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On Wallman compactifications

by
R. M. Brooks* (Minneapolis, Minnesota)

1. Introduction. In 1938 Wallman [9] showed that if L is
a distributive lattice with a zero and a unit, then I generates a compact
T,-space wL (the space of ultrafilters of L). He applied this to the special
case where I was the lattice of all closed subsets of a T-space. In 1948
Samuel [8] obtained similar results for g.lb.-semi-lattices (he called
them “directed sets’’), and used his techniques to study uniform spaces.
Several other authors (e.g., Ky Fan and Gottesman [3], Banaschewski [1],
and Frink [4]) haive considered the problem of obtaining compactifications
of topological spaces as spaces of ultrafilters or maximal ideals (defined
in a special way in [1]) in lattices. They have considered lattices with
special properties, often for the purpose of obtaining compactifications
having special topological properties.

This paper is directed toward the study of ultrafilter spaces of lattices
of subsets of a set (often a topological space, in which case the lattice
is related to the topology). The main reason for our general treatment
is that there is a natural application to the study of topological algebras
and the lattices one obtains there do not in general satisfy the strong
restrictions of [1], [3], and [4]. Also there are applications to measure
theory (cf. [6]), and in such applications the topology of the underlying
set (if there is any) is often unrelated to the lattice.

The main problem we consider is the following. If X is a topological
space and (T, o) is a pair, where T is a compact Hausdorff space and ¢
is a continuous map of X onto a dense subspace of T, does there exist
a lattice £ of subsets of X such that T = wL (the space of ultrafilters
of £)? This problem is shown to be equivalent to the special case when X
is a completely regular Hausdorff space and ¢ is a homeomorphism. Our
results consist of some sufficient conditions on X and T in order that
such a lattice exists, and a method of realizing T (in the general case)
as the space of all filters in a certain lattice which are maximal mth
respect to some natural auxiliary property.

* This work was supported in part by NSF Grant G 24295.
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The first part of the paper is devoted to a study of the basic prop-
erties of lattice compactifications of a set X, especially the relationship
between the separation properties of a given lattice £ and the resulting
properties of wf and the embedding map of X into wf. We also consider
here a certain algebra of functions on X defined by £ and its relationship
to wt.

Next we consider the problem of uniqueness of a lattice compactific-

ation or, equivalently, the non-uniqueness of lattices yielding the same
compactification, and give conditions under which two lattices one con-
tained in the other have the same ultrafilter space. This section has
a direct application to the study of certain commutative topological
algebras.

We then turn to the main problem, first reducing to the gpecial
case, then exhibiting a criterion to use in deciding whether a given lattice €
on X yields a given compactification T' of X as its ultrafilter space. This
criterion is applied to obtain sufficient conditions (on X and T') for ob-
taining T' as an ultrafilter space.

In the last section we show that a Hausdorff compactification T
of X iy always a quotient space of a Wallman compactification wf of X,
where £ is the lattice of zero-sets of the algebra U of continuous real-
(or complex-) valued functions on X which have continuous extensions
to T. (T is always a quotient space of X, but this space need have little
relation to wf.) We then define the concept of a *-filter in £ and show
that T' “is” the space X* of all maximal *-filters in £, where the space X*
is equipped with a topology defined exactly like that of an ultrafilter
space.

2. Basie properties. We consider a set X and a lattice £ of subsets
of X such that X and the null set @ are members of £. We shall use capital
Latin letters to denote subsets of X and script letters to denote families
of subsets. We shall refer to £ as “a lattice on X

" DEFINITION 2.1. A filter in € is a subset & of £ satisfying the con-

- ditions:

(1) F is closed under finite intersections.

(il) D¢ F.

(iii) If Ae¢F and Bel, then A Be,
or, equivalently,

(ii") If A ¢F, Bet, and AC B, then B e 7.

pEFINITION 2.2. An wlirafilter in £ is a maximal (relative to the
partial order on the collection of filters in £ given by inclusion) filter in L.

‘We note the following characterization of ultrafilters given by Samuel
(8], p. 105) for a g.lb.-semi-lattice, which holds for lattices.
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THEOREM 2.1. A necessary and sufficient condition for o filter F
in € to be am ultrafilier is that for each A e L—F there ewists B e F such
that A ~ B = @.
A second easily-proved theorem we also state without proof.

THEOREM 2.2. An wlirafilter W in £ is u-prime (e, if 4, Bet
and A v BeW, then one of A and B is a member of ).

‘We denote by wt the set of all ultrafilters in £ and for each 4 eL
we define C(4) = {Wewk: 4 ¢W). For reference we state without
proof some of the elementary properties of the mapping 4 ~C (4) (ef. [9]).

THEOREM 2.3. The mapping A ->C(A4) is a lattice homomorphism
of L into the power set of wt. Specifically, C(X) = wt, 0(9) = G, ¢4 v B)
= 0(4) v 0(B), O(A A B)= 0(4) ~ O(B), for each pair 4, B in L.

We define the topology B(f) in wf by taking the collection {C(4):
A et} as a base for the closed sets. This is the topology Tr of Samuel’s
paper [8], p. 117. Thus, for each A-eC, O(4) is closed in wf, and every
closed subset I of wt is the intersection of all the sets '(4) which contain ¥'.
An equivalent way of defining the topology B(£) is as follows:

THEOREM 2.4. For each filter F in £, the set C(F) = {We L F C U}
is closed, and every closed set in wC is of this form.

Proof. The fact that each set O(F) is closed is proved in [8], p. 117,
If F is any closed set in wf, then the family ¥ = {4 eL: FCC(A)} 18
a filter in £ and F = C(¥).

The space wt equipped with the topology B(L) is a compact T, space
(197, p. 116). We note here that the family of sets C(4), AL, forms
a bage for the B(L)-closed sets of wk, whereas in Samuel’s case (£ isa glb.-
semi-lattice) the family forms only a subbase. Some further observations
on the relation between Samuel’s compactifications and those obtained
from lattices: (i) If § is a g.lb.-semi-lattice on X, then the family £ of
all finite unions of members of § is a lattice on X, and (ii) the space wf
is homeomorphic to the space of ultrafilters of § with the topology Tr
([83, p. 117).

DEFINITION 2.3. L is a lattice on X. We say that

(i) £ satisfies property (a) (€ is an a-lattice) provided that for each
Aet and e X—A there exists Bef such that #¢ B and 4 ~ B =@.
(i) € satisfies property () (L is a B -lattice) provided that for each
pair @,y of distinet points in X there exists A ef such that v e 4 and
yeX—A. L. ’

(i) £ is & normal lattice provided that for each pair .4, B of disjoint
elements of £ there exists a pair 4, B, of members of £ such that ACA,,
BCB,, AnB, =0, BnA; =0, and A; v B, belongs to every ultra-
filter in L.
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(iv) £ is a y-lattice provided £ satisfies (o), (§), and is normal.
THEOREM 2.5. Let £ be a lattice on X and for each xeX define
Uy = {Ad el: wed}. Then

(i) A necessary and sufficient condition that Ws be an wlirafilter for
each © € X 4s that L be an a-lattice.

(ii) If € is an a-laitice, then the mapping & Uy of X into wl is one-
to-one if and only if £ is a f-lattice.

(iii) wt is Hausdorff if and only if L is normal.

(iv) If Lis an a-lattice, then tn Defindtion 2.3 (iii) the statement “4, v B,
belongs to every ultrafilter in £ is equivalent to “A; v B, = X",

(v) If £ is an a-lattice, then the image of X under the mapping @ ->Usy,
is dense in wl,

Proof. (i) follows immediately from the characterization of ultra-
filters given in Theorem 2.1. (ii) is obvious. (iii) is proved in [9] (cf. foot-
note 12 [9], p. 119), (iv) is clear in view of the fact that if £ is an a-lattice
then the only member of £ which belongs to every ultrafilter in £ is X.
(v): If W e wL and N is an open set in wl containing U, then there exists
A ef such that Wwewl—C(4)CN. If v X—4, then Wy ewl—C(4).

We shall consider from this point on only a-lattices in order that
the ultrafilter space have some relation to the set X. We shall denote
by ¢ the mapping x—>U; of X into the ultrafilter space.

THROREM 2.6. The mapping ¢: X >wl satisfies:

(i) For each B ef, ¢(B) = C(B) ~ ¢(X).

(il) For each Bef, ¢(X—B)=@(X)—@(B) = @(X) ~ [wh— 0(B)].

(iii) Cllp(B)] = C(B) for each Bef, where Cl denotes the closure
operator in wi.

(iv) For each F C X, Clip(F)] = {0(4): F C 4}.

(V) IfFCX, Ael, then (A ~nF) = p(4) ~ pF).

Proof. (i): The containment ¢(B)C 0(B)~p(X) is clear. If
W e C(B) n ¢(X), then B e W. If U = Uy, implies # ¢ X— B, then fixing
one such = we obtain (by (a)) an element A of £ which contains # and
fails to meet B. Then 4 e U = Uy and B¢ U, a contradiction. Thus, if
W e C(B) ~ ¢(X), there exists ® ¢ B such that U = U,, and W ep(B).

(ii): By (i), o(X)—@(B) = @{X)—[C(B) ~ ¢(X)]. If W ig in the right-
hand set, then U e (X) and U ¢ C(B). Therefore, W e p(X) ~ [wE— C(B)].
The other containment is clear and we have p(X)—g@(B)=¢(X)n
ATwE—C(B)]. T Wep(X)—p(B), then U = Uy, for some 2 e X and
U ;é.‘lb,,for ally ¢ B. Hence, 5 ¢ X— B and we have p(X)—¢(B) C ¢(X—B).
If this containment were proper, there would exist U, e @(X—B) ~ p(B).
From this one obtains # ¢ X— B, y ¢ B such that U = Uy, = Us,. Since
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Bel and w e X— B, there exists A ¢f such that 2¢ 4 and A ~ B = 0.
Hence A € Wy = Wy, and B e Uy; a contradiction. We conclude that
¢(X) —g¢(B) = ¢(X—B).

(iii): Tt is elear that Cllp(B)]C C(B). If W ewt—Cllp(B)], then
since {W} =) {C(4): 4 W} and the family {C(4): 4 eU} is a de-
scending family of compact subsets of wL whose intersection is contained
in the open set wf— Cl[p(B)], there exists 4 ¢ W such that C(4) Cwl—
—Cl[g(B)]. This implies that 4 ~ B =@ and B¢ . Hence W¢ C(B).

(iv): For each F C X, Cllp(#)] = " {C(4): ¢(F) C C(4)}. We show
that @(F)C C(4) if and only if FC A. One implication is obvious. Con-
versely, if F ¢ A, then there exists zeF— 4, and ze X—4 implies
(@) € (X)—p(4) = ¢(X)— C(4). Thus p(F) ¢ O(4).

(v): Tt is clear that p(4 ~ F) Cp(4) ~o(F). T W e[p(d) no(F)]—
—@(4 ~ F), then U e p(F) and if W = Ug, then z¢ 4 AF. Wefix zeF
such that U = Uy. By (a) we have the existence of B ¢ £ such that » ¢ B
and A ~B=9. But then BeUyz=U and Weg(d)C C(4). This
implies that both A and B are members of U, a contradiction.

We now assume that X is a topological space and L is an «-lattice
on X. We give conditions on £ which yield connections between the topology
of X and that of wt.

TarorEM 2.7. If £ is an a-lattice on X, a topological space, then

(i) @ is continuous if and only if each element of € is closed in X.

(i) @ 18 a homeomorphism if and only if each element of £ is closed
in X, L is a §-lattice, and £ forms a base for the closed sets of X.

Proof. (i) We assume each 4 in € is closed in X, fix # ¢ X and an
open set N in wf containing ¢ (z). There exists 4 « £ such that ¢ () € p(X) n
A [wt— C(4)] C N ~ @(X). By (ii) of Theorem 2.6, wehaveg(x) e p(X—4)
C N ~ ¢(X), and X— 4 is open in X. Conversely, if ¢ is continuous, then
for each A €L, g [C(4) ~ p(X)] is closed in X. But this set is” A.

(i) Tf ¢ satisfies the conditions, then ¢ is continuous and one-to-one.
We fix ¥, a closed subset of X. Then F =) {4 et: FC A}, and ¢(F)
=N {pd): FCA} = {0(4) nop(X): F C A). This last set is closed
in @(X). The proof of the converse is essentially the same.

We note that a y-lattice of closed subsets of X which forms a base
for the closed sets of X is a mormal base, as defined by Frink [4], in case X
is T.

DEFINITION 2.4. Let X be a set and £ an a-lattice on X. A scalar-
valued function (real-valued of complex-valued) f on X is said to be
(X, £)-continuous provided that for each & > 0 there exists a finite family
(Ay, Ay, oy Ay} C Csuchthat N {de i=1,2,..,n} =9 and 0(f, X—A44)
<e¢ for i=1,2,..,n, where for BCX, 6(f,B)= sup {|f(#)—F) |:
@,y e B}
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We denote by O(X,t) the family of all real-valued (X, £)-con-
tinuous functions on X, and by Cc(X, L) the family of all complex-valued
(X, £)-continuous functions on X. This type of continuity is that which
Frink discussed and called “Z-uniform continuity” in [4] where Z is his
symbol for a lattice. We note the following regarding this concept. If £
is an a-, B-lattice and we define for each finite family {4,,..,4,}C¢
satistying () A¢ = 0, V(Ay, ..., An) = U{(X— A)x (X—Au)ii =1, .., n},
then the collection of all such sets in X forms the base for a separated
uniform structure on X if and only if £ is normal. The proof of this fact
is identical to that given by Samuel in the case where £ is the lattice
of all closed subsets of X ([8], p. 126). In the case where L is normal, the
family of all real-valued functions on X uniformly continuous relative
to this structure is exactly O(X,£).

THEOREM 2.8. (i) C(X,£) i a uniformly closed real subalgebra of
B(X) (the algebra of oll bounded real-valued fumctions om X). Moreover,
if one defines for each fe O(X,£) and @ e X, f™(p(X)) = f(@), then f~ is
a well-defined continuous function on @(X) and extendible to a continuous
function on wtL. The mapping f—f" so defined is an isomorphism and
isometry of O(X,f) onto C(wL) (the algebra of all real-valued continuous
functions on wt).

(il) The same statements as in (i) for Co(X, L), where in addition we
have the fact that Oc(X, L) is closed wnder conjugation.

(iil) If Wewl and feC(X,L), then () {f(4)~: AW} contains
a single point A of R and f™(W) = A.

Proof. (i): For the proof of (i) we shall show that f~ is well-defined
and ‘“uniformly continuous” on ¢(X) and refer the reader to [4], p. 605,
for the proof of extendibility, since once f" is defined on @(X) the
details of the proof in the general case are essentially the same as
that given by Frink when £ is a special lattice. To show that f* is well-
defined we show that if # and y are elements of X such that f(z) = f(y),
then W 7 Wy. I f(2) # f(y), we fix & >0 such that e < }|f(x)—f(4)].
There exists a family {4,, ..., 4,} C € such that () 4: = @ and 6(f, X— 4,)
< & for each i < n. There exists j < n such that # ¢ X— 4. Since |f(@)—
—f@)! > 0(f, X—A4;), yed;, and Wy 5 Wy. Thus f* is well-defined
on ¢(X), and since for each 4 ¢, p(X—A4) = ¢(X)—gp(4), it is clear
that for each & > 0 there is a family {4, ..., A,}in'C such that | | {p(X—A44)}
= U {p(X)—p(4)} = ¢(X) and 6(f", p(X)—p(4s)) < ¢ for each i< n.
This is essentially the starting point of Frinlk’s argument. The remaining
claims of parts (i) and (i) follow immediately, once the extendibility is
proved.

(iii): Since each f in C(X, £) is bounded; the family {f(4)~: 4 e W}
is a descending family of compact subset of R (the real line), and has
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a non-empty intersection. We fix 2 in this set. For each 4 ¢ U, we have
f(4)” Cf[C(4)]. We choose Uy € C(4) such that f" (W) = A The set
{WUy: 4 € U} converges to U and f~ is continuous. Hence, f (W) = A

3. Equivalent compactifications. We shall comsider in this
gection the question of uniqueness of a lattice compactification and dually
the non-uniqueness of the lattice yielding a given compactification. We
consider a fixed set X and a-lattices £ and A6 on X. The ultrafilters in £
will be denoted by U, those in M by V. For 4 € £, C(4) = {Wewl: 4 e U}
and for F e M, D(F) = {V e whs: F e VU}. The natural maps of X into wt
and wM will be denoted by @ and v, respectively. In lien of closure
operators with £ and J¢ subscripts we shall use ~ to denote closure in wf
and % to denote closure in wdG.

DEFINITION 3.1. We say that £ and 6 are X-equivalent provided
there exists a homeomorphism ¢ of wt onto wA: such that op =y on X.

THEOREM 3.1. With X, L, A6, ¢, and v as defined above and £ C M,
the following statemenis are equivalent.

() If F, H € £, then F ~ H = @ if and only if (¢F) (pH)Y = @.

(i) If F, H e M, then ¢(F ~ H) = (pF)” ~ (pH) .

(iii) £ and Mo are X-equivalent.

Proof. (i) implies (ii): We first verify (ii) for 4 €f, Fed. One
containment is clear. We fix W e wl—p(4 ~ F)~ and show W¢ (pA)
A (@F)". {W} = N {C(B): BeW}, wi—g(4d ~F)” is open, and {C(B):
Beql} is a descending family of compact sets, so there exists Be W
such that C(B) ~ ¢(4 ~F)” =@, and it follows that B ~ (4 ~ li) =0
or (B A) nF =@. Thus, by (i), we have (4 ~nB) n (ch)_ = 0.
However, (4 ~ B)” = C(4) ~ C(B). Hence, ((B) ~ C(4) ~ (F) = a. -
Since ‘U ¢ 0(B), we must have either U ¢ G(4) or ¢ (F)". In either
case U ¢ (pA) ~ (pF) .

We now assume that F and H are members of 46 and fix U e wl—
—p(F ~ H)". There exists A <% such that (C4) ~ q.:(F ~H)™ =_Qi.
Hence, 4 ~ (F ~ H) = @,0r (A ~n F) ~ (A~ H)=9. By (i), (p(A AF) A
~@(4d ~ H)™ = @. From the first part of this theorem, we clbtam C(4)
A~ (@F)" ~ (pH) = @. But We C(4), so W¢ (@F)” ~ (pH) . '

(ii) imgplies (iii): For U e wl we consider the subset a‘}L of _.M, defined
by oW = {F e M: WU e (pF) ). It is clear that oW is a filter in M, and
if B e Mo— oW, then W ¢ (@F)” and there exists A ¢ U, such that C(4) N
A (P =@. But AW and £C A imply that 4 e oW, Ee.nce, oW 18
an wltrafilter in A6 (Theorem 2.1). Thus W —+oW defines a fllIlG‘blOJ?. from wL
t0 w6, which we denote by ¢. From the containment £ C M it follows
that ¢ is one-to-one.
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We show first that op = . If e X, then op(a) = oWs = {F € A:
Uy € (pF)7} is an ultrafilter in M and it is easily verified (using (iv) of
Theorem 2.6) that VU, C oy, We must therefore have U, = ¢, or
op (#) = ().

If U is an ultrafilter in A, then {(¢pF)": F ¢ U} is a descending family
in wf and there exists W e wf which belongs to the intersection of this
family. If U, # U, there exist 4, B in Uy, W, respectively, such that
4 ~B=0. 8ince BeW, we have W e (pB)” and L C A implies B e,
and U, ¢ (pB) . Thus, W is the unique point in the intersection. The fact
that oUW = U follows from (a) oW is a filter in A, and (b) VU C ¢UW.

We now have a mapping ¢ of wf onto wAt which is one-to-one and
satisfies op =y. We verify the topological properties. If F e G, then
(pF)” = o2 [D(F)], and if A £, then D(4) = o[C(4)]. From these facts
and the definition of the topologies in wt and wdG it follows that ¢ is con-
tinuous and closed.

(iii) émplies (i): If ¢ is a homeomorphism of wf onto wd¢ which
satisfies op =y, then for each ¥ ¢ M (pF) C o[ D(F)]. X F and H are
disjoint members of A6, then D(F) ~ D(H) = @ and o~ D(F)] ~ oD (H)]
= @. Thus, (pF)” ~ (pH) = @.

We note that these conditions for the X -equivalence of two lattices
are similar to some of the uniqueness conditions for AX, when X is a com-
pletely regular Hausdorff space, given on p. 86 of [4]. The following
theorem and example show the property of extendibility ig not in general
equivalent to the conditions of Theorem 3.1. '

T.HEOREM 32 If X, L, M, 9, and v are as in Theorem 3.1, then the
following  statements hold.

(i) If € and M are X -equivalent, then O(X, L) = (X, A).
(i) If £ and A6 are both normal and if C(X,f) = C(X, M), then L
and Mo are X -equivalent.

) PI“OOf. (i): We denote by o the homeomorphism of wt onto wi
satisfying op = . The mappings ¢ and v induce isomorphisms ¢* and y*
of ‘G(wﬁ) onto O(X,£) and C(wdt) onto C(X, M), respectively. Also,
o induces an isomorphism o* of C(wA) onto C(wt). It is clear that
C(X,0) COX, M).TEfe O(X, AG), then f = y*f* fora unique 1~ ¢ ¢ (wA).
We shall show that f= g*¢*f", the latter being a member of C'(X, ).
Fo;'(ee)mch @ € X wehave ¢*c*f "() = o*f " (qu) = 1" (opw) = I lpe) = @*f " (x)
== &).

(i): Tf both £ and A are normal, then wf and wit are compact
Hausdorff spaces. We have isomorphisms ¢* of ¢/ (wf) onto C(X,£) and
qg: ?f c (wmj) onto O(X, #), defined by the equations ¢*f"(z) = I om),
vy~ () =g (ya) for e C(wL), g"e C(wdl), and 2« X. We define v from
CwAb) into C(wk) by v = ¢*-'y*. Since ¢(X,t) = (X, A), the definition
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is valid and 7 is an isomorphism of C(wAG) onto C(wt). Theorem IV. 6.26
of [2] implies the existence of a homeomorphism o of wf onto wd, and
from an examination of the proof of that theorem one sees that ¢ can be
chosen to satisfy zg™ (W) = g~ (cW) for each ¢" ¢ C(wA) and W e wk. If
g" e C{wd), then wu*¢" = @*¢*ly*g” =¢*(zg”). We fix zeX. Then
for each ¢~ € O(wIN) we have ¢ (yz)=vp*¢ (2) = ¢*(r¢")(x) = 79" (px)
= ¢ (opx). Since O (wA) separates the points of wAG, we must have op = y.
Hence, £ and Mt are X -equivalent.

Exavmpre 3.1. Let X be a completely regular Hausdorff, non-normal
space. Let £ be the lattice of zero-gets of all continuous real-valued func-
tions on X and A the lattice of all closed subsets of X. Then £ C A,
£ is a y-lattice on X and J is an a-, f-lattice. 4G is not a normal lattice,
since X is not a normal space, It is well known that wf is fX, the Stone-
Cech compactification of X and wd: is the “classical” Wallman com-
pactification given in [9]. Since C(X,L) is the algebra of all functions
on X extendible to wC (= pX), we have BO(X)C C(X, L) C O(X, A0),
where BCO(X) is the algebra of all bounded continuous real-valued func-
tions on X. Since A is the lattice of all closed subsets of X, it is easily
verified that (X, M) C BC(X). Thus, C(X, L) = C(X, ), but £ and
are not X -equivalent.

‘We note that Frink ([4], p. 606) has given conditions for the ex-
tendibility to wt of a function on X to a compact Hausdorff space when £
ig & normal base (his terminology, see remarks after Theorem 2.7 above).
These conditions are essentially the same for a-lattices and the considera-
tion of such functions leads to a theorem analogous to Theorem 3.2 and
an example simijlar to Example 3.1.

4. Sufficient conditions. In this section we give a partial
solution to the problem of determining whether every compactification
of a topological space is a space of ultrafilters. Unfortunately, the con-
ditions we have obtained thus far are fairly restrictive, and for this reason
the results of Section 5 are much more satisfactory, though the char-
acterization given there is not exactly that which is desired.

There are several applications of lattice compactifications to topologi-
cal algebras in which one does not have a homeomorphic embedding
of X in the compact space T. We therefore give first a reduction theorem.

DeErFINITION 4.1. If X is a topological space, a Hausdorf compacitifi-
cation of X (vesp., a generalized Hausdorff compactification of X) is a pair
(T, o), where T is a compact Hausdorff space and o is a homeomorphic
(resp., continuous) mapping of X onto a dense subspace of T.

DerINITION 4.2. If X is a topological space and (T, o) is & Hausdorff
compactification of X), we shall say that (T, o) is a Wallman compactifi-
cation of X provided there exists an a-lattice £ on X and a homeomor-
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phism v of wt onto T such that 7 = o, where ¢ is the natural embedding
of X into wt.

QuusTioN 4.1. Is it true that if X is a completely regular Hausdorff
space, then every Hausdorff compactification of X is o Wallman compactifi-
cation of X7

QUESTION 4.2. Is it true that if X a topological space, them every
generalized Hausdorff compact@fwatwn of X is a Wallman compacmfwatwn
of X%

THEOREM 4.1. An affwmatwe answer to Question 4.1 implies an
affirmative answer to Question 4.2, and conversely.

Proof. It is clear that an affirmative answer to Question 4.2 implies
an affirmative answer to Question 4.1. To prove the converse we fix
a generalized Hausdorff compactification (T, o) of X. Then o(X) is a dense
subspace of T and (T, ) is a Hausdorff compactification of the completely
regular Hausdorff space o(X), where ¢ is the identity map on o(X).
Assuming an affirmative answer to Question 4.1, we have the existence
of an a-lattice £ on ¢(X) and a homeomorphism v of wf onto T such
that 1@ = 1. We let M = {B C X: there exists 4 e £ such that B = o7'(4)}.
It is easily verified that (a) Jb is an a-lattice on X, (b) the family o(W)
= {4 eL: 07(4) e W} is an ultrafilter in £ for each ultrafilter W in UG,
(c¢) the function g: wAb—>wt defined in (b) is one-to-one, onto, and satisfies
ov = po, where u is the natural mapping of X into wdt. Moreover, o is

continuous, hence a homeomorphism. This follows from an examination -

of the basic neighborhoods in wf and wA and the definition of o. We
therefore have the following situation:

T T wi e

g ({ ) /
N

The funections z, ¢, ¢ and ¢ are homeomorphisms; ¢ and y are con-
tinuous; and ¢ = 1p, po = op. We let 5 = vo. Then 2 is a homeomorphism
of wM onto T and sy = o.

For the remainder of the paper we shall consider Question 4.1 and
shall, therefore, assume that the space X is completely regular and if (T, o)
is a Hausdorff compactification of X we shall for notational convenience
identify X and ¢(X) and consider X to be a dense subspace of 7. We
shall use “*? to denote closure in 7. Finally, if £ is an a-lattice on X
we shall write “T = wL” in lieu of the more cumbersome statement “there

WA
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exists a homeomorphism 7 of wfl onto T such that rp(z) = # for each
z € X, where @ is the natural mapping of X into wf".

THEOREM 4.2 (*). Suppose that X is a completely regular Hausdorff
space, T is o Hausdorff compactification of X, and L is a lattice of closed
subsets of X. A mecessary and sufficient condition in order that T = wt
is that L satisfy:

(i) (Star) If A, Betl, then (A ~ By* = 4* ~ B~

(ii) (a*) If A €L and t e T— A*, then there ewists B € L such that t ¢ B*
and A~ B = 0.

(iil) (B*) If t, and 1, are distinct points of T, then there ewists A eL
such that 1, e A* and tye T—A*.

(iv) (H) If t, and i, are distinct points of T, then there exist A, Bef
suchthatt, ¢ T— A* t, e T—B*, and 4 w B = X (or, equivalently, (T— A*) ~
~ (T'— B*) = 9).

Proof. We note first that (8*) is implied by (H), but leave it separate,
gince the full strength of (H) is not needed until the last statement of the
proot of the sufficiency. We prove the sufficiency of conditions (i)-(iv).
‘We note that (a*) and (8*) imply (a) and (B), respectively, so (wt, ¢) is
a (generalized) compactification of X and ¢ is one-fo-one. If WU is an
ultrafilter in €, then {4*: A e W} is a descending family of closed subsets
of T and has non-empty intersection. It is readily verified using (8*)
and (Star) that this intersection consists of a single point. We define
(W) to be that point. If te T, then the family U = {4 eL: teA*} is
an ultrafilter in £, and o (W) == 1. Thus, o is one-to-one, onto, and op(x) = «
for each ¢ X. In order to show that ¢ is homeomorphism we note that
o[C(4)] = A*. Thus, ¢ induces on T a second topology 8 with base for
the S-closed sets {A*: A4 eC}. It is clear that § is coarser than the given
topology B on T, and that ¢ is a homeomorphism with respect to the
$-topology on 7. Property (H) is just the statement that the §-topology
is Hausdorff. Thus, 8§ = B and the sufficiency of (i)-(iv) is proved.

To prove the necessity we note that if o is the homeomorphism of wf
onto T such that op(z) = o for all @< X, then o[C(4)] = A* for each
Aef, and L is a y-lattice of closed subsets of X which forms a base for
the closed sets of X. It is then merely a routine matter to verify con-
ditions (i)-(iv).

In the following % will denote the algebra of all real-valued con-
tinuous functions on X which have continuous extensions to 7. If f e,
we shall denote its (unique) extension to T Dby f' and shall in general
use a prime to denote elements of C(T) or of C(S) for any space 8 homeo-

(1) The author is indebted to G. Keller of the University of Minnesota for suggesting
the possibility and usefulness of guch a criterion.
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morphie to I. We note that 9[ is a uniformly closed subalgebra of BC(X),
contains the constant functions, and separates points from closed sets
of X (ie., if 4 is a closed subset of X and if # ¢ X— 4, then there exists
f e such that f(z) =1 and f(y) =0 for all y ¢ 4), and i isomorphic
(and isometric) to C'(T). 91, will be the family of all functions fin A which
satisfy the condition: for each ?e T— X there exists a neighborhood U
of ¢ such that f* is constant on U. U, is a subalgebra of A and each f in A,
has the property that if ¢ ¢ T— X, then f’ is constant on the component
of tin T— X. This follows from the following elementary characterization
of connectivity. A space § is connected if and only if for each pair s, ¢ of
points of 8 and each open cover § of § there exists a finite subfamily
{Gy, ..., Gn} of G such that se Gy, ¢ ¢ Gy and Gy~ G; 5 O if and only if

li—jl < 1. Finally, £, is the collection of all zero-sets of elements of oU,. .

THEOREM 4.3. If X i3 a locally compact Hausdorff space, T a Haus-
dorff compactification of X, and W, Wy, and Ly as defined above; then T = wi,
if and only if T— X is totally disconmmected.

Proof. We prove first the sufficiency of the condition on 7'— X,
and will verify (i)-(iv) of Theorem 4.2. ‘

(i): If A,Bef, then A = Z(f) and B = Z(g) for some pair f, g of
elements of W, Let ted*~ B* If teX, then t¢ A ~BC (4~ B)*
If te T— X, then f(t) =g'(t) =0 and there exists a neighborhood U
of t on, which f’ and ¢’ vanish. If V is any open set containing ¢, then U ~n V
is also and there exists x e X ~ U ~ V. But then f(z) = g(x) =0 and
zeV ~Z(f)~Z(g). Hence, t e (4 ~ B)*. _

(ii) I A ety and teT—A* then for some fe,, 4 = Z(f) and
f'(t) # 0. If welet g = f—f'(t), then g € Uy, t € Z(g)*, and Z(g) ~ Z(f) = ©.
To finish the proof it suffices to verify (iv). There are three cases to con-
sider: (a) ¢, and i, ave in X, (b) ¢, e X, t, e T— X, (¢) ¢, and #, are in T'— X.
If (a) both ¢, and t, are elements of X, we choose open (in T) sets U, and U,
such that ¢, ¢ U;, {t} v (T—X)C U,, and Uf ~ U; = @. (Since X is
locally compact, 7— X is closed in T.) There exist fi,f, ¢ A such that
fit) =1 and fi is identically zero on T— Uy, i =1, 2. Then f; and f,
are in Wy, e T—Z(fi)*, i=1,2, and Z(f)) v Z(f))=X. It (b) tye X
and t, e T— X, we choose U; and U, open (in 7) sets such that t, € Uy,
T—X C Uy, and Uf ~ U3 = @, then proceed as in (a). If (¢) both 4, and i,
are in T— X, then there exist subsets 7, and T, of 7— X which are closed
inT—X and suchthat tye Ty, 4 = 1,2, T\ " T, =@, amd Ty w Ty = T— X
(T— X is compact and totally disconnected). Since 7~ X is closed in T, T
and T, are disjoint closed subsets of T and there exist open sets U, and U,
such that Ty C Uy, 4 = 1, 2, and Uf ~ Uf = @. The remainder is as in (a).

The necessity follows from the observation made preceding the
statement of this theorem. If T'— X is not totally disconnected, there
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exist non-trivial connected sets in T— X and each f', f € ¥,, is constant
on such sets, so £, fails to satisfy (8%).

COoROLLARY 4.3. If X is a locally compact (non-compact) Hausdorff
space, then the one-point compactification of X is a Wallman compactification
of X.

‘We note that the lattice £, in this case is the family of all zero sets
of continuous functions on X which are constant on the complement of
some compact subset of X (constant on a neighhborhood of the “point
at infinity”), the result attributed to the author (without proof) by
Frink ([4], p. 606). We note also that this result was obtained earlier by
Ky Fan and Gottesman by means of their normal bases for open sets.

5. A representation theorem for Hausdorff compactifi-
cations. We consider in this section a fixed completely regular Haus-
dortt space X and a fixed Hausdorff compactification T' of X. We shall
use the same notation and terminology given after Theorem 4.1. It is
well known that T is a quotient space of pX. However, X need have
little other relation to T. We first show that 7' is a quotient space of wf,
where £ is the lattice of zero-sets of elements of 2, the algebra of all con-
tinuous real-valued functions on X which are extendible to T

Tt is readily verified that £ is an a-, §-lattice of closed subsets of X
and that ¢ forms a base for the closed sets of X. Therefore, ¢(z —Uog)
is 2 homeomorphism of X into wf. We have not been able to determine
whether wt is always Hausdorff, although all of our examples have this
additional property.

TreorEM 5.1. A C C(X, £).

Proof. We use here the fact that 9 is a lattice with respect to the
operations max(f, ¢) and min(f, g). We denote by 4 the function on X
which maps X into the single point 4 of R. We fix feU, >0 and let a
and b be real numbers such that o < inf{f(z): » ¢ X} < sup {f(z): e X}
< b, and choose a partition & = 4, < 4 < ... < Ao = b of [a, b] such that
A— A1 < &4 for each i: 1 < i< n. For each i< n—2 we define

g1 = [Aipe— 100 (Aire, f)I[max (A, f)— 4] -
The functions gi, ¢ = 0,1, ..., n—2, are in % and
Z(g) = FH(— o0y ] U F " hiay 00) = X—F (M, hesa)
It follows .that
N{Z(g): i =0,1,..,n—2} =@ and 6(f, X—Z(g1)) < & for each i .

From Theorems 5.1 and 2.8 we have that each fe2 is extendible
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to a continuous function f on wf and f"(pw) = f(x) for each » ¢ X. We
define a relation R on wt by

(51) R ={W,V)ewt xwk: f(U) each fe¥U}.

Tt is clear that R is a closed relation on wf and for each # ¢ X the class
R[Uy] containing U, contains only the single point W;. We denote
by o the projection map of wt onto wL/R and endow wi[R with the quotient
topology.

TrEoREM 5.2. (i) wl/R is a compact Hausdorff space, (ii) C(wL/R)
and A" (the family of all extensions of functions in A to wk) are isomorphic,
(iii) T and wt/R are X-homeomorphic (there ewisis a homeomorphism v
of T onto wt|R such that v(w) = op(®) for each 2 e X).

Proof. (i) Since ¢ is continuous, wf/R is compact, and for each
f e the function f' defined on wt/R by f(oW) = f “(W) is continuous
(ef. [7], p. 95). From the definition of R it is clear that the family of all
such functions separates the points of wf/R. Thus, this space is Haus-
dortf. Also, the family A’ of functions f', f ¢ A, is a uniformly closed sub-
algebra of ((wf/R) which contains the constant functions. Thus, by the
Stone-Weierstrass theorem, %' = O(wL/R). The mapping f~-—>f' of A~
onto A’ is clearly an isomorphism, and the composition f(->f")->f" is
an isomorphism of 9 onto A = C(wL/R). But A is isomorphic to C(T),
and by Theorem IV, 6.26 of [2] T and wL/R are homeomorphic. Since
R[Wy] = {Wg}, it follows that there is an X -homeomorphism of T onto
wi[R.

We now define a mappmg of the family of filters in £ into itself. In
the special case ¥ = BC(X) this mapping was considered in [5], Exer-
cise 2L. Most of the properties of this mapping which we exhibit were
given by Samuel ([8], p. 121) for the case £ = the power set of X.

DEFINITION 5.1, For fe¥, &¢>0, B(f) = {z: |f(@)] < e} E(f)
= Z[max (|f], e)—e] e L.

DerixmioN 5.2. If § CL, F* is the family {4 ef: there exists
f e, > 0 such that 4 = B, (f) and BEyf) ¢ F for each § > 0}.

THEOREM 5.3. For each leter F in L, the family F* is a filter in L
satisfying F* C &.

Proof. We first observe that we can (and shall) always choose
non—negative functions to represent sets A € in the form H,(f), since
BJf) = E.(f]). We shall verify (i) @¢ 5*, (ii) if 4,B ¢ F*, then there
exists ¢ e&”* such that ¢ C 4 ~ B, (ili) if 4 ¢ F*, Bef, and 4 C B, then
" Bed* It is clear that 5 C ¥ and (i) is immediate.

(ii): If A, B e 5*, then there exist f, g ¢ %, ¢, 6 > 0 such that 4 = B(f),
B = Eyg), a.nd B,( f), B, (g)eF for each n>0. A~ B2 Enunes(f) n
A Boneald) 2 Bumea(f+9). We let 0 = Bung,s(f-+4), and show ¢ « 5.

= (V) for
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For 5> 0 By(f+9) D E(f) ~ B,y(g), where y = 5/2, and each of these
gets is an element of &. It follows that C e F*.

(iii) We first note that if f, h « W and if f has the property that Hs(f) e F
for each ¢ > 0, then so does fh. This follows from the containment H,(f)
C Bs(fh), where n = é[sup{|h(2)|: # ¢ X} We fix 4 ¢ 5*, B el such that
A C B. There exist f,ge%U, ¢>0 such that 4 = E(f), B=1Z(g), and
By f) e & for all 6 > 0. We shall construct h e ¥ such that Z(g) = E (fn).
Smce E(f)C Z(g), we have also E,(f)* C Z(g)*. We let T, = E(f)

= [T— B (f)*]*. We defme hi on T) by hi(t) =1 for all te Ty, and h;
on T2 by hg(t) = g'(t)+&f (1) for each t ¢ T,. The first function is clearly
continuous, and the continuity of the second function will follow once
we establish that f' cannot vanish on 7,. In fact, if f'(f) <e, then
t ¢ int(Bo(f)*). It is clear that T, does not meet the interior of E,{f)*, since
T, ~ T, is precisely the boundary of T,. We define h'(f) to be hi(t) if
teT, and to be hy(f) if t € T,. It suffices to show that h; and h; agree on
Ty~ Ty I teT) ~ Ty, t e Bdy(E.(f)*) and f'(f) = & ¢'(t) = 0. It follows
that hi(f) = ha(t) and B’ is eonthmous on T. We let k be the restriction
of »’ to X. Then h e A and Z(g) = E.(fh).

THEOREM b5.4. The mapping F ->F* sansf'éesy (i) F* C &, (i) F* = 5%,
(iil) of F C G, then §* C G*, (iv) if W is an ultrafilier in £ and if U* C F,
then F* C W, (v) if weX, then U3 is contained in a wnique ultrafilier
(W) of L. _

Proof. (i), (ii), and (iii) are clear. (iv). If W is an ultrafilter in £
and F a filter in £ such that ¥ & W, then W* & #. If # & U, then
there exist f, g € %, ¢ > 0 such that Byf) e F for each 6 > 0 and E.(f) ~
~Z(g) =0. We fix §: 0 <8 < e Then Ey(f') ~ Z(g)* = &. If not, then
there exists te Z(g)* such that f'(f) < 8. We choose 5 >0 such that
8+ 5 < &. There exists a neighborhood U of ¢ such that f'(s) < 0+« for
each s ¢ U. Since t ¢ Z (g)*, there exists # ¢ Z(g) ~ U, and f(z) < ¢, g(x) = 0.
This contradicts the fact that f, g, and & where chosen so that H.(f) ~
~Z(g) = @. Since Bs(f') ~ Z(9)* = O there exists heU such that »' is
zero on Z(g)*, ' is one on By(f'), and 0 < k' < 1. Then Z(g) C Z(h) and
En(h&e a* for each 7> 0. We fix < 1. Then E,(h) Byf) =9 and
U € F.

(v). We fix # « X and W e wf such that U # Uy. Then there exists
A €U such that # e X— A. There exists f « 2 such that A = Z(f), =0,
and f(z) = 1. The set B = Hys(f) is in U* and @ ¢ B. Thus, W g‘u,,ﬁ,
and Wk € W by (iv).

DEFINITION 5.3. A filter & in £ is called a *-filter provided ¥ = F*.

THEOREM 5.5. If U is an ultrafilier in £, then U* is a maximal
*_filter. Conversely, if F is a mawimal *-filter, then F = U* for some
wlirafilter W, in €.

12%
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Proof. If U is an ultrafilter in £ and U* C & = F*, then F* C U
(Theorem 5.4 (iv)), and §* = F C U* (Theorem 5.4 (iii)). Conversely,
if ¥ is & maximal *-filter, then since ¥ is a filter in £, there exists an
ultrafilber A in £ sueh that F C W. By (iii) of Theorem 5.4, 5 C U*.

We let X* (= (X, £)* if reference to £ is necessary) denote the set
of all maximal *-filters in £, and define z: wf —=X* by 7 (W) = WU* The
function s maps wt onto X*. We endow X* with the quotient topology
induced by .

THEOREM 5.6. If X* is endowed with the quotient topology induced
by x, then the mapping ¢ = 7 of X inio X* is a homeomorphism of X onto
a dense subspace of X*. Moreover, X* and T are X -homeomorphic.

Proof. Since ¢ is one-to-ome on X and = is one-to-ome on ¢(X)
(Theorem 5.4 (v)), it follows that v is one-to-one. The continuity of v and
denseness of y(X) are clear. We defer the closedness of this map. We
have o: wl—>T a continuous closed map and m: wf->X* continuous.
Both T and X* are endowed with the respective quotient topologies,
50 it suffices to show that the decompositions of wf induced by ¢ and =
are the same (Le., ¢(W) = o(V) if and only if (W)= =(V)). If (W)
# ¢(0), then there exists fe 2 such that f7(W) # f7(V) and we may
assume that £ (W) =10, f (V) =1, and 0<f" <1. Then W eZ(f")
= {B{f)": &> 0}, where “* denotes closure in wt. For each ¢ >0,
E(f) e W* and for e <1, V¢ Bf) = O[B(f)] Hence, F,(f) ¢V and
Uk LY‘_ Y, This implies U* = V* (m (W) # =(V)). Conversely, if W* 5= U,
there exist A € U*, B eV such that A ~ B = @, and there exist f, g ¢,
&>0 such that 4 = B,(f), B = Z(g) and f~ (W) = 0. If f7(V) = 0, then
Qe Hy(f)™ for each § > 0. But U ¢ Z (g) and this set is disjoint from H,(f)".
Thus, £ (W) # £ (V) and o(W) # o(V). A homeomorphism 7 is induced
from X* to T by 7(z) = oW. For #¢X, tals; = 0y = o and v i,
therefore, an X -homeomorphism. It now follows that yis a homeomorphism
of X into X*.

The preceding would be a more satistying result if the topology of
the space X* were .defined as in an ultrafilter space. We recall (Theo-
rem 2.4) that the topology in an ultrafilter space wt is given by the follow-
ing: For each filter F in € the set 0(F) = {W e wl: F C U} is closed, and
every closed set is of this form. We gshow below that the topology of X*
can be described in the fashion.

LemMA B.7.1. If F is a closed set in we and if F = {W ewl: §F C W}
for some filter ¥ in £, then wnl = {Wecwh: & C U}

Proof. Ttisclear that nlak C {W ewt: F* C W} If W e wL—ntal,
then U* e X*—aF and =F is cloged in X*. There exists fe?, 0 <f<1,
such that f* is identically zero on #F and f'(U*) =1. Then f~ is zero
on nixF and f*(W) =1. Thus, F C Z(f") C E(f)~ for each £ > 0, and
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B,(f) « ¥ for all such e This implies that each E.(f)e F* and for ¢ <1
we have F(f)¢ W. Hence, F* C W and W e wl— {Vewk: 5 C UL

LevMa 5.7.2. The quotient toplogy in’ X* can be described as follows:
For each *-filter F in L the set OX(F) = {W* e X*: F C U*} is closed, and
every closed subset of X* is of this form.

Proof. If F is a *-filter in £, then C(F) is closed in wt. It is easily
verified that C(F) = n-'C*F). Hence, OXF) is closed in X* If F is
closed in X*, then =~(F) is closed in wC and there exists a filter & in £
guch that »(#F) = C(F). By Lemma 5.7.1, ain(aF) = C(F*). But
a1 = nln(atF), 80 F = nalF = CXF*).

We now collect these facts, proved above, as

TaEoREM 5.7. If X is a completely regular Hausdorff space and T
is o Hausdorff compactification of X, then (1) T is a quotient space of wt,
where © is the lattice of zero sets of the algebra of all real-valued continious
functions on X extendible to T, (i) T is X -homeomorphic to X*, the space
of all mawimal *-filters in £, endowed with the topology G* defined by taking
as closed sets all sets on the form {U* e X*: F C U*}, where F is a *-filter
in £, (i) The topology T* is the quotient topology induced on X* by the map
from wt which identifies ultrafiliers Us and U such that U* = V*.
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