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1. In a former paper [3] Grunsky-Nehari inequality [1] was used to
estimate the fourth coefficient a, of functions

(1) F(2) = 2+ta,22+ ..., ¢ <1,
which are schlicht and bounded:
|F(2)] <b7' (0 <b, <1).
The inequality in question reads (cf. [3], (4)).

(2)  Re{a,—2a,a,-+ i—g“g+m§“2+2w1(“3—§a§)}
< #(1 —bils)_%lh |as|*+2 ]%]2(1 —b,)—2b, Re {w1az}+
+ [@s]* (1 —b3) — Re {22 (a;—ad)}.

Here «, and x, are arbitrary complex parameters. The aim of the
present paper is to utilize this inequality in the best possible manner
near the point b, = 0.

First we notice that a well-known coefficient inequality gives (cf.
[4], (38))

|3 (a3 —a3)] < |23 (1—b3)| = |a,|*(1—D3),

|, (1 —b7) — Re {} (a,—a3)} > 0.

This shows that in estimating Re {a,}, the best possible choice is
always @, = 0. In former applications one took @, == real.

The best possible choice for z, is obviously obtained by gener-
alizing:

(3) xy =1l4+im; 1, m are real.
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From (2) we deduce
(4) Re{a,} < o (1—b3)—1b la |2+iRe{a3‘-+
44§ == 3 1 2 1 2 12 2J
+2Re{a,A} +2|z,|*(1—b;) —Re{ala,} —2Re {w, A} —

—2b, Ref{x,a,}, A= a,——a;.

The part of this upper bound depending on x, and a; is denoted by

(3) H = 2Re{ayA}+2|z|*(1—by)—Re{zia,}—
—2Re{w, A} —2b, Re{x,a,}.

Write further
(6) ay, = u+iv, A= U+1V
and thus get
(7) H =20u—2Vo—2(U-+byu)l+e,12+2(lw+V—b,v)m-+te m?,

e, =2(1—b))+tu, e, =2(1—b;)—wu.

Now specialize m, which is an arbitrary real number so as to min-
imize H for every fixed I. We have e, > 0 except the case of right radial
slit. In all other cases the best possible choice of m is to take

l—b V
(8) m — _(__iqi )
€y
This gives for H the equation
V—b )
H = 2Uu—2Vo—2(U +byu)lbeylo— & 00T 0N
1

By rearranging terms we get

p— 2 o
(9) H :ZUu_2V@—M—2[U—I—b1’M—I— MJ Pl

é, €1
‘ : 41—=b) —w'—o*

61

Here the coefficient of 12 is positive except the cases of radial slit.
In all other cases we can again minimize H as a function of I. The result is

V—b,0)*
(10) H =2Uu—2Vo— APy
€1
€1

41 —b)—ut—v

(V—blv)v]2

41

. [U+b1u—|—
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Would we now follow the former lines, we had to maximize H ag
a function of U. The upper bound thus obtained for Re{a,} would then
further be maximized by the aid of an inequality given by the area
principle (cf. [3], (21)). We will first try to proceed in a different way.
As in [3], introduce the combination

(11) g = A+b,.
Write
(12) Re{u; =&, Im{u} =.

Hence we have U = &—b,u, V = n—>byv. Substituting this in (10)
we express H in terms of & and #:

—2b,v)?
H = 2u(&—b,u)—20(y—b,v)— u —
51
e, (p—2b,0)v T € ,, € v
— —_—— _— = —— e — ——2— -
4(1—b3) —u—o? [‘S—I_ e A : A A o+
2b, v? 2b 2b 2
+2(u+ /1,” ) E+2(—v—l— f”)wzbl(—uzﬂz— 1;2” ),

A =4(1—b,)2—u2—9p2,

Combine this result with (5):

- 2 1 b e
Re{a,} < 5 —bj)— Ebl(u2+v2)+ E(u3—3u02)—2b1u2— A‘ g2

2b,v2
A

_ & 2_2__7_)_4: +2 (ut
R

2b,e,v
J ez (-0 2on0)

2b, e, 02
2b, [v2— .
+2b, (” A )

Finally, take new variables as follows:

¥y =w.

(13)

Thus we have proved
THEOREM 1. Ezcept the cases of radial slit, we have

(14) Re{a,} < 4—20b,4300— 1453 K,
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where
K = A&+ Bn2+20&n+2DE4-2En+F,

4(1—b,)—= x Y
d=——p— B=—7p O=—7p
2b, y? 2b,xy

5 5

F = —3(1—b)(1—3b)a -+ (1-2b)a*— 5 a*+
I P L 43 )
Ty 1—7)“‘ 3
A=4(1-b)x—a*—y2.

2. Next we will try to utilize the upper bound of (14) in its strongest
form. In order to maximize K keep first # and y fixed. For them we have

[0—2(1—by)2+y* < [2(1—0y) 0%
2 +y2—4(1—by)x < 0.

In K, the change of the sign of y can be compensated by the corre-
sponding change of 7. Thus we may take

(15) 0<y<Vi(l—b)e—a® =1y, O0<ax<2(1-by).

Notice that if ¥ = 7,, then 4 = 0. This belongs thus to the radial
slit case which here is excluded. For # and y fixed, consider K as a func-
tion of & and ». Because of condition (27) of [3] we have for these ar-
guments

4o —a* —y> 5
(16) E2+4+n? < O R
Our task will thus be to maximize
(17) K(&,n) = A&24-By2+208n+2DE-2En+F

in the closed circle &-+x2 < R® Consider the free maximum poing
Py(&, n,) for which

1 0K 1 0K
e as Ji. — —_—— rt —_— b

thus
o & = A(CE—BD) = 2(1—b)o—a 47,
s = A(CD—AE) = 2(—3+4b, +2)y.
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We have
(18) K&, M) = D§ﬂ+E770+F

= (1—by)(—1411b 0 b, x2 T (B b ! 2
=AL—0)\— 1)”“(‘2—‘}‘ 1)w+'i'2—$+("2——8 1—Zm)y-
We have to study the sign of this function.
The coefficient 3;~8b1—§m is positive, when b, < ;. Thus we see
that the number K (&, 7,) changes its sign from negative to positive
when %2 grows over the value

gt = (1—5,)(1—-11b,)z+ (;’ +bl)w2~l—%m3

11 T
03 —8b1“— ZCL‘

(19) > 0.

In order to determine the location of 2 ask when ¥% < yg. It is seen

that this condition is fulfilled for
V2
< < 6(1——2— (1—0,).

For those values of # the critical value y = ¢ lies inside the domain
(15). This means that K (&,, 5,) has positive values for y > 9. Ask now
what is the location of the point P,(&,, 5,) with respect to the ecircle
§2+n? < R2 Take especially the critical curve ¥y = y(x) and get in this
case :
(1—b1) (1 —11by) @+ (5 +by) 2® +

11 7

1—b,)(1—11b 2 b ar s
770:2(%3%%%)]/( )A—11by)a+ 3 +b)a*+ o

11 7
T *8b1—'— g4

& = 2(1—by)z—a?+

[y

H

(1—by) (1 —11b)) @ +(; +by) a2+ a*
2—-8b1——;3}'. ’

Now, taking b, = 1—11 we get

3R? = 4p—g*—

Etm =ka'+ ... (k>0), R®=jta+...

Thus, for z near 0 the point P, lies inside the circle &2-4y2 < R2
This means that, together with K (&,, 7y), the funection K (&,7) gets
positive values in the domain (15) provided b, is near enough to the
point 1_1i Thus, Grunsky-Nehari inequality (2) cannot be used to extend
the result obtained in the symmetric class (ef. [2]) to the general class.

3. Estimation (14) is better that that utilized in [3]. Hence, there
is still left the possibility of trying to use (14) in a way similar to that

-



40 0. TAMMI

of [3]. To this purpose maximize K on the right-hand side of (14) as
a function of & and consider the result as a function of #:

C? cD D?
K = K = (= )42 (= S0 oer - 1

By substituting here the expressions of the coefficients 4, B, ...
and by rearranging the terms we get

(20) Re{a,}— (4 —20b,+30b] —1453)
< (1—by)(—1411b,)0—3(342b,) o>+ 0%+
—56+168b, —128b% -+ (46 —68b,) 2z —9a?
4[4(1—b,)—x]
3—4b,—x 1

4TI T s,
t1—by)—=z ™ a1—b)—=

ql2m

Observe that here

(21) =l b e Mo
4(1—b,)—a e

By the aid of a positive parameter a estimate

1\ 1 1
—2yn = —a(y+ E”) toyi+— 9t <apit+—o (a > 0),

Hence
t(1—by)—a

I e P 1 -
Ay \Y T ) T a2 "

1
6—8b,—22)— —1
6—8b, — 2 ( 120

—_ T 8 2.
t0—b)—2 T T iay—e T

(22) Ref{a,}— (4—20b,-+30b] —14b3) —

1 7
= [(1_b1)(_1 +11b,)x— b (3+2b,)0*+ Em{l

1
(6 —8b, —2x)— —1
a

2 2.
Yt a—ey—a 7

T+ (6—8b,—2a)a
4(1—b,)—=x

1 9
T = —14-4+42b,—32b%+ 5 (23—34b))a— .
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According to (16) we have

(23) 0t <

This estimation can be utilized on the right-hand side of (22) pro-
vided that

1
(6 —8b,—22)— —1 > 0
a

or

(24) 0 < a< 6—8b,—2a.

Suppose that this is true and estimate the right-hand side of (22)
by the aid of (23):

(25) Re{ay}— (4 —20b, 3003 —14b%) —
1 7
- [(1 —b)(—1+411b)x— D) (3+42b,) 0+ TZ“CU?':I

T—{—% + (6 —8b, —2x) (a—1/3a) (6—8&'31—290)i -
i a

i sy ) 4 —x?
4(1—b,)—a y 4(1—b,)—a 3

Similarly to the procedure of [3], determine now a so that the coeffi-
cient of y? disappears:

1 T4}
_— = 0 = -—-———-
3¢ 2Te=0, o 6—8b,—2x
atVar+}
a = — g
(26) 41 9 1 9 9
L3420, 32— (23 —34by) ot G
a 6 —8b, —2x '

Now we have to check the validity of condition (23), i.e. we have
to verify (24):

a+l/a2—|—¥;

2 < 6_8b1‘_2w’

or

(27) ]/aﬂ—% < 2(6—8b,—2x)—a.
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Note first that according to (21) we have 6 —8b,—2x > 0. Moreover,
we can show that the right-hand side of (27) is positive for &, < 1. Thus,
by squaring we find that (24) is true if

”

25
22 —b54b, 4322 4 (— 5 +15b1) @+ iaﬁ > 0.

It is seen that this condition is fulfilled at least for b, < i. Thus
we have proved that by choosing « according to (26) the upper bound (25)
is attainable. Write the result in the following form:

THEOREM 2. Kxcept the radial slit cases, we have for by, < % the esti-
mation

(28) Re{a,} —4—20b, +30b] —14b}) < o(x)+0(x);

(@) = (1-b)(—1H11b)o— o (3-2b)0 s

S(x) — 4 —a? T ]/_2—7 1
@ = gasgy=y ¢ tha( e+ —a) 5],

5 —42b,1-32b} — 1 (23 —34b,) w4 a2
6_8b1—2$ ’

a —

Numerical evaluation of the function o(z)4d(x) for 0 < 2 < 2(1 —b,)
shows that the inequality

|a,| < 4—20b, 3052 —14p3

can be extended to the interval

1
0<b, < —.
Shs o
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ON A THEOREM OF KUBO
CONCERNING FUNCTIONS REGULAR IN AN ANNULUS

BY

J. KRZYZ (LUBLIN)

1. Introduction. As pointed out by Hayman [1], the notion of the
transfinite diameter of a compaect set in the plane and its properties such
as monotonic behaviour under expansion, resp. symmetrization of the
set considered, give rise to a method very useful in tackling certain ex-
tremal problems connected with funetions meromorphic in the unit disk
K,. According to Hayman, the transfinite diameter d(H,) of the set K,
of values omitted by

@(2) =27 +agt+a,z+ ...

meromorphic in K, does not surpass 1 and the equality d(#,) = 1 holds
if and only if ¢ is univalent.

A few years ago T. Kubo obtained an analogous theorem for functions
regular in an annulus [5] which yields Hayman’s results in the limiting
case of an annulus shrinking to a punctured disk. The result of Kubo
is related to a sort of subordination principle for multiply connected
domains due to M. Schiffer (ef. [3], p. 92). The theorem of Kubo has
been recently rediscovered by Mityuk [7], no proof has been, however,
published. 7

The hyperbolic transfinite diameter z(F) of a compact subset F of
the unit disk introduced by Tsuji [8] may be defined as a generalized
transfinite diameter in the sense of F. Leja (cf. [6], p. 258), with the
generating function (2, {) = |¢—C| |1 —=2¢{|”". The hyperbolic transfinite
diameter 7(F) has similar properties as the transfinite diameter. It is
invariant under hyperbolic motion, and decreases under circular and
Steiner symmetrization and shrinking of the set. Besides, we have 7(K,) = 7
where K, = {z: 2| <r} and 0 <7 < 1. For other definitions and propr
erties, cf. [9]. Let R(q) be the class of functions regular in the annulus
B, = {#: ¢ < |2] < 1} which satisfy |f(2)] <1 in B, and map the unit
circumference 2| = 1 in a continuous manner onto the unit circumference
|lw| = 1. Tt is easy to see that the set of values not taken by f consists
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of the closed, unbounded set E, = {w: |w| > 1} and of a compact set yop
contained inside the unit disk K,. Now, according to Kubo, we have
the following

THEOREM. If feR(q), then t(E;) < q. Equality holds only for functions
univalent in B,.

Kubo’s proof is based on the properties of the so called hyperbolic
conductor potential of F;. The aim of this paper is to give an alternative
proof of Kubo’s theorem by the method of extremal length.

2. Hyperbolic capacity as a module. We call a condenser a pair
{#y, E,} of two closed and disjoint sets (not necessarily connected) such
that ocoel, and the union #, v K, is the complementary set of a planar
domain £ which is called the field of {H,, E,}. If 2 is regular with respect
to the Dirichlet problem, we call the condenser {E,, F,} regular. In what
follows we assume FE, = {z: [2| > 1}. Suppose {l,, E,} is a regular con-
denser. It is well known that the Dirichlet integral

I(w) = ff(wi+wf,)dmdy,
o

where w = w(z, ,) denotes the harmonic measure of F, with respect

to £, is finite [2]. We call I(w) the capacity of the regular condenser

{Ey, E,} and denote it by |{H,, E,}|. If E, is an arbitrary compact subset

of K,, the capacity |{E,, B,}| is defined as the limit lim |{E,, ¥,}|, where
Nn—00

{Ey, F,} are regular and {F,} is a decreasing sequence of compact sets
with

m Iﬂﬂ, = Elu
n=1

It is well known that |{F,, E,}| can be expressed by means of extre-
mal length or their reciprocal (module) of a certain family of curves.
Let {y} be the family of all locally rectifiable curves y starting at points
of 0 = {z: 2] =1}, contained in 2 and tending in one sense to the set
E,. Consider the family P of all non-negative Borel measurable functions
defined in Q and such that

L(o) =inf [o(z)|de], Al(e, Q) = [[ o*(2)dudy

o} 5
are not simultaneously 0 or oc. Then we have

. A0, 2)
2.1 By, B}| = inf — = M{y}.
(2.1) [{#y, B} ;P L*(o) {r}
If |{E,, E,}| > 0, then there exists the extremal metric o for which

the g.lb. in (2.1) is attained and g(2) = |w,—iw,|, where w(z) is the
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harmonic measure of F, with respect to the domain £ which is equal to
limw(z, Fy). 1t is also well known, cf. [9], that if |{&,, E,}| > 0, then
n

(2.2) 7(E) = exp(—2n |[{Ey, E1}|7").
Comparing this with (2.1) we see
(2.3) 7(B) = exp(—2=xM ' {y}).

This equation could be also used as a definition of the hyperbolic
transfinite diameter. Instead of 7(F) we can also consider the expression

(2.4) y(B) = —logt(E) = 2= M '{y}

and call it hyperbolic Robin’s constant in analogy to the logarithmic
Robin’s constant C(F) = —logd(E).

3. Proof of Kubo’s theorem. First of all we may assume that
7(E;) > 0, or |{l,, E;}| >0, since otherwise the theorem is trivial. Note
that this may happen; E; may be even empty (e.g. for the case of a con-
formal mapping of B, onto a two-sheeted unit disk). In view of the con-
formal invariance of the Dirichlet integral and the relation

By, B = — 2L,

27

the equality 7(F;) = q holds evidently for univalent f. Suppose now
that f(z) is not univalent in B,. Then f(2) is not univalent in a smaller
annulus B,, ¢ <r < 1. Let F;(r) be the set of values w, |w| < 1, not
taken by fin B,. We construct a metric o in K, —F;(r) = 2, (depending
on 7) such that after removing a set of zero measure from 2, all the curves
y joining ¢ to Ey(r) and situated in the remaining set will have the length
> 1 whereas the difference |{E,, K,}|—M{y} > |[{E,, K,;}| —A(p, 2,) will
be estimated from below by a positive term, not decreasing if we replace r
by a smaller number. This will imply [{E,, K;}| > M {y} = |{E,, E;}|,
ie. 1(K,) = q > v(B).

Consider now f(z) in B,. The curve I',: w = f(re”), 0 < 0 < 2=, is
an analytic curve having no points in common with |w| =1 which is
a consequence of the domain invariance and the inequality |[f(z)] < 1,
zeB,. We now show that after removing a finite number of analytic arcs
from 2, we obtain a subdivision of £, into disjoint, simply connected
domains which are mapped under w =f(z) 1-1 onto a part of B,. The
complementary set of I, with respect to K, is a union of a finite number
of domains such that the index n(a) = n(I,—1I, a) of the cycle I, —1I,
has a constant value in each of these domains. The closure of {a: n(a) = 0}
is equal to K;(r). Besides, {a: n(a) > 2} is not empty since f(z) is not
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univalent in K,. Only one component of K,—I. has the unit circum-
ference as a part of boundary. We now slit the only doubly connected
domain as well as all the remaining domains which are simply connected
so as to obtain simply connected domains without points w = f(z) for
which f'(2) = 0. In view of the monodromy principle we can obtain in
each so obtained simply connected domain % single-valued branches of
the inverse function # = f; '(w),l = 1,2, ..., k, where k& = n(w) has the
same value in a given domain. We now consider the conformal metric
o(w) which is transferred under one arbitrarily chosen branch z = f; ' (w)
into the logarithmic metric —1/|z|logr, i.e.

1 -1 1 -1
(1108 1) 11 = eoianl, or ot = (s i @itog)

We first prove that the o — length of the curves y joining E,(r)
to I'y is = 1. We have for all y outside a set of zero measure:

(3.1 J ety = [ i

f || f i
—J Jz|logl/r = tlogl/r

Thus, in view of the extremal property of the module, we have

(3.2) ffg Ydudv = M {y}.

-1

dwk1 1) o]
—— log — w
dz | &y

Now, in view of the conformal invariance of the Dirichlet’s integral,
we can drop in both terms of the difference

—1
(3.3) Ao B = foln), ), 2. =10,
the areas of domains which correspond 1:1 to each other under f;'(w)
In this way we exhaust {2, completely, whereas the remainder left in the
first term will represent the logarithmic area of the maps under some
fi '(w) of these domains, where n(w) = 2, the maps being taken under
all these f; '(w) which were not used in constructing ¢(w). In particular,
the difference is not less than the logarithmic area @ of the map under
fi'(w) of some disk A contained in a domain where n(w) = 2, f;}(w)
not having been used in construction of g(w). If we now replace r by
rye(q, r), the open set {w: n(w) > 2} increases and we can obviously define
in £, in an analogous manner a new metric o, choosing in all the domains
overlapping 4 the same branches of f;'(w) as before. We see that the
difference (3.3) will again be bounded away from 0 by @.
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This means that also

—2r
—M =G >0
P {v} > .

in the limiting case r — ¢ and this proves Kubo’s theorem.
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