this the minimal
point corresponding to X.

It is obvious that if 2 is the minimal point corresponding both to X’
and to X', it is also the minimal point corresponding to any X between
X’ and X''. Hence there is a sequence of integers

(12) X <X, <...

such that the same minimal point corresponds to all X in the range
X, < X < X;,, but to no X outside this range. Denoting this point by
®;, we obviously have

(13) ;] = X;.

We write for brevity

(14) L; = L(xy), Py=|P(x;).
Plainly

(15) Ly > L, > ...

Lemma 1 applies to the point «; if ¢ is sufficiently large, and gives
(16) P, < 0, XL,

Another inequality can be deduced from Minkowski’s theorem in
the Geometry of Numbers. Consider the convex polyhedron, with centre
at the origin, defined by

17 ol <X, <X, |l<X, |Soiyte <iX ™
This contains the polyhedron defined by
ol <X, Wl<X, |8o+&<X—iX" |Botbyte <iXh

hence its volume is at least $X~* times the area of the hexagon in the
@,y plane defined by the first three of the last inequalities. Since
0 <& <1, this hexagon contains

] < X, < X, le+yl <X

if X ig sufficiently large, and the area of the latter is 3 X2 Hence the volume
of the polyhedron (17) is greater than 8, and so it contains an integer
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point other than the origin. Taking X = X, ., and recalling that the
least value of |L(x)| subject to |&| < X;,, is L;, we dednce that

(18) L, <iX7h.
It follows in particular from (18) that
(19) @ #0

if ¢ is sufficiently large. For if @; = 0, then (18) gives
l&yi+2) < 3 XTh
and since
max (Y, |al) = X < Xy,
this contradicts (6) with a = —z;/y,.
Finally we observe, for future reference, that by the definition of
the points a;, there is no integer point 2 other than the origin satistying

(20) o] < Xiyyy, D@} < L.

4. Linear dependence and independence. The further development
of the argument requires us to consider the linear dependence or inde-
pendence of each set of three successive minimal points a;_,, @;, @y, .
On this subject we prove two lemmas.

Levva 2. If the poimts @y, ®;, 2, are linearly dependent then,
for one of the two signs,

(21) Ly g By = UuX;,
where u is an integer.

Proof. We show first that, for any ¢, the points @; and @, constitute
an integral basis for all integer points in the plane through the origin
and these two points. If this were not so, there would exist an integer
point, other than the origin, of the form

X = TR Sy,

where 7, s are rational numbers satisfying |#| < %, 8] < %. For such a point
we should have
|| < 3 X4 3 Xy < Xy

L) < 3L+ %Li+1 < Iy

Thig point would therefore satisfy (20), which is impossible.
The hypothesis of linear dependence now implies that

Ly = UX;+ Vs,
where u,v are integers. Similarly

Loy = WL+ 0Ty,
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‘where' u', v’ are integers. Comparison of these relations gives u'v = 1,
whence v = -4-1, whence (21).

LEMMA 3. There are infinitely many values of . for which the points
Xy 1y Ly By are linearly independent.

Proof. If the points a;_;, @, ;,, are linearly dependent, it follows
from (21) that

tyy L(ae) — e L@ y) = A {w L(®s0) — @ ()}

If this holds for all ¢ in the range m < ¢ < n, then
(@1 L (@) — T LB 1) | = Wy L(00n) — 2 L)
<3 X Xy X X5

by (18). If this holds for all » > m, then since the limit of the last expression
‘a8 n — oo is 0, we geb

By L) — B L(@y 1) = 0.

‘But the ‘only integer point at which L () vanishes is the origin. Hence
T L~ L * Lpyy = 07

and this is impossible by (19) if m is sufficiently large.
. It follows that there -exist arbitrarily large values of s for Whl(h the
points ®,_ 1, ®,, Lny, ave linearly independent.

5. Three independent points. The inequality (16) gives an upper
bound for P;, but we have as yet no useful lower bound. The object of the
‘present section is to establish a good lower bound for P, in the case
when @, ,, €,, ®,,, are linearly independent.

Lemma 4. If n is large and o,_y, X, @,,, are lnearly independent,
then

(22) Pup Xn Ly > 3~20,.
Proof. The determinant
Bpy P2y 1) L(®n_y)
| @ P(wa)  L(a)
, gy P(@aga) L(@nga)

iz equal to the snmla,r determinant formed with a,_y, Ya_y, Zu_y 0130
and so is an integer. By the hypothesis of linear independence, this m‘ueger
is not zero and so has absolute value at least 1.

The cofactor of P(#, ;) in the determinant is

Bpir L) — w0 L (. 1.1) 5
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and this has absolute value less than $X, 41_1 by (18). Hence the contri-
bution to the determinant made by the terms containing P(w,_,) is

1
< §ln+1P —1
-1 8
< ?‘;szn-l-le —1Ln_s
W 3 3
<FX, Xy < %Oz

by (16) and (18).
bnnll'uly the contribution of the terms containing P(:c,,) is

< 232Xy Ly Py
<20, Xy Ly y X0 L,
< 20,.
Hence the contribution of the terms containing P(x,.;) is greater

in absolute value than
1—%0,.

But this contribution is less in absolute value than

2 7L+1-X1IL7L41!
and this proves (22).

6. Completion of the proof. Let m be a large integer for which the
points ®y,_1, Xy, Xy are linearly independent, and let n be the least
integer greater than m for which ®,_,, &, 2,4, are linearly independent.
If m < i < n, the points @®;_;, ®;, x;, are linearly dependent, and there-.
fore

X1k Ly = U X

Dy Lemma 2, The same relation holds for the corresponding values of the

linear forms P and I, and therefore
[P () Lo (00 — P (a3) L (1) | == | P (5) L (i 42) — P(@s40) L(a3)| -

By repeated use of this relation, we obtain

|P(wm)L(wm+1)_‘P(mwn»1-1)L(mwn)| = IP(mn—l)L(wn) "P(wu)L(mn—l)i-
Naturally this reduces to an identity if n = m+1.
‘We have
P (@) L (@) — P () L(®n_1)| < O3 Xn_1Inos Lt OoXnLnLin sy

< 20,4 XX, Ly =30, XL,
y {16) and (18).
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On the other hand, by (22),
[P (%m41) L(2m) — P (@) L (X 1)

> (—20,) Xy, Loy In— 403 X Ly
> (= 20,) Xpp Iy — 40, X Ly
= (}—40,) X L.
We have 3 0, < i—40, since 0, < 9/160. Thus we deduce that
XLy, < Xy Ly

But this is impossible, since it leads to an infinite sequence of values of »
for which X, I, increases, whereas we know that X,L, — 0 ag 2% — oo
by (18).

In view of the remarks at the end of §1, this contradiction proves
the theorem.

Note addet in proof. We have since extended the basic result of this
paper to a general theorem on n—1 linear forms in n variables, the result of the
present paper being the case n = 3 with the linear forms P (x), L(x). See a forth-
coming paper A theorem on linear forms in this journal. The more general result
does not, however, solve the problem investigated by Wirsing and mentioned in § 1.
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On two theorems of Gelfond and some
of their applications

by
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§ 1. Introduction. The theorems mentioned in the title are concerned
with the ordinary and p-adic measure of irrationality of the ratio of two
logarithms of algebraic numbers. A. O. Gelfond, having estimated this
measure [9], [10] was able in 1940 to deduce [10] for two elements a,
of an algebraic number field R and a prime ideal p of R the inequalities

@, = log|da" — p"|—max {nlog|a], mlog ||} > —log***max{[n|, Im|},
@, = ord,(a"—f™) < log***max {jn|, |m|},

provided logla|/log|| is irrational and n > m,(e, a,f) or a“f"s+1 for
all integer pairs (u, v) # (0, 0), a, # ave p-adic units and n > n, (¢, a, f),
respectively.

In his book [117] published first in 1952 Gelfond has improved the
estimates for the measure of irrationality of log a,/log e, in a manner which
permits to replace exponent 3--e by 2-+4¢ in the inequality for & . The
same new method works mutatis mutandis in the p-adic case. It has
also the advantage of being applicable if loga,/loga; is irrational bub
a’ad =1 for some integer (u, v) # (0, 0), while the earlier method failed
in this case as pointed out by V. Jarnik [13]. Therefore, the estimation
for @, is true not only if log|al/log || is irrational but as originally asserted
by Gelfond in [10] if o*—p™ # 0 and the case |a| = || =1, a“f* #1
for all integer pairs (u,v) # (0, 0) is excepted.

The applications I have in view require estimates for &, and @, that
are explicit, i.e. do not involve the unspecified functions n, and My For
the purpose of finding such estimates earlier Gelfond’s method is much
more suitable than the very involved method of 1952. Therefore in § 2
I reproduce the arguments of [9] and [10] with such modifications as
to replace log*+’max {|n|, |m[} by C(a, f) (logmax{|n], ['»'zi}—i— ¢'(a, p))* or
O(a, B, p) (logmax {|n|, |m(}+C"(a, 8, ) in the inequality for Gy or Gy,
respectively. C(a, f), ' (a, B), C(a, f,9), C'(a, B, ) are constants written
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