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On the equivalence of an exhaustion principle
and the axiom of choice

by

T. Neubrunn (Bratislava)

INTRODUCTION. An interesting and very general abstract formu-
lation of the exhaustion principle used in measure theory was given in
the paper [1]. The aim of this note is to give, in a direct way, an abstract
formulation of the following simple form of the exhaustion principle
and to show that it is equivalent to the axiom of choice.

TrmorEM I (MEASURE EXHAUSTION THEOREM). Let (X, M, u) be
a measure space with o finite measure. Then there exists a set P e M such
that EC M, B C X—P, implies u(F) = 0.

Notation. We shall use the notation according to [2]. Let us ex-
plain some further symbols which we shall use in the paper.

(a) 8 will denote a fixed set and m a cardinal number such that
m < § (A denotes the cardinal number of the set A).

(b) B C 8 x8 will be a relation (see [4], p. 54), 2Ry means {z, y) ¢ R,
xnon Ry means <{z,y) ¢ R.

(¢) ¥ C 8 will be a non-void set. §y stands for a system of subsets H
of ¥ for the elements of which the following is true:

vel,yeEB, x#+y = xRy or yRx,
zekE = znon Rz.

(d) o™ stands for an S-valued function with the domain consisting
of all F ¢ 8y for which E <m.
(e) The function ' and the relation R fulfil the following condition:

yeS, p™(E)Ry = xRy for each z¢E.

Now we ghall formulate an abstract form of Theorem I.

PRINCIPLE OF EXHAUSTION. Let 8, ¥, 8¢, R and oM fulfil assumptions
(a)-(e). Let BE<m and P™(E) e Y for each E ¢ Sy and let there exist at
least one x € Y for which znon Rx. Then there exists z € Y such that, for each
Yy ¢ Y, 2Ry implies yRy.
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THEOREM 1. In the set theory including the awiom of choice the principle
of exhaustion holds.

At first let us present some consequences of the principle of ex-
haustion. .

Theorem I follows from the exhaustion principle if we put § = M.
For the set ¥ C M we may choose the system of all measurable sets with
positive measure. Further we put m = &,. The relation B we define in
the following way: BERF means B nF = 0.

@™(E) denotes the union of sets of the system E. The assumptions
(a)-(e) are evidently fulfilled and so Theorem I is a consequence of the
exhaustion principle.

In a quite analogical way we obtain from the exhaustion principle
the following theorem:

THEOREM II (THEOREM OF EXHAUSTION OF THE VECTOR MEASURE).
Let (X, M, u) be o vector measure space (i.e. let (X, M) be a measurable
space and u be a o-additive set function with the domain M and with the
range in a linear topological space). Let each system of pairwise disjoint
sets with non-zero measure be at most countable. Then there exists a set P e M
such that u(E)= 0 for each B ¢ M, EC X—P.

Proof of Theorem 1. Let a be the least of the ordinal numbers
of the power x(m) (cf. [4], p. 220). For each £ < a the sequence {mi} will
be constructed in the following way: For & =1, 21 is any element of ¥
such that #inonRxi. For n > 2, «, is any element of ¥ such that x}Ra;,,
i=1,2, .., n—1, and simultaneously a,honRa;,. If for some » > 2 such
an element does not exist, then the proof is completed, since for the ele-
ment 2z appearing in the principle of exhaustion we can take @M(H),
where B = {ai, ..., %5_,}. Hence we may assume that , exists for
n=1,2,..

Let £ < a be any ordinal number and let {«)} be constructed for
each 7 << & such that the set B = {a: n< & n=1,2,..} belongs to
the domain of ¢™. The element «j will be chosen such that e ¥,
#™(E )Raf, ainon Raf. If there is no element with the above-mentioned
property the proof is finished. If such an element exists, then {wf,,}f{L 1 d8
constructed in the same way as in the case of £ = 1. Evidently there must
exist an ordinal number &, < « and a natural number N such that mf\}'
with the above-mentioned property does not exist. In the opposite case
we might construct an element B e §y the power of which would be 8 (m).
But this is impossible. Hence the element z = ¢ (B, v {2%} u ... U {afd_1})
is the desired element and the proof is finished.

TBEOREM 2. The amiom of choice follows from the principle of ex-
haustion.

iom®

An exhaustion principle and the awiom of choice 211

Proof. Let T # 0 be a set and F a function defined on T with values

in a given family of disjoint sets. Let § denote the set of all functions g

each of which is defined on a subset of the set 7' and for which g(t) e ().

Let m be the cardinal number of the set S. The functions g (%) represent

some relations when eonsidered as subsets T i< | ) F(t), so the set inclusion
teT

defines a partial ordering in S. Let us define a relation B on § in the
following way. If g,h e S, then gRh <= gCh, g # h.

Let ¥ = §. Evidently ¥ 5 0. Let us define the function g™ as the
set-theoretical union. The assumptions (a)-(e) are fulfilled. According
to the principle of exhaustion there exists a funection f(f) such that
g(t) €8, g(#) D f(t) implies g(?) = f(t). The domain of such a function f
must be the whole set 7. The proof is finished.
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