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Does every continuum of type 8, contain an indecompbsable subeontin-
wum? Is every continuum of type &, separated by a countable collection

.of its subcontinua?
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Open mappings on graphs and manifolds *
by
Richard A. Duke (Seattle, Wash.)

1. Introduction. In [3], pp. 182 and 197, Whyburn has shown
that the image of a finite graph under a (light) open mapping is again
a finite graph and also that the image under & light, open mapping of
a 2-manifold is a 2-manifold. The purpose of this paper is to investigate
the conditions under which an open mapping f(@) = H defined on a graph G
can be extended to a light, open mapping F(M) = N defined on & 2-mani-
fold M when @ and H are imbedded in M and N, respectively.

In section 3 it is shown that if f(G) = H is such an open mapping,
then there exist imbeddings of G and H in some orientable 2-manifolds M
and N respectively, and an extension of f to a light, open map # (M) = N.
The imbedding of H may be taken to be any orientable, 2-cell (and hence
any minimal) imbedding of H. Further, any light, open map F(M) = N
on a closed orientable 2-manifold M can be obtained as an extension
of such a map f(@) = H on a graph G minimally imbedded in M. In
gection 4 it is shown that for each positive integer # there is an open
mapping of a planar graph onto some graph of genus %, and this is used
to show that the imbedding obtained for G in the above result may nee-
essarily be non-minimal.

2. Background. The ferm mapping will be used to denote a con-
tinnous transformation. A mapping f(X) = ¥ is said to be open provided

_that every open set in X maps onto & set open in Y. If for each y in ¥,

() is totally disconnected, f is said to be a light mapping. The term
graph will denote a finite, connected 1-complex. )

If f(@) = H is an open mapping on a graph @, then H is also a graph.
Further, f is a light mapping and it is possible to designate certain interior
points on the edges of G and H as additional vertices in such a way that f
maps each edge of G topologically onto an edge in H. In light of these
‘facts, we shall assume for the remainder that any open mapping on a graph
is a simplicial transformation. ' :
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Tt is also known (cf. [3], p. 197) that if M is a 2-manifold and I'(M) = N
a light, open mapping, then N is also a 2-manifold (though not necessarily
orientable). Henceforth the term 2-manifold will refer to a compact,
closed, orientable 2-manifold. If the genus of such manifold M is denoted
by y (M), then the genus, ¥(G), of a graph @ is the smallest of the numbers

y(N) for 2-manifolds ¥ in which G can be imbedded. An imbedding of @
in M is called minimal if y(@) = y(M). When each component of the
complement of G in M is an open 2-cell, the imbedding of G in M is
a 2-cell smbedding. Tn [B], J. W. T. Youngs has shown that each minimal
imbedding is a 2-cell imbedding. The notation G (M) will denote an im-
bedding of the graph @ in the 2-manifold M as well as the geometric
realization of G in M. For a vertex x of @, the adjacency set V (x) will be
the set of all vertices of G which are adjacent (i.e. joined by an edge)
to # in &,

Extensive use will be made of a technique for obtaining a,]l 2-cell
imbeddings of a given graph G due to J. R. Edmonds and described in
detail in [5]. Briefly, for each vertex x of & one chooses a cyclic permuta-
tion T on the set ¥V (x). (For simplicity, we assume that G' has no points
of order one.) Each choice of a set such permutations, one for each vertex
of @, determines a 2-cell imbedding of & as follows. A transformation

T(W) = W is defined on the set of all ordered pairs of adjacent vertices
of @ by T((@,¥)) = (v, Ty(x)). The pairs of a given orbit of T can be
identified with the edges of some regular polygon. Performing identifica-
tions on the edges of the polygons thus associated with T, one obtains
a 2-manifold M with the edges of these polygons yielding a copy of @
in M. It is a part of the Edmonds result that for a given 2-cell imbedding
G(M), each orientation on M induces a set of permutations which de-
termine the imbedding in question.

3. Extension theorem. Let f(G) = H be an open mapping on
a graph G. f is said to be locally homogeneous provided that for each
vertex  of H and each o e f"'(z), the number of edges joining @; to points
of f7)(z) is equal to the number of edges joining @; to f~*(2) for any two
vertices ¥ and #z in V(x).

Concerning such mappings we have the following lemma, for which
a detailed proof iz given at the end of this section.

3.1. LemMA. If f(G) = H is an open mapping on a graph @, there
exists a graph @' containing G and a locally homogeneous mapping (@) = H
which extends f.

@ is formed by adding to G new edges joining existing vertices
of @. To derive an algorithm for forming @, use is made of the incidence
matrix A of G. The entries of A are altered forming a new matrix 4’
whose entries are non-negative integers. A’ is used to specify G’ and f'.

Open mappings of graphs and manifolds 151

3.2. THEORBM. Let f(G) = H be an open mapping on a graph @ and
let H(IN) be any 2-cell imbedding of H in a 2-manifold N. There exists an
imbedding of G in a 2-manifold M and a light, open mapping ¥ (M) = N
which extends f.

Proof. By 3.1 there is a graph @' containing @ with a locally homo-
geneous map f(@) = H extending f. Let H(N) be any 2-cell imbedding
of H in a 2-manifold with given orientation v, and let Ls, L, ... be the
cyclic permutations determined by H(N) and v on the adjacency sets
V() ,V(y), ... of H as described in section 2. Since f’ is open, b ¢V (a)
implies f'(b) e V(f'(a)). By the local homogeneity of f* we may choose
cyclic permutajtlons Toy Ty, ... on the adjacency sets of G, so that for
any adjacent vertices a «f'"*(z) and b ef "' (y) we have

1) , Ty(a) €V (b) ~ 7 {Ly(2)) -

This choice of permutations for @' determines an orientable, 2-cell im-
bedding &'(M). Let W be the set of all ordered pairs of adjacent vertices
of @ and T(W) = W the transformation determined by Ta, T, ... Let L
be the transformation for H(N) determined by L, L,,... If for (a, b)
in W we have f'(a) = @ and f'(b) =y, then by (1), T((a, b)) = (b, ¢) for
some ¢ in "' (2) where L((w ¥)) = (¥, 2). Under the map j' each orbit
of T, thought of ag the boundary of an open 2-cell, is mapped onto an
orbit of I by a map which (ignoring identifications) is topologically equiv-
alent to the mapping w = 2* on |¢| =1 in the complex z-plane for &
some positive integer,

Let Dy, ..., D, be the orbits of T and B, ..., E, the set of open 2-cells
bounded by D, ..., D,, respectively. Let Ry, ..., R and Sy, ..., 8t be the
orbits and 2-cells associated with L. F(M) = N is the mapping which
agrees with f' on G'(M) (and hence on G(M)) and sends the 2-cell E;
onto the 2-cell §; bounded by R; = F(D;) by a map topologically equiv-
alent to w = 2% on |¢| < 1, where ¥ is the power of F(Dy) = E;.

I is open on By, ..., B,. Since each edge of G occurs once with each
possible orientation in the collection D, ..., Dy, and since the two copies
of a given edge have distinet oppositely oriented images in the collection

.y By, it follows that F (M) = N is open.

The selection of the permutations for G in 3.2, and hence the im-
bedding @(M), is not unique as is shown by the following example in
which ¢ = G.

3.3, Bxamprm. Let the graph H be a simple triangle and let &
congist of three triangles intersecting in a single common vertex a. (@) = H
is the open map which sends each triangular block of G onto H. By
varylng the permutation chosen on V(a), the light, open extension
F(M) = N of f can be chosen to be a mapping of (i) a 2-sphere M onto
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a 2-sphere N with two singular points (see [3], p. 194) on M and two
on N; (ii) a 2-sphere 2 onto a 2-sphere N with five singular points on M
and three on N; or (iii) a torus M onto a 2-sphere N with three singular
points on. M and two on N.

Proof of lemma 3.1. The square, symmetric matrix A whose
rows and columns correspond to the vertices of ¢ and for which the entry
in the #;-Tow and y;-column, denoted by (@:¥;), is one if #; € V(y;) and
zero otherwise, is the incidence matriz of G. For the vertex a; of @ and

. 17
the vertices %, ys, .., y¥ which constitute f~(y), let the sum 2 (@)
=1

be denoted by (2:Y). Since (#;¥) represents the number of edges joining x;
to points of f(y), we wish to increase the entries of A so that for a fixed 24,
the sums (#;¥) which are not zero are made equal to each other and so
that the symmetry of the matrix is preserved. .

It suffices to consider only graphs having no points of order one.

Suppose that b, d, and ¢ are vertices of H with FHb) = byy ..y b,
F7d) = dy, ..., dp and f(e) = ey, ..., em, and let the first rows of 4 cor-
respond to by, .., by, diy ey @D, 61y iy €5 D that order. If in the first
row of A, the sums (b;Y) which are not zero are equal to each other, we
pass on to the b,-row. Otherwise there is a largest such sum, say (b, Z),
in which case for each ¥ with (b,Z) > (b,Y) > 0, one increases (b,y,) by
(% Z)— (b,Y)). One then increases the corresponding entries in the
b,-column as required by symmetry. The rows and columns labeled
by, ..., bp are treated similarly.

To obtain equality of the non-zero sums (d,¥), one increases the
appropriate (d,y,) entries. If (d;b;) is increased, one must increase (b,d,)
by the same amount, adding this amount also to the entries (b,y,) for
which (b, ¥) % 0, y # b, d, and to the corresponding entries of b, -column.
The rows and columns:labeled dy, ..., dp are treated according to the
same rules.

If (e, B) and (¢, D) are zero, the ¢, -row is treated as was the b, -row.
I, instead, at least one of these sums must be increased, the e,-row is
altered and the b, and d, rows and columns are adjusted as necessary.
Note that if (¢,¥) = 0, then e and y are not adjacent in H. In this case,
(#,B) = 0 and this sum will require no further change. If both (e, B)
and (e, D) are non-zero and only one mugt be increased or the two must
be increased by different amounts, it may be necessary to use the e,-column
to avoid cyelical difficulties. For example, an increase (e, B) may require
a like increase in (b, ) and hence in (b, D), (d,B) and (d,E). To avoid
changing (¢, D) it may be necessary to add to (d,e,) rather than'to (die).
The rows and columns labeled e,, ..., ¢z are handled similarly.

Having altered the b and d rows and columns one has (biD) = (b+H)
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and (d;B) = (d;B) for 4 =1,2,...,B and j =1, 2, .., D. By symmetry
one then has
B D1
D D) = D (#B),

i= j=1

-

and hence
y

E

D (eB) = D) (aiD).

q==l i=1
These relations are preserved by the operations on the rows ey, ...; ép—1.
(e4B) = (e:D) for t=1,2,..,B—1 Thus (egB) = (egD). It either of
these sums must be changed, both must be increased and by the same
amount. This can be done as above without an additional e-row and
column.

A similar procedure may now be used to treat the remaining rows
and columns.

Tet A’ be the matrix so obtained. & is taken to be the graph which
has the same vertices as @ with »; and ¥ joined by a number of edges
equal to the (2:y;) entry of A’ TE (weys) > 1, interior points of the edges of
H and @ are chosen as new vertices. f' is defined to be f on ¢ and such that
it maps an edge ®¢y: in G'— G onto the edge joining f(x:) and f(ys) in H.

4. Open mappings on planar graphs. The imbedding H (X)
in 3.2 may be taken to be any 2-cell imbedding, and hence any minimal
imbedding, of H. G(M) need not be minimal, however, as seen in (iii)
of 3.3. In fact, there may be no minimal imbedding G(M) for which
a light, open extension of f(@) = H exists. This is shown by the next
theorem in conjunction with the fact that, except for homeomorphisms,
there exist no light, open mappings of a 2-manifold M onto & 2-manifold N
when y(M) < 2y (N)—1. This last fact follows from Whyburn's “charac-
teristic equation” for light, open mappings on 2-manifolds (cf. [8], p. 202).
In particular, there exists no light, open mapping of & 2-sphere onto
a 2-manifold of positive genus.

4.1. THEOREM. For each positive integer n, there exists an open mapping
(in fact a local homeomorphism) f(Bn) = Gn of o planar graph Bn onto
a graph Gy, of genus mn.

Proof. Whyburn has given an example ([3], p. 189) of an open.
mapping of a planar graph onto one of the Kuratowski skew curves (of
genus one). There is also an open mapping of a planar graph onto the
second Kuratowski curve.

For the general result, a family of open maps fn(Rn) = Gy is described
where for each n 3= 2, Ry is a planar graph and @, is the graph of genus n
constructed in [1] and shown to be irreducible in [2]. Adopting the nota-
tion of paper [2], the graph G consists of n concentric circles, ¢, ..., O

Fundamenta Mathematicae, T. LX . . 11


Artur


154 R. A. Duke

4n radial lines By, ..., By reaching from the innermost circle ¢ to the
outermost’ O", and 2n edges; 4, ..., As., Where for each ¢ = 1,2, ..., 2n,
A4 joins the points b; and by ab which C" intersects By and Bauiq, Te-
spectively.

'« Let H, denote the subgraph of G, obtained by deleting the (open)
edges Ay 4 =1,2, ..., 2n. The planar graph R, consists of two disjoint
copies, H. and Hi, of H, together with 4n additional edges Dy, ..., Dy.
For each i =1, 2, ..., 4n, the edge D; joins the copies of by on H, and H;.

To see that this graph is planar, consider the imbedding obtained
by locating Hj and H2 on opposite ends of a closed cylinder with the
edges Dy, ..., Dy, being drawn along the length of the cylinder from H,
to Hy.

The open mapping fu(Rs) = Gn sends H,, and H, homeomorphically
onto H, in such a way that the endpoints of D; are mapped onto the
endpoints of 4;in G,. Dy is mapped homeomorphically onto 4, for each
i=1,2,..,4n. f, is a 2-to-1 local homeomorphism.

By the techniques of 3.2 one can obtain 2-cell imbeddings of R
and G in 2-manifolds M and N respectively (where y(M) = 2n—1 and
y(N) =n) and an extension of f, to a light, open mapping F(M) = N
which sends each open 2-cell of M — Ry(M) topologically onto an open
2-cell of N— Gu(N).

5. Open mappings on manifolds. For f(G)=H an open
mapping on a graph & and 2-cell imbeddings (M) and H(N) of & and H
“in 2-manifolds M and N, respectively, G(M) is said to have property (0)
with respect to f and H (N), provided that there exist orientations on M
and N such that the cyclic permutations induced by these orientations
" on the adjacency sets of G and H satisfy condition (1) of 3.2.

5.1. THEOREM. Let F(M) = N be a light, open mapping where M
and N are orientable 2-manifolds. Then there exist graphs G and H and
minimal imbeddings G (M) and H(N), together with an open mapping
f(@) = H such that G (M) has property (0) with respect to f and H(N) and
s0 that F estends f. ‘

Proof. Following Whyburn ([4], p. 99), there exist simplicial sub-
divisions of M and N into 2-complexes J and X, respectively, so that
each simplex of J maps topologically onto a simplex of K under F. The
1-dimensional structures of J and K may be considered as 2-cell imbeddings
G(M) and H(N) of some graphs G and H respectively. G (M) and H (W)
are minimal imbeddings (cf. [5], p. 309). We shall use the symbols G and H
to denote both the graphs and their copies G(M) and H(N).

Let f = F|G. Since G@ = F(H), f(@) = H is both light and open
(cf. [4]). Let an orientation = be chosen for N and let # be some vertex
of H. v induces a cyclic permutation L, on V(x) as follows: For u e V(x),

icm
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there is exactly one 2-cell D of K having the edge su of K as a 1-face
and such that the orientation on D induced by v directs 2u from u to .
Let Lz(u) be the remaining 0-face of D. If L is the transformation on the
set of all ordered pairs of adjacent vertices of H defined by L{(w, u))
= (u, Lz(u)), the orbits of L yield the imbedding H(N) by the procedure
described in section 2.

Assigning to each 2-simplex of J the orientation of its image in K
yields a coherent orientation on M. This orientation may be used to
obtain a collection of permutations which determine the imbedding G(M).

Let b be some vertex of @ with f(b) = =, and suppose that a e V(d) n
~F(u). Then u ¢ V(w). Let E be the simplex of K having b, a, and Ty(a)
as 0-faces. The orientation on E directs the 1-face ba from a to b. If F(B)
= D, the edge au of D is directed from u to & by . Hence D has z, %,
and Ls(w) as O-faces. Therefore P(Ty(a)) = Ly(w) and G (M) satisties (1)
of 3.2.

The procedure of 3.2 yields an extension of f(¢) = H to a light,
open mapping F'(M) = N. By construction, ' agrees with F on @ and
is topologically equivalent to F on M.

The above theorem, combined with 3.2, yields the following corol-
laries. ) )

5.9. COROLLARY. For 2-manifolds M and N, there exists a light, open
mapping F(M) = N if and only if there are graphs G and H together with
(minimal) 2-cell imbeddings G (M) and H (N) and an open mapping f(G) = H
such that G(M) has property (0) with respect to f and H(N).

5.3. COROLLARY. Given am open mapping f(G)=H on a graph G
and imbeddings G(M) and H(N) in orientable 2-manifold M and N re-
spectively, there ewists a light, open mapping F(M) = N extending f if and
only if there are graphs G and H' containing G and H respectively, 2-cell
imbeddings G'(M) and H'(N) extending G (M) and H (N), and an extension f’
of f over G such that G'(M) has property (0) with respect to ' and H'(N).
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