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On the other hand, by (22),
[P (%m41) L(2m) — P (@) L (X 1)

> (—20,) Xy, Loy In— 403 X Ly
> (= 20,) Xpp Iy — 40, X Ly
= (}—40,) X L.
We have 3 0, < i—40, since 0, < 9/160. Thus we deduce that
XLy, < Xy Ly

But this is impossible, since it leads to an infinite sequence of values of »
for which X, I, increases, whereas we know that X,L, — 0 ag 2% — oo
by (18).

In view of the remarks at the end of §1, this contradiction proves
the theorem.

Note addet in proof. We have since extended the basic result of this
paper to a general theorem on n—1 linear forms in n variables, the result of the
present paper being the case n = 3 with the linear forms P (x), L(x). See a forth-
coming paper A theorem on linear forms in this journal. The more general result
does not, however, solve the problem investigated by Wirsing and mentioned in § 1.
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of their applications
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§ 1. Introduction. The theorems mentioned in the title are concerned
with the ordinary and p-adic measure of irrationality of the ratio of two
logarithms of algebraic numbers. A. O. Gelfond, having estimated this
measure [9], [10] was able in 1940 to deduce [10] for two elements a,
of an algebraic number field R and a prime ideal p of R the inequalities

@, = log|da" — p"|—max {nlog|a], mlog ||} > —log***max{[n|, Im|},
@, = ord,(a"—f™) < log***max {jn|, |m|},

provided logla|/log|| is irrational and n > m,(e, a,f) or a“f"s+1 for
all integer pairs (u, v) # (0, 0), a, # ave p-adic units and n > n, (¢, a, f),
respectively.

In his book [117] published first in 1952 Gelfond has improved the
estimates for the measure of irrationality of log a,/log e, in a manner which
permits to replace exponent 3--e by 2-+4¢ in the inequality for & . The
same new method works mutatis mutandis in the p-adic case. It has
also the advantage of being applicable if loga,/loga; is irrational bub
a’ad =1 for some integer (u, v) # (0, 0), while the earlier method failed
in this case as pointed out by V. Jarnik [13]. Therefore, the estimation
for @, is true not only if log|al/log || is irrational but as originally asserted
by Gelfond in [10] if o*—p™ # 0 and the case |a| = || =1, a“f* #1
for all integer pairs (u,v) # (0, 0) is excepted.

The applications I have in view require estimates for &, and @, that
are explicit, i.e. do not involve the unspecified functions n, and My For
the purpose of finding such estimates earlier Gelfond’s method is much
more suitable than the very involved method of 1952. Therefore in § 2
I reproduce the arguments of [9] and [10] with such modifications as
to replace log*+’max {|n|, |m[} by C(a, f) (logmax{|n], ['»'zi}—i— ¢'(a, p))* or
O(a, B, p) (logmax {|n|, |m(}+C"(a, 8, ) in the inequality for Gy or Gy,
respectively. C(a, f), ' (a, B), C(a, f,9), C'(a, B, ) are constants written
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178 A. Schinzel
out explicitly in Theorems 1 and 2. Moreover if log|al/log|g] is rational
I obtain
&y > —C(a, ) (logmax {|n|, [m[}+C'(a, f)).

This is the only result of the present paper which can be considered as
an improvement of Gelfond’s work of 1952. It is reformulated as Corollary 1
in terms of Diophantine approximation.

§ 3 is devoted to the study of linear recurrences of the second order.
It the companion polynomial of such a recurrence {u,} has real roots,
the order of magnitude of |u,| can be found easily. If the roots are not
real, Thue-Siegel theorem implies that log|u,| is of order #, it does not
permit however to find for a given ¢ a number n,(c) such that |u,] # ¢
for n > me(¢). For special recurring sequences n,(¢) was given explicitly
by P. Chowla, 8. Chowla, M. Dunton, D. J. Lewis [8], 8. B. Townes [24]
and A. Schinzel [21]. Theorems 3 and 4 contain explicit estimates for
4y, Which comprise all the above results. One of these estimates is applied
next to the study of the equation o®—d = 2" (4 negative), investigated
by many authors (cf. H. Hasse [12]). J. Browkin and I conjectured [5]
that for & # 1—2* — 23 the equation has at most one solution in positive
integers @, n. Townes has proved that this is the case for d = — Ty? and
R. Apéry [1] has proved that for d £ — 7 theve exist at most two solu-
tions. Theorem 5 shows that our original conjecture can be decided by
a finite although large amount of computations and Theorem 6 generalizes
this result to the equation #*—d =p™ (p prime). Finally, Theorems 7 and
8 contain estimates of the greatest prime factor of u, denoted by q{u,).

§4 is concerned with the expression 4’4+ PPl ... P™ where » = 2
or 3 and Py, ..., Py are positive integers. I estimate the order of magnitude
of this expression (Theorem 9) and for % < 3 and P; suitably restricted
its greatest prime factor (Theorem 10). Asg a Corollary 5 to Theorem 9
I obtain for any quadratic irrationality & and any basis of notation g
an effective estimate for |4 which says a little more than Tdowville’s
theorem. On the other hand, Theorem 10 permits o solve effectively
all Diophantine equations of the form

@ i =
where gy, ..., g, 14, ..., 7y ave distinct primes and s i a positive integer,
not divisible by 6 if the sign is lower. This result included in Corollary 6
generalizes the results of F. Rumsey, Jr. and K. C. Posner [20] and partly
those of J. W. 8. Cassels [7], who was first to use Gelfond’s estimates
in that connection. :

§ 5 is devoted to the study of the greatest prime factor of a quadratic
or cubic polynomial. K. Mahler [16] and T. Nagell [18], [19] proved
that for binomials 4?41, +2, -4 and Ag? 41, 43 the greatest prime
factor exceeds cloglogz, where ¢ is a positive constant. These results are
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improved (as to the value of ¢) in Theorem 12 and generalized to arbi-
trary quadratic and cubic binomials in Theorem 11. Next, the question
ig considered how small the greatest prime factor of an arbitrary poly-
nomial f(z) can be for a suitable # (Theorems 13-15). The proofs are given
for the results in this direction I announced in Stockholm [22]. An open
problem closes the paper.

The recent solution by A. N. Baker of the problem of three logarithms
(Mathematika 13 (1966), pp. 204-216) would permit to generalize many
results of this paper and to obtain the true order of magnitude of log |u,|
in Theorem 3. This, however, cannot be done without a certain amount
of adaptation and may form an object of another work.

§ 2. Fundamental theorems
Notation. R is an algebraic number field of degree » and of discri-
minant D.-«, f are non-zero elements of R;
a=d"la'; B=p"[,

where o', o', f, §' ave integers of R,

a = logmax {[eD[""”, ETARETAR [a”p], |a"8"]},

where T)Tl is the maximal absolute value of the conjugates of .
p is a prime ideal of B with the norm p° where p is a rational prime,
R, is the p-adic completion of R,

v

= - p = ord,p.
# = logp! '
Ry is a field containing |a|, |8] of degree v, and of diseriminant Dy,
al’ ﬁ”
lal =, 1fl =5,
Uy 0

where «ag, ag’, iy, fy are integers of Ry;

ay = logmax {eD, ', [as i, [y |, o Bol, o B}
[2= )

o
4y = max | —-, af-

‘ ‘Ii’ la] % 1 or |B] % 1 and |a[*o = |B", (uy, 7)) = 1 for some rational
integers u,, v,, we set

max {.{Ti, lo_g.I;.ZZ.I.’ 10g| a'luo\ﬂ’lvol ]’ 10g| a"luo!ﬂ"[”ol|} it uemy <0,
v Y
“= 9% logleD
max {_;, —Og;,l—:_‘lw Iogl a/]uo ﬂlquall’ Iog'a/quo[ﬂ/]vo[l} it Ty Ty > 0.
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m, n and ny, n, ave rational integers, n, # 0, N == max {|m|, [n{} > 0,
H = max{|n], |7} N
THEOREM 1. If « or § is a p-adic unit and o" — ™ 0, then

ord,(a"—p") < 108w g2atp*ti(log N + pap® +2a7)%

THEOREM 2. If «"—f"#0 and we exclude the case |a| = |f] =1,
a, p multiplicatively independent, then

log |a" — ™| — max {nlog |a|, mlog B}
—105y5q, (log N +»)?

if la| = |B] = 1 and a, B are multiplicatively dependent,
— max {10°%* af (log N +»)*, v (2a, + B)}

= if lals£ 1 or Bl 1 and |al, |B| are multiplicatively dependent,
—5-10%7af(log N 4+ ap+1+a7)?
if |al, |Bl are multiplicatively independent.
LeMMA 1. If y # 0 is an arbitrary integer of R then
1 ord,y < plog[y],
@) logly| > — (»—1)log]7].

Proof. Let g be the norm of y. Clearly

0 <loglg <logly|+(»—1)log[y] < log|y],

whence (2) follows at once.
On the other hand, setting ord,y = & we have

(normp)’jnormy, ie.  p%lg,
thus

1 1 lo v
ord, ¥ < I ordyy < — . 08l lg]

Togp  ologp log] 71,

which gives (1).
LEMMA 2. If either a or § is not a root of wnity and o = f°, where
||+ |w] > 0, then

IuH-lvl

Tty S0

Proof. If one of a, B is a root of unity, we have % =0 or v =0
which implies the assertion of the lemma. Thus it remains to consider
the case, where neither o or g is a root of unity. Following [22] we denote
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for any yeR which is not 0 or a root of unity, by e(y, R) the greatest
integer f such that

y =wd, where §eR and w is a root of unity.

If y is a root of unity we define e(y, R) = 0. By Lemma 1 of [22] we have
for any rational integer ¢

3(7’”7 R) = lgle(y, B

hence
[ule(a, B) = e(a”) R) = e(f", R) = [v]e(§, R),
and
(3) ¢(ay R) = |vl/(u, v)
On the other hand, since aﬁ*‘) = o"*" we have
(4) ole(af™!, R) = e(a™*", R) = jvtule(a, B),

where the sign is chosen so that |vd-u] = |u]-+ |v].

It follows from (3) and (4) that
. []+ |v] _
(5) ey S < max{e(af, R), e(afY, R)}.
The estimation given in Lemma 1 of [22] for e(y, R) is not suitable for
our purposes, however it is clear from the proof of that lemma and the
remark 1 at the end of [227 that

(2,.+4_|_1)10gm if y is an integer of R,
e(y) R) < log[y'|
poBl¥ 1

Tog2 if y is not an integer of R but 4’ and »y" are.

If aff is not an integer we apply this inequality with ' = o’ and
obtain

‘ . a ,
e(aB, R) <» Tog? (24 1),

If af is an integer, we have

a"ﬂ”

o ﬁr

log| af| = log <logla”p"| +log|(a'f)7].

However by Lemma 1

T < (v—1)log[a'p'],

log [ (o'
thus T&;ﬂ < va and we obtain again

(6) e(af, B) <va(2+'41).
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Similarly
(7 e(af™"y R) < »a(2*41)

and the lemma follows from (5), (6) and (7).
LeMiA 3. Suppose the cocfficients ay, of the linear forms

Ly = a4 . .. g g, <h<P <@

are integers of R and

(8)

max | aks] < A.

k,s )
Then there exists a solution of the system of equations Ly = 0 (1 << &k <X P)
in integers y,..., %9 of K with

0 < max [m,| < O(0QA)1O-D),

. 1<e<Q
where

¢ <V |D| < exp§(brlogy-F2a).

Proof. For » =1 the lemma follows at once from Lemma 3,
Chapter VI of [6]. Assume » > 1.

By Lemma 1 of [26], there exists in K an integral basis w;, w,, ...
such that

(9)

)wl’

[](le@H) o1 (L +0/2) ="V D]

t=1 j=

(the superscripts denote conjugates).
Clearly for all ¢ <

(10) leﬁ"’[ﬂw]/ [T1f = .

j=1 F=1

Herce by (9)

(11) 3 w2 < 200 (L4 9f2) n BV | D],

§=1

It follows from (8), (10
E<P,s<Q

@ Y Swbaie < Sry S

T | - i -
< 10(14-9/2)50 P72y | D] 4 ]/ 2w,
J==1

)y (11) and Schwartz’s inequality that for all i, r < »,

Set

v
w;z’ a’gs) = 2 bhksrwy)y
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where by are rational integers. By Cramer’s formulae, Hadamard’s
inequality, (12) and (9) we have
w{l ..

4’(1)1 71:“) ) ,11,7(‘1_21 ’ll»’f,l)

|bnrsr| =

)

det (wl)

w? ... w’, ’ll’(')a ) op(r)

e+l wy
7173‘; l/Elw(“ ),2 (z 13

< 214]‘(1+v/2)1!(1"”)/27r"”2A ]’] (
=17

=1

b

fw}2)

L 4T+ 9/2)290"2 =Y D|4 — BA.
Consider the system. of equations

»

Q
ul .
Z Z br‘ksh%r = 0,

Te=l 8=1

(13) 1<k<P, 1<h<y

The number of equations in this system is »P and the number of variables

is »Q > »P. By Lemma 3, Chapter VI of [6], there exists a solution of (13)

in rational integers ssuch that

(14) 0 < Max |2g,] < (QBAYTH-D),
8,7

Put

v
@ = Y g0y
8 e 8r Sy

=1

1<s<0.
We have
|| < vmax ]ms,|]_uﬂ,
r

hence by (11) and (14)

< 0(0QAYFIO-B),

ms
where

O = 400201+ v/ija'(a"”)lzn“”V |D].

Since for » > 1, ¢ < V»"|D|, the lemma follows.

LemuaA 4. Let f(2) be a normal function on Ry, 8,71, 8, be rational
integers, 1 21,8 21,8, =0,
(1B) - .o = min ord,f®(pr).

Py
0588y
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Then

logpr
Ordpf(sl)(ip'rl) {99(7”130*'5' — (8- 51) lféjpl + }
(we assume ord,0 = oo).

Proof. The lemma follows directly (apart from the case § =1
orr, = 1) from Lemma ITI of [10], by the substitution y = r, and a permu-
tation of letters. The proof of that lemma although valid in principle
contains a number of mistakes, therefore we reproduce it with the correc-
tions and with some simplifications taken from [117], pp. 121-122.

Consider an interpolation polynomial P(z) of degree »,8, —1 defined
by the conditions

(16) PO(pr) = fOpr), 0<r<r, 0<8<s.

By Hermite’s interpolation formula

71—180—1 8g—8~1

(17) PR =33 D 10N Auln),

=0 8=0 h=0

where
A= 1 @ (g —pr)
T S (rp— s — h—1)t  dgoms-h-1 Q(2) e
Qn(z) = (z—pr)"'Q(2)
and

-1
Q) =[] (e—pr)o
T=0
Differentiating we obtain
( 1).90—3—1 p—r130+s+h+1 -1

. S . ao+7bk~ ( —,
T e 3 [ I

where the summation is taken over all systems of non-negative integers
By, ...y hyy satistying

]l0+h1+---'|‘hrl_1‘—':So—'s——h—l, he = 0.
Since ord,s! < gs and for k ##,0 gk <7,

logr
ord, (r—k) < ordyr, < ¢ logpl
we get
. : ! logr1
(18) Ord;;-Arsh ?‘P("‘"lso‘l‘h’]‘l)—snordy(“(ﬁ—r“l) ) P87 — logp .

Two theorems of Gelfond and some of their applications 185

Similarly, differentiating Q. () we obtain

085 (pr1)
. 1)%0 jit.
_ 1y "18%0—~h=81~1 _ ()1') R 8—h—1 ) =0, 8 -
=& lp 10 ! (ry— ) 2 o (ry—1) TH (U(;c) (ri—k)
lc:r

where the summation is taken over all systems of non- negative integers
Gyy vovy Op1 Sabisfying

a,,+rrl--|—...—|—a',l,_1 =8, Op K8—h—1.

Hence
(19) ord, @ (pry) > P(r18—h—s,—1)+8y0rd, (ry!/(r, — 1)) — s, iog?ll .
0gp
It follows from (15), (17), (18) and (19) that
+
(20) 0, PO (1) > — (s +93) B 4
logp
On the other hand, by Newton’s interpolation formula
711 8g~1
\
=D D) Anlele—p)(z—pr+p)i(e—pry,
r=0 8=0
where
= o
Ar = ZBg’)fiE :
=0
and B is the slope of 4° taken in the point
(0,0 ey pr=p,0,p, 00, pr—p,0,p,...,0r—p, pr, pr, ..., pr).
8) times 841 times

B is a rational integer and since by the definition of a normal function

f("( )

-2 0, lim mord,

=00

= 00,

Ay 18 well defined, ord, 4, =0 and P(z) is a normal function.
It follows that the function F(2) = f(2)—P(#) is also normal and
by (16)

F(2) = (e(e~p) ... (#—pri+ ) F1(2)
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where #,(z) is a normal function. Thus
51

. d
(21> OrdpF( 1’(7)"1) = Ol‘dp%‘s’l‘ (z (2— (Z“val +1’)) Iz Pry

= p(F18—81)-

Since £ (pr,) = FE)(pr,)+ P (pr;) the lemma follows from (20)
and (21).

LeMMA 5. If yeR, y # 1,0rd,(y—1) > ¢/(p—1) and 7 is the p-adic
logarithm of y, then e(5z) is a normal function on R, which for rational
integers z coincides with ¥° and

(22) ord,sn = ordy(y—1).

Remark. We write e(z) instead of expz, reserving the notation
expsz to its ordinary wuse.

Proof. By Theorem 3, Chapter VI of [4], we have
(23) ordyn > ¢/{p—

: E—1
Since for k > 1, ord, k! <¢——1 , we geb
p.—.

k&
7w

2 ? :

(24) ord, — T = ordyn+ (k— )(ordpn 1) (t=1)

and it follows that the function

. L
_ [/
e(nz) = E TN
is normal.

Again by the quoted theorem, we have for rational integers ¢

6(n2) = (e(n)ff = »"
In pa,rtleula,r, for 2 =1, we get

Q&
N
=2
Since by (23) and (24)
Y w -
Ord*Z%T > ord,n
=2

(22) follows.
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1’ ’ .
LEMMA 6. Let ay, a,eR, 4y = a; [dy, where of, of ave integers of R,

K s }}_

b = max|—
Lap
Suppose that a; #1 ordb(a:.—l) = ordy(a,—1) > el(p—1), 7 ds the
p-adic logarithm of a; (mﬂ Na[1 18 malwnal
If a positive integer ¢ satisfies the inequality

(25)  q*—27up~*bpg(plog2Hg+ §ordyn, + 5 ut o) —

where C is the constant of Lemma 3, then

logmax {| o1 ¢z |,

9up~tlogC >0,

¥ Ny
ord, (~,7— - —) < ubp(g+1).
11 My

) Pq _ | 3ubpg
Fo = 3 S =
9 pubp @

and consider the following linear forms

Proof. Put

par purr e
Z Zwaqu (11014 1202)° (o 012) oy

41=0gg=0

Lrs ( [waaz

(0 <7<y, 08 < &)

Since g 'bp > 1 and by (25) ¢ > 9up™ bp we have 7, > 1, 5, > 1. Since

(af o) e ot = (] ap) o000 (g o yoiotendpia=ai,

where y = 105 or o7 a;, we have for all g, ¢, < g, 7 <7y, 8 <5

)17€17’ pagr ?’/Zz”'l

exp(sylog2Hg - bpgry).
(¢+1)*

l (10 @1+ 1200) (a1 @

Setting in Lemma 3 P =17,8,0 = and taking into account

that 7,8, < % we infer that there exist integers By, of B such that
(26) I’re(‘[Bqlqz]) =0, 0r<r, 0<s<s
and

(27) 0 < max | Byyg,| < 0 (g+1)exp(} s, log2Hg+4 bpgrs).

1,

Setting
2 q
2 2 By (1101, )\ 4 g™ (r,s integers > 0)
1=0 g3=0

we have by (26)

Qr,8) =10 for O0<r <7, 0<s <58,
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It is impossible that

Qr,s) =0 for O<r<(g+1)2 0<s<s,
since already the system of (¢-+1)% linear equations for By, :

Qr,00=0 (0

has the determinant

<r<(g+1))

det [N 3% ] =

{45,055 #{ 01,025

Y Y
(B af% — o of%),

which does not vanish as a consequence of the irrationality of #,/»,.
Let r, be the least positive integer such that Q(ry, s;) 5 0 for some

8; < &. Clearly
(28) Qrys) =0 for 0<r<r, 0<s<s,
(29) Q(ry,8) #0, where 7, <7, <(g+1)2, 0 <8y < 8.

By (27) we find

[T Qlr, 51)| < 0%(g+1)exp (§ s0log2Hg+} bpar) X

xmax[ (7ygy 1 qa)" ((11 ) mrl AT G l
1.9

< 03/2(q+1)3exp( solog2Hq-+bpg °+J‘)

2
This inequality together with (29) gives by Lemma 1
(30) Ordp(a; a;)mrlQ("'u $1)

3 3 - O
<ﬂ(—2— 10€0(£H‘1)2+EsologZIIg-[—bpq %“}2 71.),

Put now

2
wy = ord, ( 2 __l),
N1 My

7 g
Z Z-Bqlqze(%?hz'[“élz??zz)-

a1=0 G=0

fo(z) =
By Lemma 5, f, (2) is a normal function on R, and for all integers 7,8 > 0

fc()s)(lﬂ Z ZBqlqg(Qlﬂl“f“%"?z)s mg 3

21=0 gy=0

hm@
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Hence
ord, {77 *fi7 (pr) — ni*Q(r, 5))

= ord, Y’ Z By, ((gl

ay ,0 Qo=0

8
qg) —_ (q1+ _11_2_ gz) ) ailﬂll'l’ a;’m:yr.
N1 Ty

It ord,m,fn, < 0, we have o, < 0, whence the assertion of the lemma
follows. If ord,m./n, > 0 we get forallr, s >0

?S'
(31) ord, (féf’(pfr)— %Q(a‘, s)) > m,.
‘1
It follows by (28) that ord,f®(pr)
by Lemma 4

> (0<r<<r,0<s<s) and

logpr, —I-w}
of +

ord, €0 (pry) mm{ (rasa—s:), —p(s0-t o)

Applying (31) for r =r;,s = 8, We get

logpr
ord, E071 —l—con}

$1
%Q("u 83) >nﬁn{¢(’°lso—31), —@(so+81) Togp

Nyt
and since s; < &, ord,n, =
ord, (ag aa)™1Q (74, 81)

= —Soordn"h'i‘min{‘Pso("’l_l): -

0, ord, ayay >0

The comparison of thig inequality with (30) gives

£
1o,
—Suordp”?rl”min{??so(”'x’“l); — 208 lgp Lo 0}

o+ 1

10g0(q+1 2+ — splog2Hg +bpg ——
It follows that at least one of the following inequalities holds
(32) (gso—ubpg)ri—@H—B <0
or

logpr

(33) — pbpgri—295 1gp1 + 0 —E <0,
where

B = s,0rd, 7, +% p(31og € (q+ 1)+ 35, log 2Hg - bpgr) -
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We prove that (32) is impossible by showing that
(34) @8 — pbpg >0,
(35) (pSo— ubpg)ro—

(34) follows directly from the definition of s,. To show (35) we estimate
its left hand side as follows

(]75'0_E> 0.

(ps—nbpg)ro—ps, — B
= (@8~ {ubpg)ro — (0rdy 7, -+ 2log 2Hy - ¢) s, — L ulog € (g 1)

3 P4
> (grmi—s) (5285 1) -
—(ordyy,+ plog 2Hg - ¢)3 ug bpq— tulog € — 3 ug

.

(q2 —27 p2g2bpqlog 2Hg — 18 ug~2bpq ord,n; —

2
—27 g 1b]39—-7q 18 gt g— 9 pp=tlog € {.6)

Since ug~1bp =1, (35) follows now from (25). Therefore, (32) is excluded
and (33) holds. Since r, < (¢+1)*—1 we get by (35)

@ S pbpg(*+20)+ 6 pbpg— > gp LB

1
< pbpg(g*+2¢— ro)+q)s.,(r.,-1+2 Ogml)
logp

< ﬂbpq(qz+2q+2m+3 +12 E%(i‘ti) < ubp(g+1)8.

Proof of Theorem 1. Since the theorem ig invariant with. re
to the substitutions « = 1/a, n =

that # >0, m > 0. The number

spect
—7n; f = 1/5, M == —7f We can assume

— (a/ﬂ/)N(an“ﬁm) _# 0

is an integer of R. Further

T [

|_F—] <max{|a'ﬁ'|, Ja
and by Lemma 1

ﬁ/“N'!'m&XHa' < 2expalN

ord,(a"— g™

<ord, Fg ,ulogm < palN+ ulog2.
Thus the theorem certainly holds if

pol + plog2 <10°4 9™ a* p*e+ (log N+ pape 4- 24-Y)
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and we can assume that
N > 108 pSp2a3pleti(log N +pape+-2a~1)*—a1log2.

Now by Minkowski’s estimation for |D|

1 1
(36) va > 71og|e,D| =1, e >M
On the other hand,
1;79—!-4 ol
I cy—" = exp9
(elogp)® =~ (log2f® =~ "
Hence
N > 106(1166)6 -—zzu—-’-d— > exp23
(elogp)® Y
ptt [y 2 .
N> 10 6~——( Tog7) ( 10gN+p) >106(1—0g2—)6-25 >exp30,
t=1
(37) log N+ pap®+ 247"
7

>9
log (log N +pap®+-2a7")

If ¢"/f™ is a root of unity, the theorem follows at once since then by
Lemma 1

ord, (a”— ™) = ordy(«"[f"—1) < plog2.

The same inequality holds if only one of a, # is a p-adic unit. )
If o"/f™ is not a root of unity and g, § are both p-adic units, let o
be the least non-negative integer such that

@
n}> 1
(Such integers exist, since in virtue of Fermat theorem

ord, (f*'—1) > 0.)

p°min {ord, (' —1), 01"(1;,(/3179"l

%= ordp(ape“l—l) >0 and

We may assume without loss of generality that

(38) ord, (@Y —1) > ord, ('@~ —1)
and set
(39) o = @0, g, = prowe-n,
We have

a;—1

= (' — 1" modyp,

o_
-1
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thus by the choice of ¢ and (38)

(40) 01dy (2, —1) > ordy{a,—1) > min{px, g+ %) > ——.

p—1
Let ; be the p-adic logarithm of «;, 5 the p-adic logarithm of o} a3 ™. Since

. s “
o”[f™ is not a root of unity we have 5 # 0 and by (40) 7, s 6 ieuco b
Lemma 5 J -

(41) ord,(a"—f™) < ordy(ay — @) = ordy(af ey ™ —1)

= ord,n = ord, (ng,—mn,) = ord,n, -+ ord,, (n——m »27—"’-).
N
In order to estimate ord,s, we notice that

" 2

42 _ A &
(42) O =7, Oy=—7,
ay (/23
where
1 (-1 1" 0
G =a ¢ ); @ = a'”? (17‘?—1),

(43)

! pmY(pl-1 e 0
a = f (¢ )7 o = ﬁup 0-1)

are integers of B. We have

b= logmax{lepp/ﬁ’]a{ al, ]a{a;'[, | o], | a;'a;'H <P (P°—1)a

and since by the choice of o

it follows that
(44) b<20(p°—1)a.

If @, =1 we have by Lemma 5, Lemma 1, (42) and (43)

(45) ord,n; = ord, (e, —1) < ord, (o' — af) of

< plog|(a —ap)og | < plog2+ pub.
If a, 21 we have similarly

(46)  ord,n, << Yord,n, 7, = Yord,(a; —1)(ay—1)

< %Ordp(a{'— C(;) (a;'-— a;) < %lulog lm
< plog2--$ub.

icm®

Two theorems of Gelfond and some of their applications 193

Tt follows from (44), (45) and (46) that

plog2+2up(pt—1a i a=1,

(47) :
plog2+ up(p®—1)a if

ord,n, <
v ‘ ay #= 1.

N9
In order to estimate ord, (n—~m —7—) and to complete the proof we dis-
M
tinguish two cases:
I. may/n, is rational,
II. m#n,/n, is irrational.

I. If mn, =0 we have
(48) ordy, (n—mng/n;) = ordyn < ulogN.

If my, # 0, leb 5,/ = uafu,, Where u,, u, are rational integers and
(%, %) = 1. By Lemma 5 we have

a2 = e(uyny) = e(uy7s) = dyt,
hence by (39)
(49)

a and p are not both roots of unity, therefore, we can apply to (49) Lemma 2
and we get

Tl — PO (P8— 1)U
o (me—1juy __ ﬂl (P0—-1)uy |

g+ Jug] < v (24 41).
Hence by Lemma 1
(50)  ord,(n—mns/m) = ord, (n— muyfuy) < ord, (nu, — M)
< plog|[nu, —may| < plog N+ #10gva(2”+*+15
< plog N+ plogwa u(v—+3).
Tt follows from (41), (47), (48) and (50) that in the present case
ord, (a"— ") < ulog2+2 pup(p—1)a-t ulog N+ plogratp(v+38)-

This implies the theorem in view of (36).
II. Since m = 0 we have

(1) ord, (n—fm, 173) = ord, (ﬂi — _n_) + ord, m.
N m

T

a; and a, satisfy the assumptions of Lemma 6 and we can apply that
lemma with #, = m, n, = n, H = N. We set

(52) 2 —1 Q+}.

q = [18p2g~ ap® ™ (log N + pap®+-20~")]+1 > 156 9™ P

Acta Arithmetica XIIL 2
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To show that ¢ satisfies inequality (25) we proceed as follows. By
(47) we have

plog2-+fordym +Fo+ip < julog2-+fup(p*—1)atFo+iu
wlpap®-2a71).
Hence by (44)
(83)  g—27pup~*bp (ulog 2N +-Sord, y, +Fo-+5p)
= q— Bty ap®t (log N+ pap® -+ 2671) — Bd y g™ ap®*+logy.

Since z—tlog is an increasing function for 4 > 1 and ¢ > 54w’  apt™?
we have by (37)

q -

> T8(log N + pap® + 2a™") — 54 (log NV -+ pap® + 24~ ) —
—541og 78 g ap®™' — 5dlog (log N -+ pap® + 24™Y)
> 24 (log N+ pup® +2a7") — 5410g 78 i~ Lap®+ —
—5 (log ¥ +-pap® 4 247")
> 18log N+ 364" —541og 78 u g~ apt ™
N
> 1810gm +-36a7! > 1847 (a4 2).
On the other hand, by Lemma 3
(55) log 0 < §vlogw+jlog |D| < ivlogr+ hr'a < bi(a+t2).
It follows from (51), (52), (53) and (54) that
¢*—27 up* bpg (ulog 2N g +2ordy my -+ B2 4) — 9 up~"log (
> 1860’7 pt 18 4™ p¢ M (A 2) — O ™ 40 (a1 2)

= Sup T (a42)(624 4~ p 2 — 42

9 Ya+2)y pt
=sup~ (a-+ (6"41«7) o -1) > 0.
’ (ologp)*

Since the inequality (25) is satistied we infer by Lemma 6 and (44) that

(56) ord, (ﬂ— - l) #bp(g+1)* < 2 ppap® (g 1)
1
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However clearly

(87) g+1 <794 ap* T (log N+ pap®+2a7")
and it follows from (41), (47), (51), (56) and (57) that
ord, (o — ™)

< plog2-+pppta+log N4-2-79° u" ¢  a*p*+* (log N 4 pap® + 207 1)°
< 10% 4 g2t p*tt (log N + pap® 4 2a~1)®
which completes the proof.
LeMMA 7. If f(2) is an integral function satisfying the inequality
() < exp(dy ol +4y),
Ty, 8o, 81 are integers, v > 70,8 =324 > 0,8, > 0, and
M = max |f)(r)],

or<ry
0<<s <8y

then

o ()] < 6"150“110%51( - (/10 ) o 7% +Jl[) .
0

So
Proof. We have in virtue of Lagrange’s interpolation formula

_ 1 (S (=1 .. =rit 1)\
A ( E(E— 1)---(5—7‘1+1)) -

r1~1 §o—
Z 51 f‘s’ ?) (§—r) ( a(e—1)... (3—71+1) )sodf

~ 5 E—z \E(&—1)...(6—1,+1) ’
where I7 is the circle [E[ =78 //10, I, is the circle |£—7| = }, provided
2 lies ingide I, but outside I (0 <7 <1y).

Let 4 be the circle |s—r;| = . If z¢4 we have

1 78 3 3
g2l > lgl—r— > T —5T>gn (&),
l§—2l>r—i—|f Zr—r—3 (Eelfyy, ¥ << 1y).

6

Hence for zed

If(z)] < fﬁ?_erlsoﬂli’_ T+ I@)” i %0 +
Ao 37y P(szo +1) ( 130_!_1__7 )_
-1 8p—1
1 M o1 I'r,+9)IE)™ %0

r—r—f §1 8| T(r 4D I(—3) " T(r,—r—H @

T=0 8=(
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a -b
<(ﬁ) (k) (a>b2=21),
e [
we have

4 4\ 3\ [3\7F  [rFi\eadf3\-]
ol ) rfa) <2l 3) o) ()

3
09
*zavrl(r” )'— <

Since

3
_rlﬁ_

<e 7

150 718 -t 18 "1
(el en) = (5]

Ve

ryd 3
Ty =yl
*y 6 s

and

L4+ —r—)I(—

p—d\ L g —p— g\ 5

> ({15 A TERIr(=Hre
e ¢

2 4 —r1+3(,r )r—-l( P )rl-r- (1 < r é

r—2).

The differentiation shows that the last function takes its minimum
for 7 = (r,—1)/2. Thus

Lo+ r—r=H (=) TG~
b r B\NU 4\
— 1+3 T — 7'1+3 = 5(7‘]_ 3)/(311 5)
=57 (2 ) T 2] ¢

.

4 -3

e 1 - -3 =1

>0 311 P 5/3>7,¢1~1 Bp-Titlo=ry
27 2

The same is true for » = 0 or r,— 1. ence for zed wo get

28
[f(“)l < E

78y 3 -
Jfoth (_io—) a 93 %0 g +(7--logry) % P (2T,
) :

However, for r; > 70 and s, =1

-8
24,2 0 8 1,,28 1,3 1 9/2180 o 1 F15
AR (F 591(7 10g7')(317/) < 360,

2

thus

5 v
()l < %eﬂso (‘;: (’12) = 230+M) (ze ).
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Now, by Cauchy’s theorem

FEO () 5! f (Ti(f)—Tle dz,

RE F g—1y)

and on the other hand 2% 's,! < 51, thus
1 1

170 ()| < 295! max | f(2)] < pﬁéowllogsl( (Z"
Zed Z'O

) o 01 ) q.e.d.

So

LevMMA 8. Let g, ayeR, a; = a; jaj, where ai, af are integers of R,
ayas # 0, 1 be any complex logarithm of a; such that 0 <<|nyy) = |7 and

|91+ 7.l }}

1 I’)]li 77 T
¢ =max|—, —, —— , logmax {| qa|, | g a
v V2 v .
Suppose that ny, = 2mi, 1./, is irrational or 7y, ne, 2wt are rationally in-
dependent. If H > |y,| and a positive integer q salisfies the inequalities

rr l!
ay Oy

7T
s | OG1 Uy,

(58) g > 1680¢,

(59) ¢ —40,4veq (vlog2Hg—tlogn, +1 logg+1v)—6log € > 0,

where C 4s the constant of Lemma 3, then

(60) log| T2 {——101J0q2 §m=am,
|7 M —9ve(¢+1)®  otherwise.

Proof. We set

To = [—L"Zq;;]’ s = [8veq]

and since 0 < 798, <i¢? we find, like in the proof of Lemma 6, integers
Oy of B (0 < ¢ <g,0<¢,<g) such that

(61) 0 < max|Cgq,| < C**(q+1)exp (§s,log2Hq+ feqry)
a1,q2
and
P(r,s) =0 for

0<r <y, 0<8 <5,

where for all 7,5 >0
aq aq
8 T ul
= 2, Z 'y ay (M ¢y N2G0) oIV 2.

Consider first the case 5, == 2ni; a; = 1. It is impossible that

Pr,8) =0 for 0<7r<g, 0<s <8,
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since g < s, and already the system of (g-+1)%
Coya: Plry8) =0 for 0 <r<¢q,0<s<g has the deferminant

(zw)” ” (W1 — 1y q1),

=0 '117‘01

det [(n,q;4 120,)" 2] = H, (of2—

dy#lly

which does not vanish as the consequence of the irrationality of #,/s,.
Therefore, there exist integers r, and s, such that

(62) P(rys) =0 for O0<r<ry, 05 <sy,
(63) Plry,8) #0

and

(64) o <<y, 08 < 8.

If 91, 15, 2=t are rationally independent we obtain again (62) and (63)
but now we can conclude only that

(65) <r<(g4+1)2 08 < 8,

since we use the fact that the gystem of equations P(r,
< (g+1)*) has a nonvanishing determinant. Put

(66)
By (61) we get

0) =0 (0 <r

= Elog O(g+1)2+1s,log 2Hg+5eqr,.

I(ai ) "LP (7, S1)| < Mmax ! (111 1202)" (0 0p) oft"2 02"
.y

< exp (A, +solog 2Hy -+ eqry).
Hence by (63) and Lemma 1

(67) log (o)™ P (ry, 81)| > — (v—1)(A, -3, log 2Hq |- cqry) .
Put now

w; = —log Ne_ M ,

N1 Ty
1 q
= 2 Z'quflzexp (qum2+qenqs).

Q=0 ga=0

‘We have

91722+ gane2l < glojmax {m], |nal, Iny-+nal} <

Thus, the function f,(2) satisfies the assumptions of Lemma 7 with 4
= yog.

< veg [e].

linear equations for

bm@
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By Lagrange’s theorem we have for any 7, s > 0 and for some
Tps = Na[ny+tps(a[ni—nafn1) (0 << 1)
p* () — 7 P(r, s) = (2 2 U0 (1 70:) u?“a“—”)
(712‘ T=Tpg
=0 ag—
]
o \ N

”12/ 2001%39 (g1 -+ @rs )" 0V B2

3=0 go=0

If |zps| >1 we get

[nafng >1 = and  pafni— /| >1/In)| > 1/H,

whence (60) follows in view of (58) and (59).
If || <1 we get by (61) and (66)

[9a/m

8
&) K L
(68) 1f{2()— 5P, )] < exp ves— o;-+ 7+ slogeg + a7 (e—Log e ).
‘1

It follows from (62) and (68) that for all » < 7, and s < 8

F(r)| < exp(— ;4 4+ 5o (logeg-+ve) + gry (e—1og oy ag))) .

The numbers r, and s, satisfy the assumptions of Lemma 7 since by (58)
ry =7 = 70, 8 = 8veg—1 > 3veq = 34 . Applying that lemma we obtain

expi, ( veq )n%rfso n
veg \ S

+exp (—wy+ A+ 8 (logeg + »6) + gy (o—log | az))) ).
Applying now (68) for » =r;, s = 8, we get

1D ()] < exp (78 + ;10gsy) (

(69)

7t
—=P(rs, 8
iz P, )

< 3expmax {rlso—]—sllogsl—l—ll—l—rlsnlogfgg +2s,log7y,
So
7180+ 8110881+ 0+ Ay + 8y (log eq + ve) + gr; (6 —log g aal),
yes; — y+ A, - 8, log eg-+ gr, (¢— log | a;\)}.

Since s, < 8, and H > |n,| we have

n
s, log | —

M

H
(70) < s;log — < splog ——

74 !"71|
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It follows from (69) and (70) that

log [(ay @)™ P(ry, 1)

/ H .
< grilog|a; ]+ splog ) +1og3-+7,8 + selogsg -+ A+
1

Cf o
+ max{so (rllog _1’8_1_ -+ 2log rl) , — oy g (e —1og oy ap]) 4 sy (log eq - am)}.
0

Since log |ayas| < ¢, the comparison of this inequality with (67) gives

eqr,+ s, log — 7

1 ‘|‘7150+%10g30‘f A+
veq

+ max) 8§, rllog—;— + 2logry), — w8, (logeq - »e)
So

> —(v—1)(hy -+ 5 log 27+ egry).

It follows that at least one of the following inequalities holds

(71) 71 (”GQ’}' S+ solog "ESE[!‘ + 28 log1 ) +G >

: 0

or

(72) 74 (veg+ So) — wy+ 8o (logeg+ve)+-G > 0,
where

G = v8,log2Hq+vA,+ s log 2[ ‘ ~+log3
1

3
Evsolog‘)ﬂq—[— -wlogC’(q—l—l)‘Ur —chu + solog —|—1 g3.

|
We prove that (71) is impossible by showing that
1o,
ch—l—so+sulog e +2 8o —-g—ﬁ <0,

(13) o (ch+so+solog%"l + 26, 1"““)4 &<
0
We notice first that

logr,

v6q+ S+ 8 log% -+ 23,
0

7o

1 _
<5‘u("‘+ 1—log P41

2
P ot —!——e—)<so(2—log8)<0.

hm@
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To show (73) we estimate its left hand side as follows

4o(ch+so+8010g —= + 2 )a-(,

0

3
<7 (5 20g -+ 8y — 85 1og 8 + m) +

3
-+ 8 (—Z—vlogdﬂg—{— g;%—%{—) —‘—~110g('(g+1)2+10g3

3 1
~1) (5 veg — (8 veg—1) (1og8—1— 81rcq—f)> +

3 ¢ 3 3
8veq|—vlog2Hg+log ———— - —9 —vlogC+1
+ v(q(zvog 9+ 0g144|1]11vc+8a)+27 ogC+log3
8log8—9,5 3
< — Lg Tweg(lzvlog>Hg——810g[171|-1—1610gq+3v)—}—EvlogC

24
8log8—9,5 2 4 1
=— ‘Bgo—z—#)(qﬂ— 40,4 ch(wlog2Hg—§ log |171|+§-10gq-|— ZJ’) —6vlog 0) .

It follows now from (59) that (73) holds. Thus (72) must be true and we
get from (64) or (65), respectively, if #, = 2n¢

logr,
q(ch+so)+so(logcq+w)~9o(w’q+so |~solog—~+2 y—2 ")

So 9
= veq®+ 8, | g +1logeg+ve+ 7| log— — —
veg 8

o\\
= veg®+ 8veg (q—]—logeq-l— ve+ g (IogS——)) < 10veq?,
24 e 8

otherwise

R v0q log7,y
o, < (g% 2q) (veq+ 8o) -+ 8o (logeq—+ ve) — 1o | veq -+ 8o + 8o log —9--]—230
So

7o

= veg® 4 2veq®-+ 8 (¢ (12+9q+10geg+vc+ro (10g*g —1— fﬁq_))

8o

9
=ch3+2vag2+8waq( —i—2q—|—logeq+m+ 2470( g8—§))

< 9we(g+1)3.


Pem


hm@

202 A. Schinzel

COoROLLARY 1. If y is an algebraic integer # 0, y[|y| is not o root of
unity and H >1, then

—-1~:u‘gy—- ﬁ‘ > exp(—c(y)log?H),
2n My

where ¢(y) is independent of ny, n,.

Proof. This follows from Lemma 8 on taking a, = 1,1, = 2xi,
ay = p[lyl, 7. = targy and ¢ = ¢, (y)logH, where ¢,(y) is a sufficiently.
large constant.

Proof of Theorem 2. We can agsume like in the proof of Theorem
1 that n >0, m > 0. If o"/f™is a root of unity the theorem follows at
once since then by Lemma 1

log |a"— f"|—max{nlog|al, mlog |A|} = log|d"/f™ —1|
= —(v—1)log2.

If o"/f™ is not a root of unity, we consider separately three cases:
L o] =8l =1 and "= p’ for some integers u,v not both 0,
IL o] 21 or |f| %1 and wloglaj—wn,log|f] = 0, where (u,,n,)
=1, % =0,
IIL |a[* 5 |8]" for all integers «, » not both 0.
I. Here » > 2. The number

I = (ap)V(a"—f") # 0
is an integer of R, m< 2expaN and by Lemma 1
log ja"™— " > —log|a'f'[" —(r—~1)log 2— (v—1)a¥
> —waN —vlog2.
Thus, the theorem certainly holds if
vaN+-vlog2 < 10°%°ad (log N-v)*
and we can assume that
N > 10%*a}(log N+ »)— o 'log 2.
Since v > 2, va = 1, va, > 2x, we have
N >10%*(ra,)*—» > exp16,

(74) log (log N+ ) <2+1~9@,

(18) - N > 10%*"3.
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We set in Lemma 8: ¢; = 1, a, = af*!, where the sign is chosen so
that [pd-u| = [u|+ ||, 01 = of =1,
<alﬁl, all[))ll>
<alﬁl1, al!ﬂl>
7, = 2nt, N, = 4arg a;— 2ni. The quotient 7,/x, is irrational, since other-
wise af*! would be a root of unity, and since (af*')’ = d’** «, f and

o"/B™ would be such roots.
Since |91+ 7.l < |71] = 27, we have

P for the upper sign,
ag, a2 ) =

for the lower sign,

, 27
(76) ¢ < max|\—, 4y = 0;.
v

On the other hand, since o* = p° we have by Lemma 2

] +-o|

(") (, )

<wa(2H41).

Let % be the least positive integer such that

¥ ¥ g
D — gD

Clearly % does not exceed the number w of roots of unity contained in R
and since p(w) <» we have
(78) P<w <202
We set in Lemma 8
ny =Tk ———nz{;:;u , Mg = 7[%—1« . 117713—]—-3—],
q = [99v2a,(log N + )] 1.
Since o/f™ is not a root of unity, we have nv—mu s 0, thus
H 2| 27> .

On the other hand, since |7,| < |5;| we have |n,| < |n,| and by (76),
(77) and (78)
H <142 a2+ 1) N < N
It is clear that ¢ satisties (58). To show that g satisfies (59) we proceed

ag follows
vlog 2H —2log 7|+ v vlog2+12+3ivlog N—ilog2r+1y

$y(log N ).

ASAY
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Hence by (76)
(79)  q—40,4ve(vlog2Hg—2log |y, |+ $logg+3»)

= q—60,6v2ag(log N+ ) —67,49%a,logg.
Since s —tloga is an increasing funection for # > ¢ and
(80) g > 9992ay (log N +») > 67,422%q,
we have by (74) and (75)

q

(81) pryme 60,6 (log N+ »)— 67,4loggq
1

> 99 (log ¥ +v)— 60,6 (log N 4») — 67,41og 99»2a, — 67,41og (log N --»)

> 38,4 (log N +»)—67,41og 99¢*»2 0, — % (log N -+ »)

> 33,910g - 433,99 > 309.

¥
(99¢*1%a,)
On the other hand, by Lemma 3
logC < 3vlogv+jlog |D| < Ivlogr+irta < ivi(a,+2).
It follows from (79), (80) and (81) that
9*—40,4v0q(vlog2Hg— Hlog |n; |+ log g+ 1v) — 9vlog O
> 67924;-309% a,— Byt (a; + 2) 2 513 (4009203 —a, —2) > 0.

Since the inequality (59) is satisfied we infer by Lemma 8 and (76) that

n
(82) log —77’7—2 — 2> =109 > —99-10% ad (log N + )"
1 1
Since
16 —1) >2” 9 9 real
=25 (9 real)
and
U]+ ol
kL (narga—margf) = i-’—;i 772 (mod 2r4)

(%, )
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we get from (77),(78) and (82)
log|a"— ™| = log|exp {i(narga— margp)}—1|

>log? narga: margf
470
2(u, v) Ny e
EEITTENTY S
 qog BT Nme e
2(w, v) [n4) M Ty

> —logr*a (2T 1) —99-10%+° al (log N + »)?
> —10°v" af(log N +»)%.

II. Suppose first that nv,—mu, = 0. We have n = fuy, m = ku,,
where k is a positive integer < N and |a[* = [8/™. On the other hand,
a, is formed for the pair <a"/s", 1) in the same way as a, is formed
for <a, 8>. Therefore, by the already proved case of the theorem

log |o* — ™| — max {nlog ||, mlog|B|}
= log |(a™ /") —1| > —10%Fa3(log N+ »).

Suppose now that nwv,—ma, % 0. Then, choosing the sign -+ so
that v, uy = [ue] 4 ||, we have

(nvy — M) 1
nlog|a|—mlog|f] = & ~———""log|af*
£ el ol ool 1
whence

(83) [log ||

1 —ml = '
lrn ogla|—m 02'\5” NEETN

Since (#p, v) = 1 we have by Lemma 2
(84) [t |+ (7] < w0 4 (2014 4-1).
On the other hand by the choice of sign
(85) |log|ap*|| = max log|a'f’ | >1— min |df].
If 1—|af| 5 0 we have by Lemma 1
log|1—laf|| = log|agfy— o' By | —1og lay fol
> —(r—1)log| afs—a B’ | —log| aBy| = —ra— (vo—1)log2.
Similarly, if 1— '] # 0
(86)

log[t—[o*f|| = — v ap— (v —1)log2.
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Since |a| #1 or |f| 1 we have 1— nun[a /37! > 0 and it follows from
(83), (84), (85) and (86) that i

log|nlog|a|—mlog|B|| = — v ao— (1 —1)log2—1log s, ay (2°0+* - 1).
‘We have however the inequality for @, y positive, # £y
(87)

log |#— y| —max {logz, logy}

= min {0, log|logz—logy[}+-log(1—1/e).
It follows hence
log|a"— p™| —max {nlog |a|, mlog 8]}
= — vty — (v —1)log 2—logw, ¢y (207 + 1)+ log (1—1/e)
= — (20,4 5).

IIL. Since the theorem is symmetrical with respect to o® and ™ we
can assume without loss of generality that |log|a|| > |log|g|.
The number

= (oo )V (|a* 18]~

is an integer of Ro,ﬁl < 2expay N and by Lemma 1
log|laf” g™ —1| >

> —yagN—wlog2.

) %0

—loglafy [V — (v —1)log2— (v,—1)ay ¥

Similarly
log|lal™" g™
and it follows that

—1[ > a0y N—log2

log o™ — ™ —max {nlog |a|, mlog |B]} > — v, ay N— nlog2.
Thus, the theorem certainly holds if
o4 N +7log2 < 5-10°9]ag(log N+ ay + 1+ ag)?
and we can assume that
N > 5-10%5 a3 (log ¥ + @+1+ 07" —ag'log2.

Now by Minkowski’s estimation for D,

1
(88) o Uy > Tlog!eDol >1.
(]
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Hence
N > 4-10°3(v,4,)°3° > exp18,
N > 4:10%(log N +a,+1-+a7") > exp24,
log N+ay-+1 1
(89) log(log N +ao+1+a3?) < 14 g—i%“—.
We apply Lemma 8 with R, instead of R and we set
o =lal, a,=|B],
o=a, o =6, a=Ff, o =4Ff, 5 =Ilogll, n,=Ilog|l,
ny=m, ny=mn, ¢=I[82506,(logN+a,+1+az")]+1.
We have o
[721 - [72} = logmax |a|*|8f
4f==41
and by Lemma 1:
log |a||B]| = log | ——— i ﬁ" < ¥ ay.
oﬁo
Similarly
logld'f] <woa for i=41,j=41
and we obtain
[72]F 172l < o8-
This and (88) implies
(90) c< 0.
It follows further that H = N > || and
(91) q > 829%ay-27 > 2000120 > 1680505 ¢ > 824,

thus the inequality (58) is satisfied. To show that ¢ satisfies (59) we notice
first that by Lemma 1
— 1] = log lay fy— ao sl —loglao fi]

> — (m—1)log|ay’ fo— g Bo| —1og as iy

> — iy — {5, —1)log 2.

Tog|lal

On the other hand, for every # > 0

[logw| > min { lv—1], log2},
thus
(92) log [n,| = logllog |a|| > min {log||a|—1]|—log2, loglog2}

> min(— v a,— 7 log2, loglog 2} == — vy 6y —%,10g2
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and
291082 —210g |1+ 1vy < Erplog2+4Evpag v < vy (ap+1-+agh).
It follows by (90) that
(93)  g—40,4v,¢(vlog2Hg~—3log 1|4 tlog g-F tv)
> q— 40,405 ay (log N -+ 4 -+ 1+ a5 ') — 94,3 93 a, log g.

Since #—~tlog is an increasing function for @ >t and by (91), ¢ > 94,3+%a?
we have by (89)

(94) L
3 g

> 82(log N +ap+1+ag) — 40,4 (log N+ ag -+ 1+ ag ) —
—~ 94,3l0g 825 ay — 94,310g (log N -+ ag -+ 1+ a7 Y

—40,4(log N+ ay+1+ag')—94,3logq

94,:
> 41,6 (log N+ ay+ 1+ ;') — 94,3log 826 v 4y — T(—’)f (log N +4-ag+14-a5h)

31,5log - 5
> 31,5 Og(Sngg%);, F31,5(a+1) > 30(a,+ 2).

On the other hand, by Lemma 3
(95)  logC < 3nlogyy+}log| Dol < Fmlogn, +1viay <od(ay+2).
It follows from (88), (90), (92), (93), (94) and (95) that
9" — 40,40 (v log2Hyg— tlog |y, | +4logg+Ln) — 9v,log 0
> 8253005 q (654 2)— 59} (4 + 2) = 593 (a+ 2) (486 5, 4 — 1) > 0.
The assumptions of Lemma 8 being satisfied, we have by (90)

MM

i M

(96) log

> —Oygay (g--1)3.

However clearly
(97) 0+1 < 82,3%5 a,(log ¥ -+ 6y + 1+ a;")
and it follows from (87), (92), (96) and (97) that
log |o”— ™| — max {nlog |a}, mlog 181}
> min{0, log [nlog |a] —mlog|B|[}+log (1 —1/e)
> min{0, — 9 aq (g-+1)°+logn, |, [} +log (1 —1/e)

> —5-10%ag(log N+ ay+ 14 a7')?, q.e. d.
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§ 3. Linear recurrences of the second order. Consider a sequence
of rational integers defined by the formula
Uy = Py —Qy_y,
where P and @ are rational integers and
A=P—4Q £0, ui—Pu,uy-+-Qui 0.

(98) PQ #0,

It is well known that
Uy = Qo+ Q2" 0™,

where w and o’ are roots of the equation 22— Pz+Q = 0 and

Uy’ — Uy Uy — Uy
Q=—— Q =——.
W - W =
log |92/ Q|

If A is positive, |o| > |o'| and k = [ ]+1, we have for n > k&

log |w/ew'|

(99) ftn] = 0" (120" — 12" ™).

If A is negative, the problelh of estimating |u,| is more Acomplicated.
We prove ’
THEOREM 3. If (98) holds, 4 < 0 and P? + Q, 2Q, 3Q then for
n > g1lmax {900, 15log @3 (13— Pu, u,+ Qug)}’
we have
1 17/ n
%, ——— (P2, Q)"exp—
fitn| > QV{A[ (P2, Q)" exp 30
where q 18 any prime factor of Q[(P?, Q).

Proof. Consider the field R generated by V4 and its prime ideal
q = (g, wg~ ), Since

(100)

4 ’

(4, 0g "%, o' q"%F) =1
we have
normq =g¢, ord,q=1.
Since norm (u, — ity w) = 4 — Py Uy -+ Qug,
log (43 — Pyt + Q) <i”
loggq 7

ord, (ui—u ) <

Acta Arlthmetica XIII, 2
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We get

o7\ (P, Q)—Wzl
(101)  ord, (( Q) ) BPCCEN

= ord, ( (P, Q)[n/“%]a,"z("/ﬁ)

Since ord, = 0 it follows that

w'?
(P2, Q)
10, (P2, Q)——["/ZJ
G
is a g-adic unit. We set in Theorem 1

., w2 U (P2, Q)—[nlzl
Pp=gq a=da'= o) /3=*W§,—-7

o =1, f =" u—uo), [ =u(PQ) "o —w).
It follows that

2 2

=92 _=—
PES o8 logg  log2’

e=9=1, DI < (4],

(102) & =logmax {|eD[", | ™" (u;— uy ) |, [0, (P2, Q)T (0 —w)],

] w'2(P2, Q)“lm'zmﬂ}(ul“ g ©) l) | w2 (P2, Q)-l%n(Pz, Q)—[”/ZJ(w'__ ) “

= logmax {Q™ (P, Q)™ (ul— Py uo+ Quf) '™, @ [y | (P2, Q)11 A2},

Theorem 1 gives

w2\ Uy, (P? Q)—[’"lz]
(103) Ol'dq (( (Pg’ Q) ) - ”a)IZ(,"/Z} 0o

3
<1,7:10%a"¢* (log% +qa+ 2@’1) .

Since 7 > ¢'*-9007 > ¢7 we have

" - 719007 - 4( 900 ¢ 7 o
(logn)* (11log g+ 710g 900)? q m) > 307¢4.

9
If, therefore, a,<%l/_1:’1_,we would obtain
q

n B 1 "/« 1"/ n 1.7/
log— +ga-+2 1<__l/__. ___]/ -1 .
gz +ga+2a <30 7 +30 7 420 <14 7

Q n
w ) 2 n—ord, (4, —uy o) >—$~n.
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and by (101) and (103)

6 1 [ a )\ 1 {a2\¥ &

which is impossible. Thus

Sy “n
a>—1/
30 "
and by (102) either
1+{n/2} . . 1 .7 T
logm)— (43— Py 1ty + Qi) > SV F

or
7

v - 1.7/ n
logQ V| 4| (P2, Q)82 1y, | >3 e
The first inequality is impossible in view of the condition
n > " (1510gQ® (ui— Puyuo+ Qui))',

thus the other inequality holds and we get (100), g. e. d.
Unfortunately, Theorem 3 does not give the true order of magnitude

of loglun[—glog(l"", Q) which is n. It is possible to obtain this true

order of magnitude in the case, where w/w’ and 2/Q' are multiplicatively
dependent.
Indeed, we have

THEOREM 4. If the assumptions of Theorem 3 are satisfied, u, # 0
and oo™ and Q[Q' are multiplicatively dependent then

1
[1n] > —=Q"*exp (—3,2-10°a} (logn+2)}),
V4]
where
a; = max{r, $logQ (ui —Pu,uy+ Quj)}.

Proof. On setting in Theorem 2:

2] Q'
@ = —, g=— o
ad =0, d=o0 f=uo—u, B =uo—u
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we find
u, " Q' 5 R
=g | = |ow g | > e (=102 ai(logn+2)),
0
where

a; = max {, logmax {{eD["*, (Q (u]— Pu, u, - Qu))}}
and D is the discriminant of the field gencrated by V4. Clearly log|eD|'
< max{w, log (Q (4} — Puy g+ Qui)"*} and the theorem follows.
COROLLARY 2. If uy = 0, u; = 1, thyyy = Up—2Up_y, then for n >0
/2

[t} > = exp(—10*(logn-2)).

4
Proof. We have here 2/2' = —1 and %, = 0 only for n = 0.

As an application of Theorem 4 we prove the following two theorems:
THEORBM 5. If 4 is a negative odd integer # 1—29F, the equation
(104)
has at most one solution with m >80, 2 > 0.

TrEOREM 6. If d is a negative odd integer and p is any prime factor
of 1—4d, then the equation

(105)

o —d = 2"

n

F—d =

loglogp
has at most one solution with m>1—|—6—0~’c’:1£g~&1—0,
0g

Proof of Theorem 5. It is known (cf. [12]) that if
(106)

z>0.

E e = 2042

ig the solution of the equation (104) in the least positive integers, then
for any solution

m = gn-+2,

where w4y = 0, % =1, uy = Eup— 20y,
Moreover, it is known (ibid. p. 89) that if

[un[ =1,

(107) d=1-2"4, Aodd, 4 -1
then
(108) 7 = 1(mod 277 %+),

Now it follows from (106) that
F—1 =220 _ 4) = 0,
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thus
g-+3

(L<q.
2

— - — 2 Hg—
2T L ELT L 2(2HP 4 1) < 9,

We obtain from (108) that either n = 1 or

(109) > 20—

We apply Theorem 4 to the sequence u, setting P = &,Q =27,
We have either
27 log2

a, =
log2 2

g <

In the latter case we get from Theorem 4

qn g+2
0 = log|u,) >%—10g9— g+

2

log2—1,3-10°g®(log n42)

and
(110) f(n) = n—4-10°¢ (logn+2)* < 0.
It is easy to verify that f(n) > 0 implies f'(n) > 0, thus it follows
from (109) and (110) that
fae?) <o

and as the computation shows, g < 78. Therefore, if the equation (104)
has at least two solutions, it has a solution with m < 80. However by
the theorem of Apéry [1], the equation (104) has at most two solutions.
Hence Theorem 5 follows.

Proof of Theorem 6. If d = —1 or —3, the equation (105) has
no solutions with m > 2 (ef. [17] and [19]). If d # —1, —3 the ring
generated by Vd has only two units: 4-1. It follows hence like for the
equation (104) that if

£—d=yp
is the solution of (105) in the least positive integers, then for other solutions
m=ng, |u| =1,

where #y, = 0, 4; =1, U, = 2&up— % up_q.
Since for n even wu, is even, » must be odd and

(111) Uy = (28)"! = (48" mod p’.
However by the assumption
(112) 48 = 49”1 4d = 1modyp,
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thus u, = 1modp and
(113) U = 1.

Let 44 = 1—p®4, where (4,p)=1. It follows from (112) that

(114)
thus

481 = p* (4" - 4),

P <2+L <4 A2 <p g

On the other hand by (111), (113), (114)

n—1

= 0(modp’ %,

hence either n =1 or
(115) 7> 2p- D,

We apply Theorem 4 to the sequence u, setting P = 2&, @ = p’.
‘We have either

log
<146 oglogp+10

= logp logp

g
r = =logp.
0 @y 3 gp
In the latter case we get from Theorem 4

0 = logu, > %logp~~§10gp—4:-105(glogp)g(logﬂm}—Z)2
and
(116) f(n) = n—1—8-10%(glogp)*(logn+2)* < 0.

It is easy to verify that f(n) > 0 implies f'(n) > 0, thus it follows
from (115) and (116) that

filg) = F(2p ) <0,
On the other hand

1, (1+610g10gp +10 -0
logp

for all p > 3. Sinece f,(g) > 0 implies f;(g) > 0, it follows hence that

loglogp+-10
logp

Since by the theorem of Apéry [2] the equation (103) has at most two
solutions, we reach the desired conclusion.

g <146
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COROLLARY 3. If d is a negative integer, d == 0mod3, then the equation

(117) &—d=3"

has at most one solution with m > 56, © > 0.

Proof. If the equation (117) is solvable we have d = 1mod3 and
Theorem 6 applies.

COROLLARY 4. If d is a negative integer, p a prime factor of 1—4d and
p > 5-10%, then the equation

z—q = p™

has at most one solution with m > 1, @ > 0.
loglogp-+10
logp
From this point onwards, with the exception of Theorem &, the
estimations although effective will not be given explicitly. We prove
THEEOREM 7. If the recurrence 1y, satisfies the conditions (98) and u, # 0,
then

Proof. For p > 5-10* we have 146

8
"
(1) > (Iog [tta] — —-log (P*, Q)) (logn)",

L
5 = [112

i)

where

if 4 is a perfect square,
otherwise

and ¢, is an effectively computable constant > 0.

Proof. Let p be any prime factor of u, and p any of its prime ideal
factors in the field R of degree » generated by ¥ 4. We prove that
(118)  ordyu, = % ord, (P%, @)+ p***(logp)™" O (log*n+ %)

uniformly in p.
If w/w’ is not a p-adic unit and say ord,w > ord,’, we have

ord, 0, ord,(F* Q) =20rd,P = 2ord, o’

Q
— >
(P Q)
and for n > ord,Q'/Q we obtain

ord, Qo — - 0rd, (P, Q) = ord, Q-+ nord,0/a’ > ord, Q-+n > ord, &

= ord, Q'™ — %ordp(Pz, Q).
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Hence
ovd, y, = —Z«m‘dp (P% Q)+ 0(1).
If wjo' is a p-adic unit, we have
)
ord, 0 ];':;—(:)-)—
and

w?l- Ql
Ol’dp U = Ordp (P 27 Q)+ Ol’dl’ 2+ 01‘(]4, ("_ﬂf —F?.T ) '

w

IS

7 !

Since #, % 0 we have —?—)Tn-i—-g- A;:é 0 and we can apply Theorem 1.
w
We get

0_)% ,Q’ » 7
2 L) <105 gt log g van® - 241
Ordv(wm+ Q) <10 (mgp)“p (logn - »ap” )

where @ is a constant depending only on w/w’ and £'/Q. The formula
(118) follows and we infer that

ordy tly, = % ord, (P, @)-+p***(logp)~" 0 (log*n+p*).
Hence

log |uy| = 2 logpord,u,

P<A(up)

n [y
=—log(P% Q)+ D p**(logp)*0(log*n+p%).
PLA(Up)
Since

Do (logpf = 0(a" (logey™) (o # 0)
=
we get
log [un| — %103 (P*, Q) = g(un)"** (logq (un)) ™" O (log*n+ q (un)*).

By (99) and Theorem 3 we have

(119) log 1og1un1—1;~1og(1ﬁ,9) ~ logn.
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Therefore, there exist two positive constants ¢, and e, such that
for any n either

n ., Hg+3) .
q(1un) > €, (105:’ [t — —log (P, Q)) (Log n)!1¢"+9) < f, (n)

or

1(T45)
) (logn)*+% = f,(n).

n .,
0110 > o Logl — - 10g(7*, )

Since by (119) fy(n) =
theorem.

If w/ow' and /02" are multiplicatively dependent, Theorem 7 can
be considerably improved. We confine ourselves to the case 4 > 0 and
prove

THEOREM 8. If the recurrence u, satisfies the conditions (98) and besides
4>0, ofo' and ']Q are multiplicatively dependent, then

q(uy) = mv+u—1,
where u, v are the least in absolute value integers satisfying
(120) (o]} = (—Q/Q'),
and we assume 1 > 0, no+u > 24,

Proof. Let (u,v) = o. Since the field R generated by V4 contains
no roots of unity besides 41 we have o == 1 or 2. Let 7 and s be integers
such that

O(fx(n)) and since 8 =1/(Tv-+5), we get the

>0

ry—8V = ¢g.

It follows from (120) that

e =5 (5)
(@ T

‘We can assume without loss of generality that |w| > |o’|. The number
Q r 1\8
(-!5,—) (C:) ) is then absolutely greater than 1.
On the other hand, it is the quotient of two rational integers or of
two quadratic conjugates. Therefore, it can be represented in the form
(Ll/2+K1/2) /2
= 4. Let

whence

(121)

, where L, K are positive rational integers and (4Z, L—K)

(L1/2+K1/2)/2 =a, (LIIZ_KIIZ)/2 — ﬁ
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The numbers «? and f? are relatively prime integers of the field R, rational
or conjugate and positive. Also w?/(P% Q) and w2/(P% Q) are such in-
tegers and since by (121)

W (P Q) _ (ﬁi)”’"
o?/(PQ)  \p]

we get

21;/4:’

= (P%, Q)
= e(P, Q)" ™,

®'? = (‘sz Q)ﬁw/(r7

(122) , , .
o = & (P Q)Pg,

where ¢ and &' equal 4-1.
Since

(224, Q24) = ((2uy—Puy)?, uy — Py g -+ Qui) = 4,
is a rational integer, it follows from. (120) and (122) that
i ae, AR gYey it w0,

123 Qo—o), (0'—w
(123)  <Q( )y &( » R T L IS

Thus we obtain
a(nv+u)/u__ 77’7' ('881)’”’ ﬁ(ﬂw+u)/a
11/0___ B 6/ ﬂ’ﬂ/o'

Tt follows from the work of M. Ward [25] that for every m > 12, a™+ ™
hasg a rational prime factor (called primitive) that is relauvely prime
to o4 f* for each k < m. This prime factor is of the form mi4-1 for
o™ — g™ and of the form 2mi+1, for o™ g™

Since ((nv+u)/s, v/o) = 1, the highest common factor of

Uy = ,’]Ai/2 671»»1(PZ’ Q)(n—l)/z(aﬂ)([m—u)ﬂa

a('/W-)-'lL)/a__ 7777/ (sel)nﬁ(nﬁ+u)/a and aﬂ)/n'___ ze’ ﬂvla

divides a*— g2, Thus, the primitive prime factor p of a™*+“/"— gy’ (ee')* X
X BT iy relatively prime to o*/° — e’ f1°) we have p |u, and

q(us) =9 Zno4u—1,

except possibly if o = 2, yy’ (s2')" = 1. In this case we have by the choice
of u,v
© u/2 0 vJ2
() (-]
(7] Q'

(o8} £ ()P

and by (122), (123)
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On the other hand, 9%’ = (e&’)", thus

(86 )(mv+u)/u £ 1

and (nv-+u)/2 is odd. The prime p being of the form (no+4)t/2 4+ 1 must
be at least nv+u—1, which completes the proof.

Remark. An analysis a little more detailed proves that the theorem
remains true if wv4-w > 12. The last inequality is best possible as the
example of Fibonacei sequence shows.

§ 4. Properties of the difference @’ —ePT1Py2 ... Pt (v =2 or 3).
In this section we consider the absolute value and the greatest prime
factor of the difference " —eP[1P52... Pi%, where » =2 or 3, ¢ = 41
and Py, P,,..., Py are positive integers.

TuEorEM 9. If & and 4y, N, ..., % are positive integers and o —

—PhuPy... P 0, then

(124)  |o"—P{1Pg2 ... PgE| > exp (e, (logmax {a”, PY1PR2 ... PR,

where e, is a positive computable constant depending only on v, Py, Py, ..., Py.
Proof. We may assume without loss of generality that Py, P,,..., Py

are distinet primes. If the quotients n;/v are integers for ¢ =1,2,..., &
the inequality (124) holds with ¢; = (v—1)/». If at least one n;/v is frac-
tional, we consider the field R generated by & = P{/Mpfert . Pkt
Set

o= (z, PP P*),  w=oy, PP PPN = oPTiPe .. PR,
The equation
o —P... Pt =4

can be rewritten in the form

(125) y—PM ... PRtd = 6",
where n > 1 is the fundamental unit of K and ¢ is a factor of do™” i

chosen so that

n K

(126) ldn ™ o™ ™t < |8] < Ay o7
If
ly—P ... PPRg| > 1
the inequality (124) holds with ¢, = (»—1)/v. If
ly—PM .., Py <1
‘we have
(127) M = logmax {&’, P... Pi¥} < vlog o+ 65 max m,

1igk


Pem


220 A. Schinzel

where ¢, like the subsequent constants depends only on v, Py, ..
and can be effectively computed. On the other hand

o Py

(128) P™M... Piely'— P .. PR —(y— P ... PEEDY
— dlf—1"—‘ éi‘,ylv’nr = 61’(d0_-—‘1‘ (S-—l'__ 171"”-) 7& 0'
Since # is a unit we can apply Theorem 1 and we geb

(129) ord, (do™" 6" — ™) < esat(log® m| + a),

(130) 0 < & < e;logmax {do™, m"}

for any prime ideal p of R dividing P; ... Pr.
Since the norm of ¢ equals do™” it follows from (126) that

lanf o™t < o] < o
whence by (125)

(131) In| < eglogmax {y, P ... Pi*} < ¢( M —vlogo)
and by (130)
(132) a < ¢y(loge,,d—vlogo).

Further by the choice of o, if m; >0 and p|P; then ord, s = 0. Therefore,
by (128), (129), (131), and (132)
max m; < ¢y, (log ey, d—vlog o)t {log? (M — vlog o) + (log ¢,y d— vloge)?)
1<k
and by (127)
M < eg(loges,d)(log® M +log2d).

Solving the last inequality with respect to d we obtain (124).

COROLLARY B. If £ is any real quadratic irrationality and g any positive
integer > 1, then

7.
(133) €™ > g~"exp (e2¥ ),

where 615 18 a positive computable constant depending on & and g.
Proof. It suffices to prove the corollary for & = 1/17, where P is
a positive integer. Setting in Theorem 9, y =%k =2, P, =P, n, =1,
Py, =g, n, = 2n, we find
7
o2 — Pg™"| > exp(c/n),
whence

7.
IVPg"|| > g~"exp(ess¥ n).
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If (x,P;... Py) = O(1) the greatest prime factor of &’ —ePt... Pgk
tends to infinity together with max {&’, P1... Pi*}. However we can
estimate the order of its growth only for % < 3. The precise formulation
is given in the following

THEOREM 10. Let x and ny, nq, ..., iy be positive integers and

k
Y Ut
!il? _egPi‘
Under each of the following conditions:
() k=38,7=2,e =n; =1, —P1P2P, <0
and (4z? P P,P;) = Pg;

>1.

(i) k=2,r=2,6 =0y, =1,8—P11P, <0 and (z,P;) =1;
(i) k = 2,0, = 1 and (’2’C~Y, PPy~ = Py
iv) k=n =1

the following inequality holds
E %

q (m”—snP’{i) > 26+ 0(1))loglog w"——anﬂ’i

t=1 i=1

’

where
, &
if & H Pl is a perfect v-th power,
i=1

5 [216—1)

2v/(v—1)2  otherwise,
k
and the effectively computable o(1) tends to zero, when max{m”, II P?i} tends

to infinity. =1
k
Levma 9. Let d = o’ —e [[ Py, R be the field generated by @' (real
i=1

for v =3) and D its discriminant. Under each of the conditions (i)-(iv)
there exist integers o', @'’y By B’ of R, a root of unity (<R and rational in-
tegers m, m such that

(134) @ divides Py(a™p'™— o™ p™) # 0,
(135) (@™, d) divides (Py, d) = (p'f" Py, d),
(136) logmax{[a'|,[¢"],[F], [B"]} < e1a¥1Dllog"*|eD),
(137) max {fnl, nl} < orslogmax(a’, f] P

=1
Proof. (i) It follows from the equation
(138) #*—d = PPP3P,
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and the assumption (4o, P P,P;) =
(m~m (o /d
P, Py

where (m;[:l/?oi)z/Pa are relatively prime integers of .
Hence

3 that;

P Mg
= Pyirye,

(ar-—l/ci
”_‘(‘j’;s‘w
where a,,a, are ideals of R such that
(140) Nao, =P,, Na, =P,

20 .20

Integral vectors [u,v] such that ai"a;” is a prinecipal ideal (integral
or fractional) form a lattice.
We choose a basis of this lattice in the form [g,, ¢,1, [0, ¢s], where

(141) 0<g, <h(R), O

(h(R) is the clasy number of R) and we take as «/, ' any generators
of a0 and a3®, respectively. We seti further

(139) a_TLl Izn:,

(¥ denotes the absolute norm in R).

< < ¥ L I(R)

(142) a = PLPR, B = PP
Since by (139) ai™a3™ is a principal ideal there oxist integers n, m
such that
(143) Ny = N1y Mg = NGy+ My,
and since B has no non-trivial units
(m_"/ﬁ)z — Cal/nﬂ/ﬂl
P, ’

where { i a Toot of unity contained in R.
On the other hand, by (138), (142) and (143)

2 .
o 4 = g™ RI™

Py !

thus the divisibility (134) follows. Since (P,P, P, d)
follows also. Further, by (140)

= (Py, d), (135)

Na'' = (Nal)ml (Na2)2”2 — P'.;ullgiuz = Nal,
Np' = (Na,)" = Pi’ = Np".

Sinee | o' | = VN, etc., we get from (141)

logmax{[a'[, [a”, [#], ["]} <

h(R)logP P,,

hm@
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whence (136) follows in view of the estimation [15](|R| is the degree
of R)

(144) 1(R) < e VD) log® D).
Finally (141) and (143) imply (137).
(ii) It follows from the equation

(145) @—Va) (w+Vd) = v*—d = PP,

and the assumption (x, P;) =1 that (v— V’(?, 4V E)zliPz, whence

(146) (2—Vd) = 2dMa,07",

where ay, a,, @, are ideals of R such that 2a,e,0;" is integral and

(147) Na; =P,, Na,=2P,, Nay=4.

Let g be the least positive exponent such that a3’ is a principal ideal and
let

(148) n, =gm+r, 1<r<yg.

Clearly

(149) g <h(R)

and (2a7a,a; ") is a principal ideal. We take as o', f any generators of
(2a}a,a;")2 and ai’, respectively and set

(150) o« =PiP,, f"' =P,

Since R has no non-frivial units we get from (146)

n=1.

(v— ]"E)z - Caunﬁrm’

where { is aroot of unity contained in B. On the other hand, by (145),
(148), (150)

2 — T prm
p—d = o™ p"",

thus the divisibility (134) follows. Since (P, d) = 1, (135) follows also.
Further, by (147)

Na' = 16(Na,)" (Na,)2 (Nay)~? = P¥ P! =
Np' = (Nay)® = P¥ — Np".

'
No',

=VNd, , ete. we get (136) from (148), (149) and (144). Finally
(148) and (150) imply (137).
(iii)-(iv) It follows from the equation

#2—d = ePTP,
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and the assumption (va’®~Y, P, P;7") =P that
(m—dy (@ —ay -
. = ¢ P'™
(1561) P, P;'l(w—-dl/v)" &Ly

where the factors on the left hand side are integers and are coprime unless
P, =mn, =1 (cage (iv)).
Tf d'” is rational, we get
( r— dl/V)I‘

— 85(1"””1,
Py

where o is a rational integer, { equals 4-1. Taking
B=pF =1,

we eagily verify all the assertions of the lemma.

Assume now that @' is irrational. The case » = 2, d < 0 is obtained
from (i) or (ii) on setting P, = 1. In the remaining cases R is real and
has one fundamental unit » > 1. We get from (151)

(m__dllv)v “,
Ty T
2

o =Py, n =1y, m=1

(152)

where a is an ideal of R such that Na = P,. Let g be the least positive
exponent such that ¥ is a principal ideal. Clearly n, = gn with » integer
and
(153) < h(R).
We choose for o7 a generator o' such that
(154) Pg(]?l/ﬂ—l < lalrl <P{{?71[v

It follows from (152) that

(@—a"y
155 —_ T m
(155) =t
where { is a root of unity contained in R, m is an integer.
We set
o =P, f'=1, f=q
and we find
w"_d mogrm
P ea’™ g™,

Now (134) and (135) follow from (155) and the equality (P, P,, d) = (P, d).

hm@
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We notice further that No'' = Nao"? = PY and in the case v =3 the

two conjugates of « have the same absolute value. Hence, (154) implies

(156) [a"] < Pyt = Pyuimgpt,
By the theorem of Landau [15]

(157) 0 < ey, < loglyl < eV D]log" D],

and (136) follows by (144) and (153).
Since 0 < n < n,, it remains to estimate |m|. We have by (155)

ﬂilog[a””—{—vlogu a
logn

-+ elogmax {w, P11}
logy

nvlogia’’
<

lm

and (137) follows by (156) and (157).
Proof of Theorem 10. Let d, B, D have the meaning of Lemma 9.
We get from the well known formulae for the diseriminant of a quadratic

or purely cubic field
» -1
w1 <v([2)
pld

&

The primes p dividing ¢ have the property that []JP;™" is modyp
i=1

a vth power residue. The density of primes for which a given integer,

not a »th power, is a »th power residue is (v—1)/v for » = 2 or 3.
Since by the prime number theorem

[ » <expla(@)+o(qg(d)}

P<q(d)

and for fixed ¢ and P;’s there exist only »* possible values for & HP"{“%’”}
we get =1

[ 7 <explsig(a)+o(g(@)},

vd
where

P
| 1 if(aHPffé is a »th power,

5, = T=1
* y—1
4

and o(g(d)) can be effectively computed. Hence

otherwise

(158) ID| < exp{(v—1)6,4(d)+ o(g(d)}.

Acta Arithmetica XIII. 2 8
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Now, let p be any rational prime dividing d/(P, d) and p any prime
ideal factor of p in R. We have by (134) and (135)
unﬂnn)

alln -, f”"l
e - /jiﬁf ’

(159) ord, d"” < ord,Pr(a"p"™—

< 20rd, P+ ord, (

where o', ", ', ", ¢ and n, m are described in TLemma 9.
Since ¢ is contained in B and R is of degree < 3 we have 0 = 1.
It
aufm ﬁ//(m

s - ﬂrﬁﬂ =0,

it follows by Lemma 1

al/n 5 ﬁ/lm Ilnﬂ/m ’VlOg'QI
(160) ord (__-—g 1 ﬁ"") = 01dp( Py -1 < Tozp Cap -
If
a//an ﬁll(,m
e #0,

since B[ is a p-adic unit we have by Theorem 1
ﬁ”ﬁm

'E"Efn')
< ey atp o(logdmax (6 [n|, 6 |m|)+-p?a),

r/n ﬂum rrgn
(161) ord, ( -t ﬂ'm) < ord, (W_

‘Wwhere

< logmax{[eD|, |o' 8|, [«'B"],|a" '], [a" p"]}.
It follows by (136) and (158)
(162) <exp{6—lq(d)-|-o(q(d))}.
Further, by (137) and Theorem 9 we have
(163) logmax(6|n|, 6 |m|) < 022+10g10gn1ax{ ”P } . Gyzloglog |d].

i
It follows from (159)-(163) that for each prime p |d/(Py, d)
ord,d < vord,d"” -
< prexp {46 g(d)+0(¢(d))} (log®log 4]+ pPexp {36~ ¢ (d)})
< exp {4324(d) + 0 (¢(@))} (Log?log |d] +exp (357 ¢ (@)})
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o
]
-3

Hence

log|d| <logPy+ Z logp 01’dp(l
vid/(Py,d)

< exp{467Lq(d)+ o (g(d))} (log3log |d|+ exp {8357 g(@)}).
Solving this inequality with respect to ¢(d) we obtain
q(2) = (}5+o(1))loglog |d],
where o(1) can be effectively computed and by Theorem 9 tends to zero
when max {;v”,i[?P{»'i} tends to infinity, q.e.d.

COROLLARY 6. If qy, ..., iy #1y ..., 7 are distinet primes and S;, S,
positive integers, each of the foZlowuzg l)wphantme equations

1871822,
girgs? ... qlib i L af = 128088, 8,8, odd,
STL832, 8.8, 0ddor 3, =1,
485,
g iR = fszl’ 8, # 0mod3,
287, 8, # 0mod?2,

S, 8y £ 0mod6oras, =1
can be solved effectively.
Proof. It follows from the identity

4y (ST 8y — ) = 31852 85— (81532 8, — 2p)2

and from Theorem 10 case (1) and (i) that if 0 <y << STL8285, (¥, 8:8,8,)
=1 and either (4,8,8,8;) =8, or §; =, =1, then

2(y)+ ¢ (87185285 —y) > (3+o(1))loglog 871 828,
Similarly, it follows from the identity
(87 8ut ) —

and from Theorem 10 case (iii) and (iv) with » = 2 that if y >0, (¥, 8;8:)
=1 and either (4, §,8,) =8, or 8, = s, = 1, then

)+ (8785 +y) > (3+0(1))loglog (871 852 -+ y).

In both cases o(1) can be effectively computed, which imyplies the corollary
except for the equations

agr .

4y (8718 +y) = S8

gl =DB83, H=1or3 § =0mod3.
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In order to solve these equatmn& we apply Theorem 10 case (ili) with

y=3,e= —1 Pl—Sl,PzﬂL‘nvq Sl g = ”V[”ﬂ”]” We get
=1

’)"]} == Q(MS+P‘1£1P2)
> (t-+o(1))loglogght ... ¢,

DAX{Gyy ey Giy T1y ooy > (4 0(1))loglog |w® -+ PP,

which permits to calculate ¥4, ..., y, since o(1) iy effectively computable.

§ 5. The greatest prime factor of a quadratic or cubic polynomial.
One of the consequences of Theorem 10 merits to be stated as a separate
theorem.

THREOREM 11. If v = 2 or 3, A and B are non-zero inteyers then

if v =2 and AE is not o perfect square

b

1 q(Adz"—E) or v =3 and AL is a perfect cube,
51:—2 loglog® if v =2 and AE is a perfect square,

2
7
L dif v =3 and A2E is not o perfect cube.

Proof. Since Aw'—F = A'7"((Ax)’'—A’'E) we apply Theorem 10
case (iv) with eP; = A*'F and obtain the assertion except in the case
A*F Dbeing a perfect cube. In this case we set A*F = F* and since

q(y*+ Fy+F°) = q((2y+ F)*4-3F7)

we apply Theorem 10 case (iv) with eP; = — 37,
CoroLLARY 7. If f(») is any quadratic polynomial withoui a double
root, then

qy>—A*E) =

if f is drreducible,

4
tim 2(@) > {7 .
L if f is reducible.

== loglogas =
Proof is obtained by reducing f(x) to the canonical form.
Theorem 11 can be improved if » = 2, |4 or » = 3, I|3. The latter
case was done by Nagell [18], ef. [19]. We prove
THEOREM 12. If A + 0 is an integer and |4, then

4
2

Proof. It is sufficient to prove the theorem for 4 > 0 square-free
and (4, E) =1. Let da*—F = d > AF? and let d, be the square-free
kernel of d. Clearly

lim g_( Ax®—E)
loglogx

Z=00

if AE is not a perfect square,
if AR is a perfect square.

(164) h<[]r.

pld
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The primes p dividing d have the property that AE is modp a quadratic
residue. If AF is not a perfect square the density of primes with that
property is 1/2, hence by the prime number theorem

[T <ex (o) olga)}

pid

(165) exp {

where
1 if AF is a perfect square,
‘51 = .
%+  otherwise.

On the other hand,

d=dydi, (dz)—Add = AR.

Since (4z)2—AE > (4AE)?, Ad, is not a perfect square. Moreover if
= 44 we may assume Addy,d, odd.
Let Uy, ¥, be the least positive solution of the equation

(166) U2—Add, V2 = AR

and consider the recurrence

(167) Uy = Qo™+ Q2" 0™,
where
o = [ABT U+ ViVAGY, o = ABI™(U,— V.V 4d,),
Q= (U+ ViVAdy)[2, Q = (—U,+V,VAd)/2

andv =1if AF =1 or4 orE = —d, or —4d,, v = 2 otherwise. It follows
from Theorems 11 and 13 of [19] that if B|2, w is the least greater than
1 totally positive unit of the ring generated by VAd, and if B = 4,
o 18 the least such unit of the field R generated by I/EZ; Hence o does
not exceed the sixth power of the fundamental unit of R. Applying (157)
with D = Ad, or 44d, we get from (164) and (165)

logw = O(Vdylogdy) < exp {48,q(d)+ o (g()).

It follows further from the quoted theorems of [197] that all the positive
integers V satisfying (166) for a suitable integer U, are contained in {ttn} -
Thus in particular

| = .
Since w/w’ = (— /2y,
q(d) =

it follows from Theorem 8 that

g{dy) =nv  or 24 =aw.
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Now, by (167)
loga, = nlogw-0(1)

and we get
logd = logdy~2log|d,| < 8,¢(d)+o(q(d) -+ (@) exp {§8,4(d) -+ o (¢ ()}
= exp {3 0,4(d) + 0 (¢(D))}-
Solving this inequality with respect to ¢(d) we obtain the theorem.
The theorems which follow goin the direction opposite to that of Theo-
rems 11 and 12.
THeorBM 13. If », A, Il are non-zero integers, v = 2, then

Dy
ATy if A< —1
e T4 )
DY : 1T = —
Jim 1084(4e" —B)loglogloga ) 2¢ i A= 1,
== logldo'— 0 e i AR =1,
T if AD>1,
e

where y is Euler's constant and o is Buler’s function.
Proof. We assume without loss of generality 4 > 0, set for positive
integers n:
ATHATI R AR < —

g1 it AR = —1,
Ly, = .

2" if AR =1,

ATNATIEY if AE>1

and find
loglogloga, = loglogn+o(1).
On the other hand,

(Ar-Lg)rm—1 it AR < —1,
D s | PP AR =1,
Oy — B = B X
e 2™ it AR =1,

(Av—IE)m—-l —1 if

Denoting by X, the 6th cyclotomic polynomial and by d(8) the number
of divisors of & we have for any positive integers ¢ > 1 and m

nXa(!])

8m

Al >1.

gm__l —
and by [3], p. 178

q(Jm__ 1) < max ]XCF (g)] < nlajxyfp(ﬁ)+d(5) < ym(7")'|-d(7") 3
élm dlm
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It follows that

lim logg(Aay,— E)logloglogz, <lim ((p(kn—l)—{-d(kn——l))loglogn
b log | Az, — E| R En ’
where k =2y if AR < —1,k =2 if Al = —1,k =1 if 4F =1 and

E=vif AF > 1.

Now, a standard argument (cf. [14], §59) shows that

lim ¢(kn—1)loglogn _ o~ B .
o=r) kn )
Since
d(kn—1)logl
Ji Q0 —Dloglogn
oo kn

the theorem follows.

If » = 2, B4 Theorem 13 can be improved to the following
TaEOREM 14. If A, H,r,s are integers, Ar # 0, E|4, then
lim logg (4 (ra+ E)logloglogz -,
Fmoo 10g{An;+s - F|

Proof. We assume without loss of generality that 4 > 0,7 > 0,
s > |E| and set

B VAL VAS— R _ WA—VAse"E

B vigl Vil
Then VA (ds*— E) generates a real quadratic field and «® is a unit of
this field. Let 7 be the least positive exponent such that

? = 1modr(atp).

We set for positive integers =

—
VIB| o1
g — _(a ﬂ+l+ 2041 2
pwrod ) ——
T oln+1 20141
‘We have 21;11& (a+8) =% and the quotient aig can be ex-

pressed rationally in terms of (a4 ) = 44s*/H and of = 41, thus
%, is rational. Moreover by the choice of 1

aﬂIM-I + ﬁ21n+1

a+p

= 1modr,
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thus z, is an integer. Since a > ||, we have
loglogloga, = loglogn--o0(1),
log {4 (rm, -+ 8)2— B) = 2Inloga+0(1).

On the other hand,

e = B s < ais ) [] e,

8|21
N
where

a

Xy(a, p) = /J”J(”X,,(ﬁ).

Sinee X,(a, B) can be for § > 2 expressed rationally in terms of (a+-p)?
and af, all factors on the right hand side are rational integers and we get

q(A (ro,-+ s — B) < max {q(As*— E), max |X,(a, )}

d12in+4-1
81
< max {Q(Asg_E)’ ar;»(aln—u)+d(21n+1)}_
It follows like in the proof of Theorem 13:

. log g( 4 (rz,+ )2 — E) loglogloga,
o Tog (A (ran+ 5)2— )

. (p(2ln+41)+d(2in+ 1)) loglogn _ 21 < oo
<lm 20n YT :

N=00

q.e. d.

Theorems 13 and 14 do not say anything about q( f (m)} for a genere.nl
quadratic polynomial f(z). A much weaker but more general resulb is
the following

THEOREM 15. If f(z) is any polynomial of degree v > 1 with integer
coefficients, then

tP(4) for v=2,
<|4P@©) for »=3,
P(») for  »>3,

. logg(f(a)
ii_l_j_} log |f()|

where

o

1
Py) = ” (1-—7), y = v—1, Uy = u—2.

i1 "
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In the proof of this theorem we denote by & the set of all polynomials
with integer coefficients and the leading coefficient positive.

LeEMMA 10. If F(2)eS is a polynomial of degree d there ewists a poly-
nomial H(x)eS of degree d—1 such that F(H (x)) has a factor G(x)eS of
degree d2—2d.

Proof. Let F(x) = (eomd+...+ad. We set for any integer %

1 a @
(5 :.‘(IF——-~—-—1———” = S S s (0
Gr(z) = = z i 1a k| = a1 D 2—axH(z)|,
where Hy(x) is a polynomial, H(0) = dk and if F | — N —k} # 0,
(d—1)a,

Hy(z) is of degree d—1 with the leading coefficient

—ﬂo_lF(— S S L)

(d—1)ay
Clearly
Gk(iv) 1 @y
Hy(x)—I}= F(— I —%
(168) F( x(2) ) ( W + @—1a 7)

1 @ty
Fl= — -
(‘” (d—1)a,

I

k) = Omod Gy (x).

‘We choose % such that

a

a ' —_————
=1 P( (@—1)a

k) >0
and set
H(z) = Hy((—1)" " (d—1) aia) — k.

It is easy to verify that H(x)e§. On the other hand, in view of (168),
F(H(z) is divisible by @(( —1)*"(d—1/a3z). The complementary
factor of ¥ (H () is of degree d*— 24 and its suitable multiple belonging
to § can be taken as G(z).

Lesma 11, If f(x) satisfies the assumptions of Theorem 15, then for
any positive integer n there exists a polynomial ha(z)eS of degree wyug ... 1,
such that f(hy(w)) has a factor g,(x)eS of degree Uppq -+ 1.

Proof by induetion with respect to n. For # = 1 the assertion follows
from Lemma 10 on setting there F = 4f. Assume that F(Pn(2)) has
a factor g, (»)eS of degree a4+ 1. Applying Lemma 10 with P = g, ()
we find a polynomial H(z)eS of degree Uy Such that gn(H () has
a factor g,.,(2)<S of degree

('M'n+1+ 1>2_2(‘1’4n+1‘1‘ 1) = u?’l«+1°—1 = Upyat+1.
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Clearly ¢,.:() is also a factor of F(lzvn('H'(m))) and we complete the proof
by taking hn,i () = ha(H (2)). .
Proof of Theorem 15. Tt follows easily by induetion that

m

Upgrt1 = [[m—1) (0 =1,2,..).
i=1
Hence Ml‘-— tends to P(») decreasing monotonically. Since
YUg Uy + o U

P =P(4) = 055...>4% for »>3, we have
Uy =1 > Vitg oo Up— Uy — 1.

By Gauss’s Lemma we can assume that in Lemma 11 both polynomials
gu(w) and f{hn () /gn(2) have integer cocfficients. It follows that for » >3

lim Iqu(f (#)) < lim logg (.f(h‘n (‘m)))

= 10g[f(@)] e log|f{hu(a)|
| Jogma {[ga ()], 1f (hn(2) fgm ()}

<l
e Log |f (A (@))]
max{ty 1 -+1, vy o Up—Upyy—1} _ tnp -1

VU Uy oo Uy T T

Since the last inequality holds for every n, we get

logq(f(=))

lim - < P(v)

> 3).
e Tog |f(@)] > 3)

It remaing to consider v = 2 and v = 3. If » = 2 we have

Fa+7@) +lo-+f @) =F(@) (L -+ @)+ @ @)f @),

where f,(#) is a quartic polynomial with integer coefficients. Tt follows
by the already proved part of the theorem

m logg (fl (’”))

< P4
o Tog () LM

and

logmax {|f ()|, 1+ (2) +3f (&)f (@), g (fr()))
log|f(w+1(2)+f(o+f ()]
<max{}, }, $P(4)} = }P(4).

logg(f(@) ..
2 Tog () S
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If » =3 there exists by Lemma 10 2 polynomial H (w)eS such that
f(H($)) = G (2)Gy(2),

where Gy, @, are cubic polynomials with integer coefficients. Applying
again Lemma 10 with F(z) = +6,(x) we find a polynomial H,(z)eS
such that G,(H,(z)) = G45(2)G,(z), where @y, G, are cubic polynomials
with integer coefficients. It follows by the already proved part of the
theorem

logq (6. (H, ()
== log|Gs(H(x))
and since f(H(Hl(w))) = Go(H (%)) G4(%) Gy ()

< P(6)

wlogei@) o logmax {g(6: (H:(a)), 165 (@)1, 164(a)1}
== 10gIf (@) amm log|f(H (H,(2))]
1 1 1] 1
< max {?P(S)’ T = —2—P(6).

This completes the proof.

The above proof of Theorem 15 suggests the following

ProBLEM. Does there emist for any polynomial f(@)e8 and any &> 0
a polynomial h(x)eS of degree d such that the degree of each drreducible
Factor of f(h(w)) is less than &d?

I do not know the answer to this problem even for flz) = 424~
+4049, e = 3.

Added in proof. 1. The proof of Theorem 5 furnishes an effective bound
for the size of all solutions of (104). Indeed, taking into account that g < k(d) (the
class-number of the ring generated by 3/d) and solving (110) for g = 78 we
get m < max {2-10'3, k(d)+ 2}. A similar remarks applies to Theorem 6.

2. The argument used in the proof of Theorem 10 shows also that in the case
(i) and (ifi) if P, = 1 then g(d)> (6+ o(1))log log |d]. For (i), » = 2 it is shown
by a different method as Theorem 12.
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