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On Baire measures on D-topological spaces
by

E. Granirer (Montreal)

I. Introduction. Let X be a topological space and d a pseudo-
metric on X. A subset X,C X is d-discrete if there is some ¢ > 0 such
that d(z,y) = ¢ for any ¢,y ¢ X, with 2 s y. ([14], Ch. 15.)

A cardinal number m is said to have measure zero if any nonnegative,
countably additive, finite set function x on the class of all subsets of
a set M of cardinality m is trivial, i.e. u(M)= p(M,) for some countable
subset M, C M. &, and x; have measure zero (see G. Birkhoff [2], p. 187),
while the cardinal of the continuum is not known to have measure zero.
We say that a topological space X is a D-space if whenever d is a con-
tinuous pseudometric on X (see Gillman-Jerison [4], p. 234, 15G(2)),
all d-discrete subsets of X have cardinal of measure zero.

Any separable space X or any product || X,, with X, separable
a€el

and I not necessarily countable (which does not need to be separable
if the cardinality of I exceeds that of the continuum; see Pondiczery [7]
or Ross-Stone [9], p. 399) or any open subset of such a product or any
Lindeloff regular space are a few examples of D-spaces. (In fact all these
are spaces which satisfy the countable chain condition; see Sanin [10]
or [9], p. 400.) If X is a D-space, then its closure in any space Y in which X
can be embedded is also a D-space.

On the other hand even Ry (reals with discrete topology) is not known
(assuming the usual Zermelo-Fraenkel axioms and the axiom of choice)
to be a D-space.

The assumption that all topological spaces are D-spaces is equivalent
to the assumption that all cardinals have measure zero (whether or not
this is true is a well-known open problem of set theory) which is consistent
with the usual axioms of set theory (see the remarks after the proof of
theorem 1).

If X is a topological space, then M (X) (sometimes M ) will denote
the linear space of all countably additive real valued (hence finite) set
tunctions defined on the Baire sets of X (see below), M (X) = {u ¢ M,(X);
u(4) = 0 for all Baire sets A C X} and C(X) the space of bounded real
continuous functions on X.

Fundamenta Mathematicae, T, XL 1


Artur


P E. Granirer

We should remark here that any u e MF(X) is regular with respect
to zero sets in X (for definition see below), i.e. u(4) = sup{u(Z); ZC A
and Z a zero set} (see Varadarajan [13], theorem 18, p. 45) and is not
necessarily regular with respect to compact Baire subsets of X even
if X is locally compact non o-compact (such X may even have cardi-
nality sy).

If Y is completely regular (always Hausdorff), then 4 CY is con-
ditionally compact iff 4, its closure in ¥, is compact, i.e. iff any net in 4
contains a subnet which converges to some point of ¥ (see Kelley [19],
Chapter 2, for nets).

o(C(X), M,(X)) = o(C, M,) will denote the weakest topology on
C(X) which makes all linear functionals on ¢(X)of type [ fdu for uin M,,
continuous. A set £ C O(X) is bounded iff sup{|f(z)|; z e X, fe #} < co.

It is the main purpose of this paper to prove the following two theo-
rems about completely regular D-spaces which have in common the
following: The assumption that they hold for all completely regular
spaces X is equivalent to the assumption that all cardinals have meas-
ure zero.

TrEOREM 1. Let X be completely regular.

a) If X is a D-space and £ C C(X) is bounded and equicontinuous,
then #& ts o(C, M,)-conditionally compact.

(b) If X is not @ D-space, then there is a bounded equicontinuous set
# C C(X) which is not o(C, M,)-conditionally compact.

If X is o-compact locally compact or complete separable metric,
then more than part (a) of this theorem is known to be true. Theorem 1 (a)
asserts something new for those spaces X which admit Baire measures
(i.e. elements of M (X)) which are not supported by o-compact sets.
There are even locally compact spaces of cardinality s, or subspaces of
the real line which have this property (see the remarks after the proof
of theorem 1).

THEOREM 2. Let X be completely regular.

(a) If X is a D-space and p, a net in M (X) such that Iim [ fdp, = | fau
for each f in C(X) for some u in MF(X), then llmsul) | f fa(pe—p)| =
for any bounded equicontinuous set £ C ¢ (X). " et

b} If X is not a D-space, then there exists some u in QVI s (X), & net p,
i M (X) and a bounded equicontinuous #C C(X) such that 11m f fauq
= [ fau for each f in C(X) and this convergence is not umjorm on b,

Theorem 2(a) has been proved by Ranga R. Rao [8] for the case
where the net u, is a sequence pn,n=1,2, .., and X is Lindeloff. It
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has been known by R. M. Dudley that theorem 2(a) is true for sequences un
and separable completely regular spaces X and that assuming it to be
true for sequences un e MS(X) and all completely regular spaces X is
“compatible with all axioms of set theory” (see [8], p. 664 footnotes 1, 2).
The fact that theorem 2(a) is true for nets has a topological interpretation.
We make use of theorem 2(a) as stated fcr nets in the proof of theo-
rem 1(a) and in the applications in Section IV. The fact that theorem
2(a) is true for sequences is not enough in each of the applications given.
It is also shown in the present work that theorem 2(a) is true for any
completely regular X whenever the limit measure u is supported by a subset
X,C X which is a D-space. This is the content of remark IIT.4. This
remark is applied in Section IV.

One of the deepest results obtained by Varadarajan in [13] is that
if (X, d) is metric and MF(X) is the set of u ¢ MJF(X) which “live” on
closed separable subsets of X, then M; (X) equipped with o(M(X), C(X))
is metrisable. We apply theorem 2 and give a much simpler and entirely
different (see [13], pp. 62-65) proof to this theorem. In the spirit of theo-
rems 1, 2 one gets from here the following, essentially known (in different
terminoclogy).

CorOLLARY. Let (X, d) be metric.

(a) If (X,d) is a D-space, then M} (X) with o(M,, C) is metrisable.

(b) If (X,d) is not a D-space, then BMF(X) with o(M,, O) is not
metrisable (see Section IV.)

We also give in Section IV the following application to invariant
means on topological groups G (not necessarily locally compact). Let
DP(@) = {u e MF(@); p(G) =1 and u “lives” on a D-subset of G} (see
remark IT1.6 and Section IV). If ue M, (G) and fe C(G) leb

L) (@)= [ fhg)ap(h),  fulg) = flag), f%g)=Flga),

for any a,ge@. If p, is the unit mass at ae@, then L, f=f,. Let
LUC(G)C C(G) be the left uniformly continuous functions on G.
@ e LUC(@)* is left invariant if ¢(f) = @(f) for any f in LUC(G) and
any a in G. p e LUC(@)* is D-topologically left invariant if ¢(L,f) = ¢(f)
for any f in LUC(@) and any p e DP,(&). (Obviously, ¢ is then left in-
variant.)

This definition has been suggested to us by a definition of A. Hula-
nicki in [17] who uses in his, only u’s which are regular with respect to
compact sets (and have hence c-compact support) and locally compact
groups G ().

(*) Thanks are due to Professor Hulanicki for his kindness in sending us a preprint
of his paper. It is this paper which convinced us to study the problems of the presen‘a
work.
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We prove, using theorem 2(a) and remark ITL.4 that if ¢ e LUC(G)*
is left invariant then ¢ is D-topologically left invariant (2) (and a fortiori
topologically left invariant in the sense of Hulanicki). In particular if ¢
is a left invariant mean on UC(R)= LUCU(R) (R the real line) then
o(f)=olf flw+1)du(t)] for any Borel probability measure x on R and
any f in UC(R).

It would be interesting to know whether ¢(f) = ¢(L.f) for any left
invariant mean on O(Ry) (Rq discrete additive reals) and any ue M (Ry)
with x(Rz) = 1. For what we know it still may be that the assumption
that the continuum has cardinal of measure zero is not needed in order
to show that invariant means on C(Rg) satisty o(f)= ¢(L.f) for any
4 e MF(Rg) with u(Rg) = 1.

Some more definitions and notations. All completely regular
spaces will be assumed to be Hausdorff. If X is a topological space, then
A CX is azero set iff A = {&; f(X) = 0} for some fin C(X). Complements
of zero sets are cozero sets. If d is a continuous pseudometric on X, then 4
is d-totally bounded iff any &> 0, A can be covered by finite union of
zero-sets of d-diameter <e. ([4], Chapters 1 and 15.) A o-field (field)
of subsets of X is a nonempty family of subsets of X closed under count-
able (finite) unions and complementation. The Baire o-field of X is the
o-field generated by the zero sets of X. Its elements are called Baire sets.
A Baire measure is an element of MJ(X). Tf a ¢ X then p, e M7 (X) is

the point measure at @, i.e. ffdpazf(a) for each fin C(X). If fe 0(X)

then [|fl| = sup{|f(z)}; © € X}.

A Baire set B C X is a continuity set for u « M (X) if there is a cozero
set U and a zero set Z such that UCBCZ and u(Z~U)= 0. £C ¢(X)
is equicontinuous if for any # in X and & >0 there is a neighborhood U
of z such that |f(y) —f(z)| < e for each y in U and all fin #. If 4 is a con-
tinuous pseudometric on X, then + C C(X) is d-equiuniformly continuous
if for each &> 0 there is a 6 > 0 such that |f(z)—f(y)| < & for each f
in #if #,y ¢« X and d(x,y) < 4. If ¥ is a Banach space, then ¥* denotes
its adjoint Banach space. We use the notations in [3] for such spaces.
It X is a set [,(X) is the set of all real functions f on X which vanish out-
side a countable set and ) |f(#)| < co.

If L is a set and L' a set of real functions on L, then o (L, L') denotes
the weakest topology on L which makes all f in L' contintons. R (Ry)
denotes the real line with the usual (discrete) topology.

(*) I. Namioka has kindly informed this author that he and independentily
Greenleaf, have meanwhile obtained this same result for the case where & is locally
compact, using Hulanicki’s definition of topological left invariance. Namioka’s beautiful
proof relies though heavily on the existence and especially uniqueness of the Haar

measure and hence does mnot carry over topological groups which are not locally
compact.
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II. Proof of theorem 1.

THEOREM 1. (a) Let X be a completely regular D-space. If £C C(X)
is bounded and equicontinuous, then £ is o(C, M,)-conditionally compact.

Proof. M,(X) is a Banach subspace of C(X)* under the norm

il = sup{|[ saul: fe 0@, 1<}

(see Varadarajan [13], p. 39 and theorem 18, p. 45). We can consider
#AC M,(X)* (the adjoint Banach space of 3,). Then for fin C(X) we have

Wl = sup {lf(@)}; @« X} = sup{|[ faul; ue iy hull <1}

Hence # C M} is norm bounded. To finish the proof it is enough to show
that if f, is a net in 4 such that lim [ f,du = L (u) exists for each x in M,

then Ly = [fdu for some fixed f in O(X). This will show that the
o(M¥, M,)-closure of # in M} (which is compact by Alaoglu’s theorem;
[8], p. 424) is included in C(X), i.e. that the o(C, M,) closure of £ is
o(C, M,) compact.
Let hence lim [ f,du = Lu for each u in M, where f, is a net in .
We have ‘
limf,(e) = lim [ fodps = L(p)

for # in X. Define L(p,) = f(x). There is some K > 0 such that |g|| < K
for any ¢ in # and hence |f(2)| < K for any # in X. Furthermore for any
&> 0 and o in X there is a neighborhood U of x such that |g(y)—g(#)] < &
for any ¥ in U and ¢ in . Hence |f(y)—f(z)| = lim |f.(y) —fu(®)] < & for

any ¥ in U which shows that f e ¢(X). If we would know that Lebesgue’s
bounded convergence theorem would hold for nets for any u in M,, the
proof would be finished, since then

Ly=1lim [ fudu= [ fiu

for each pin M,. This theorem does not hold (?) even for locally compact X
of power x;, and hence we cannot proceed this way. If we would know_
that each uin M, has its support in a o-compact set, then we could apply
Arzela’s theorem and finish the proof. This again is not always the case (3).

(*) Consider the following example (given by Varadarajan [13] to show examples
of o-smooth, nonz-smooth measures): Let X be the set of ordinals less than the first
uncountable one £2, with the order topology. X is locally compact pseudocompact and
any f ¢ 0(X) is ultimately constant, i.e. there is a real constant ¢, and some % ¢ X such
that = > =, implies f(z) = ¢,. ([4], pp. 72-75.) Denote ¢, = }i%lf(x) =L(f). Then
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We proceed as follows:

Let u e M;(X) be a fixed Baire measure on X such that u(X)=1.
There is a net {us} C MI(X), each element of which is a convex com-
bination cf point measures, such that [hdus— [ hdy for each ke Oo(X)
([13], theorem 10, p. 61). X is a D-space and hence by theorem 2(a)
[ gdus— [gdu uniformly in gest. Furthermore Lus = [faus as readily
checked (since uy are convex combinations of point measures).

Hence

L)~ [ faul < 1Zu—po)+- | [ Faps—p)
=1i:n”gad(p—,ug)l + Iffd(/lp—ﬂ){ for each #.

There is now some f, such that | [gd(usp—u)| <& for each ge# and
| [1@(up,— )| < e. This implies that Lu = ffdu and finishes the proof.

We see hence that this theorem is a consequence of theorem 2(a)
as stated for mets. The fact that theorem 2(a) is true for sequences
of Baire measures would not be enough for this application since one
cannct find in general a sequence u, of convex combinations of point
measures for which [ hdu,— [ hdu for each heC(X), is true.

Take for instance the example given in the footnote connected to
this procf. Consider the measure u of of this example. If p, is o sequence
of convex combinations cf point meagures on X, such that [ hdun—f hdu
for each e €(X) and if {X,} C X is the union of the supports of {u,}%,
then there is some #,¢X such that >, for each ». The set
A ={weX; v>u}={xeX; 1> 2-+1} is open and closed, hence the
fonction f defined by f(x) =1 iff A and 0 otherwise, is in ((X).
Now 0 = [ fdun+ [fdu = 1. Thus u can be approximated in the o(M,, C)
topology by mnets of convex combinations of point measures but not
by such sequences.

THEOREM 1(b). If a completely regular non D-space X emists, then
C(X) contains @ bounded equicontinuous subset £ whose o (¢ , My) closure
(tn O(X)) 4s not o(C, M,) compact.

Proof. Assume at first that X is a discrete non D-space. We show
then that #£ = {fe O(X); |Ifll <1} is not o(C, M,)-compact. Let 4 belong
to M,(X) and not to I,(X) and assume that 4 is ¢(C , Ms)-compact. Since
o(C,l) is weaker than o(C, M,), we get that o(C, M,) and o(C, 1)

by Glicksberg’s theorem (see [18], p. 44) there is some i + [ I

: ! (13}, p. @ in MH(X) such that L(f) = [ fdu.
I(jor each @ in X define f, in O(X) by f,(#) =1 if > ail—l and O otherwise. Then
l1amf4(w) =0 for each » in X while L(f,) = [f,du =1 for each a in X. In this case

g

{fai @ « X} is not an equicontinuous set and pe M, does not have o-compact support.
In fact w(K) = 0 for any compact Baire set K c X. ’
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coincide on . Hence the linear functional Af= [fau is o(C, 1) con-
tinuous when restricted to the unit ball (and hence to any ball) of C(X).
Hence the intersection of A7'(0) with any norm closed ball of C(X) is
o(C, 1,)-closed. But in our case, €{X) = I;,(X)* and hence by the theorem
of Krein-Smulian ([3], p. 429) 47(0) is ¢(C, l,)~closed. By [3], p. 422
Corollary 11, 4 is a ¢(C,1,) continuous functional and by this same
Corollary A el,(X), i.e. [ fdu= [ fdu, for some p; in 1,(X). It X; = {@; m{z}
>0} and X,= {z; m{z} < 0] and X, is any subset of X—(X, v X,),
then u(X,) = p(X,) = 0 which shows that has countable support
and hence u = p, € ,(X). This contradiction shows that 4 is not ¢(C, M,)-
compact.

Assume now that X is a completely regular non D-space and let
X,C X be a d-discrete set, whose cardinal does not have measure zero,
where d is a continuous pseudometric on X. Let X* be the set of equiv-
alence classes of X, for the equivalence relation w~y iff d(z,y)=0.
It 2 ¢ X then 2* denotes the equivalence class containing . Let d*(z*, y*)
= d(z,y). Then (X*, d*) is a metric space, the map F: X »X* defined
by F(z)= 2* is continuous, and the set X§=F(X,) is d*-discrete.
Let A be the set of all functions from X§ to the closed interval [—1, 1.]
Then #%¥ is uniformly bounded and d*-equiuniformly continuous on X
since X* is d*-discrete. We can hence apply theorem 1, p. 10 of M. At-
suji [1] and get that each ff « 4 has an extension f*: X*—»[—1,1] in
such a way that the family #£* = {f*: f&' ¢ A3} is d*-equiuniformly con-
tinuous on X*.

Let 4= [f(z) = f*(F(2)); f*e #*}. # is uniformly bounded and
d-equinniformly eontinuous, hence a fortiori equicontinuous on X. Further-
more, the family of restrictions to X, of funections in 4 coincides with
the norm closed unit ball of C(X,).

Assume now that #£C C(X) has ¢(C, M,) closure which is o(C, M)
compact and assume that fois a net in C(X,) such that || fgn < 1for each a. -
There is for each « some f, in £ which extends f2 to all of X. We can find
a subnet f,, such that liﬁm J fagp= [ fap for each e M X), for some f

in the o(C, M,) closure of st. In particular, fuﬂ(w) —f(z) for # in X which

shows that ||fl} < 1.
For puge M (X,) let pe M/ (X) be defined by ul(A) = p(A ~ Xy)

for each Baire set 4 C X. Then [gdu = [ ¢°du, for any g « C(X) where ¢°
is the restriction of g to X,. Hence for any p, ¢ M,(X,)

S iy = [ fa=Tim [ fu,d = im [ fo,dno.

This shows that the set {h e O(X,); Bl <1} is o(C(Xo), ]PIG(XD)] compact
which contradicts the first part of the proof. We conclude hence that
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the o(C(X), M,(X)) closure of #in C(X)isnot o(C(M), M, (X)) compact,
which finishes the proof.

Remarks. (1) It has been shown by S. Ulam [12], p. 149 and p. 141
(see also Keisler—Tarski [5], p. 267) that the assumption of nonexistence
of inaccessible cardinals which are less than or equal to that of the con-
tinnum (which is implied by the continuum hypothesis [12], p. 141)
implies that a discrete space is a D-space if and only if it has nonmeasur-
able cardinal (in terms of 0-1 valued measures as in [4], p. 161), i.e. if
and only if it is real compact (Gillman—Jerison [4], p. 163). From the
other side even without this assumption the space of ordinals less than
the first uncountable one with the order topology is a locally compact
pseudocompact D-space which is not real compact (see Gillman—Jeri-
son [4], p. 237, 15Q and p. 229). If now m i3 a cardinal of measure zero
and n < m, then n has measure zero. Hence if X i3 completely regular
and has cardinal of measure zero, then X is a D-space. The above assump-
tion (and in particular assuming the continuum hypotheses) together
with the fact ([4], p. 164-165) that if m is nonmeasurable so is 2™ and
a sum of m nonmeasurable cardinals is nonmeasurable, would imply
that any completely regular X which arises from ‘‘concrete applications”
is a D-space and our theorems hold for it. Without the above assumption
we do not even know whether E; is a D-space but, surprisingly enough,
we know that []R; (where R; are copies of the reals with the usual

teRy

topology) is a D-space.

It has been shown by D. Scott in [11] that the Zermelo-Frenkel
axioms and Godel’s constructibility axiom imply that all cardinals have
measure zero and hence that, under these assumptions, all topological
spaces are D-spaces (4).

(2) If X is discrete countable or of cardinality x,, then X is a D- space.
In this case, M(X)=1(X) and C(X)=,(X)* Our theorem yields just
Alaoglu’s theorem, i.e. that the unit ball of ¢(X) is o(C, 1,) - compact.

(3) If X is compact then any bounded equicontinuous subset of
0(X) is even norm conditionally compact (see [3], p. 266) and hence our
theorem is even weaker than a well-known result. The same is the case
if X is locally compact and o-compact. Since if 7; is the topology of
uniform convergence on compact subsets of X and £ C ¢ (X) is uniformly
bounded and equicontinuous, then 7; induced on s ig stronger than
o(C, M,) on # (since any ue M, (X) has ¢g-compact support). And as
known # is in this case even 1 conditionally compact.

(*) We acknowledge with thanks discussions we had with G. E. Sacks and A, B. Ma-
naster,
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(4) Let X be the locally compact space of ordinals given.in footnote 3
and let 4 and f, be as constructed there. For this case 7, is not stronger
than o(C, M,) even on norm bounded subsets of ¢ (X). Since f,—>0 uni-
formly on compact subsets of X while f Jadu= 1. Theorem 1(a) asserts
something new for this case.

(5) Let X C[0,1] be such that x*(X)=1 and #(X) = 0 where u
denotes the Lebesgue measure and u*, u, its respective outer and inner
measure. Then as known ([15], p. 75) u* induces a probability measure
on the Baire field of X.

Now p*(K) = 0 for any compact K C X (since K is Borel measurable
and p*(K) = p{(K) < po(X) = 0). Hence Lf = ffd,u*, for feC(X), is
not continuous on the unit ball of C(X) with 7. (In fact, if it would be
50 then by theorem 29 of Varadarajan [13], p. 83, u(X—K) < } for
some compact K C X, which cannot be.) Our theorem vields something
new for this case.

(6) Let (Xd) be a nondiscrete metric space. Let zy € X be nonisolated
and 2, ¢ X be such that d(z,, ) = a, > 0 for each n and On > App1—0,
Let fn e C(X) be defined by

Jalz) = 1*%d(mnm) i dee) < a ’

0  otherwise .

One can check easily that ||fa = 1 for each n, fa(2)—0 for each x in X
and {fu(z)} C €(X) is not equicontinuous. Now 4 = {fa} v {0}izao(0, M,)
compact set by Lebesgue’s convergence theorem. This example shows
that for any metric nondiscrete D-space (Xd) the collection of bounded
equicontinuous subsets of C(X) is properly included in the collection
of all ¢(C, M,) conditionally compact subsets of C(X). If though a non
D-metric space X exists, then using theorem 1 (b) and the above defined 4
one gets that the above classes are not contained in each other. This fact
has also the following interpretation (see [16], p. 62 for definitions):
If (Xd) is a nondiscrete metric D-space then the Mackey topology 7y on
M(X) from the dual system (C, M,) is strictly stronger than the to-
pology 74 of uniform convergence on bounded equicontinuous subsets
of O(X). (In fact for # = {fs} {0} given in this remark, [ fdp,,— [ fdps,
for each fin C(X) but |ff,ld(pzﬂ -—pzn)l = 1 while from theorem 2(a) and

the remark ITI-4 we have [ fadpe, [ fdpa, uniformly on any bounded
equicontinuous #4 C 0(X).)

III. Proot of theorem 2. We shall need the following known fact:
Let B be a o-field of subsets of 2 # @ and x a countably additive
nonnegative (not necessarily finite) set function. Let f, >0, f> 0 be
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B-measurable such that ffﬂd,u < 0o, f fau < o0, fal®)—f(2) M-almo:t
everywhere and [fadp— [ fap. Then f|fn~f]cl/pf>0. (Ifav<b: max(;,)v)
then |f—fa| = [2(f—fa) VOI—(f—fa)- Now 0 <(f—fa)VO \J_”f (f;In
v0—0 u-almost everywhere and [ (f—fa)du—>0 Dby zussumpmc’)n. ence
[ 1f—faldu = 21J ((f—fa) vO1du— [ (F —fa) ap] >0 by Lebesgue’s conver-
ence theoren.) ‘

) LemmA 1. Let f. > 0 be a net of functions and f= 0 a function, all
defined on Q= {1,2,3,..}, be such that

Zf“(j) < oo, Ef(j) < oo, [fdi)—>f(i) for each j
d ! ]
. lim ) fulj) = 2 10) -
a i )
Then

lim 3 |f) —f () = 0.

Proof. Assume that this is false. Then 72 [faﬂ(y')——f(j)|> d for a sub-
net f,, and some d > 0. There is a fn such that !%—:(faﬁ(j)—f(j))l < 1/n
if B>p, and there is a fa> fn such that |fuﬂn(j)—f(j)| '< 1/n fo.r
j=1,2,..,n Hence lifaf,,ﬁﬂ(j) = f(j) for each j and 11;11 72 Jup () = 72 £
and 12 [ fag (D) —f(j)] = d >0 which contradicts the above known fact.

COROLLARY 1. Let B be a o-field of subsets of Q + 0, s be finite
nonnegative countably additive on B and A; e B be disjoint such that

G A= Q. If imp,(4;) = p(4s), j=1,2, .., and 1i01(fn‘ua(Q) = u(£) then
=1 o
lim Y [nal Ay — (4] = 0.
« 7

LeMMA 2. Let (X, d) be a metric space. Let u ¢ MI(X) satisfy: /L(S(‘,)
= u(X) for some Baire set 8, C X for which (S,, d) is a D-space. If ‘u,., 8
a net in MI(X) such that [fdu.—[fdu for each f in C(X), then
limsup | [ 1 (ta— u)| = 0 for any bounded equicontinuous # C C(X) (%).
e fes

Remarks (1). The metric space (X, d) is a D-space is equivalent
to: X contains a dense set whose cardinal has measure zero, In fact for each n

(5) This lemma has been proved for sequences u, and separa.ble' metric X by
Ranga R. Rao in [8], p. 662. We follow his idea and adapt it to nets, using Corﬁ)llar}t 1
and the theorem of Marczewski and Sikorski about the separable support of Baire
measures on metric D-spaces.
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there is a subset A, C X maximal with respect to the property:if z,y € 4,
and x # y, then d(z, y) > 1/n. If (X, d) is a D-space then A4,, and hence

o0
|J 4x (which is dense) has cardinal of measure zero. Conversely if X

goita,ins a dense set whose cardinal has measure zero and if d, is a con-
tinuous psendometric on (X, d), then any d,-discrete subset has eardi-
nality which is less than or equal to that of the dense subset and hence
has also cardinal of measure zero.

(2). Let ¥ be completely regular and X CY. If X is a D-space,
then so is X its closure in ¥. In fact if ¢ is a continuous pseudometric
on X and {y.} C X is such that e(ya, y5) > ¢ > 0 if a  § then there are @y
In X such that e(yam.) < ¢/3. Hence e(w.) > e(y.ys) —%¢ > ¢/3 if a # B,
which shows that X is a D-space. Hence we can and shall assume that 8,
is closed in this lemma.

Proof. By restricting x to the Baire subsets of §, and applying
Theorem III of Marczewski-Sikorski [6], p. 137, we get the existence
of a separable closed § C §,for which u(8) = u(8,) = #(X)(%). Let £ C O(X)
be bounded equicontinuous and &> 0. Then as in Ranga R. Rao [8],
p. 661, we can find for each s in § a neighborhood (in X) N, = {y e X;
d(s,y) < 6} {6 may depend on s) such that ) —f(s)| < g2 if ye N,
and f e #. N, may and shall be chosen as a continuity set for u. Since §

is separable metric, we have § C G XN, for some sequence {s,} C 8. The
sets Ay = Ny, An= Ny,— U st,l #=2,3,.., have the properties:
{447 are disjoint continuit;ﬂsets for 4 (since the contin{]ity sets for u
form a field), S C len and if @,y ¢ A, then |f(#)—f(y)| < ¢ for each f
in 4. We may and 1sha,ll assume that 4, 7 @ for each n and pick a fixed

(%) Let (¥, g} be a metric D-space. Let A, c ¥ be set, maximal with respect to
the property: if @,y e 44 oy then o(w,y) > 1/n. o is surely a continuous pseudo-
metric and therefore "4, has cardinal of measure zero. Furthermore for any y in ¥

G .
there is some « in A, such tgat g(xy) < 1/n. Therefore 4 = U 4, is dense in ¥ and

has cardinal of measure zero. By Marczewski-Sikorski [6], pl. 136, Theorem II there
is a basis for the topology of ¥ whose cardinal has measure zero and in particular
the separability character of ¥ (i. e. the smallest cardinal of a basis for the topology
of ¥) has measure zero. At the referee’s sugestion we bring here the statement of the
theorem of Marczewski-Sikorski which we use in the proofs of the Theorems 1(a) and
2(a):

Trmorem III ([6] p. 137). If the separability character of a metric space ¥ has
measure zero and if v is a finite Baire measure on ¥ (i.e. v e M (¥)) then:

« (a) The wnion N of all open subsets of ¥ df v-measure zero has also y-measure zero.

() Y[U " (T~N)] >0 jor any non-void open Uc ¥. Therejore ¥ —N is closed and
separable and »(¥) = »(¥ —N).
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+ -
sequence % € A, for each n. For any ve M}X) denote by +* e My (X)
the measure v* = Z.o' »(A4)pas Where [ fap, = f(w) for fe O(X) and = e X.
(We notice that § 1may have void interior and hence none of its subsets
would be a continuity sebt for u if u % 0.)

Denoting by T = @At we have for any f in #
1

+| ] ot

de(,ua—ﬂfz’) < \Tffd(uu—ﬂ:)

<) ’ | fa(pa— )|+ Eud X —1T)
i 4y

< O [ 1f @) — o) At Epol X ~T)
7oA

< epo X)+Epo(X -1,
where K = sup{|f(2)]; # « X,f e £} We can now find some N such that
N . .
u(X — LJDAi) < ¢ Since X— | 4; is a continuity set for u,
1 1

N N
Hmsup po( X —T) < lim p(X — Llj A= p(X— Llj A <e

(see Varadarajan [13], p. 56). This shows that there is some «, such that

pa(X —T) < & it a > a;. Since to( X)—u(X), there is some % > o, such

that a > apimplies that u(X) < u(X)+1 and hence also that p(X —T) < e.
Hence:

) | [ Fau—u)
Now
ORI LIV

o> q, and any fin .

<e(w(X)+14EK) for

= |[ fagp—w| < 3 [ 1f@) —fl@0ldn < en(X)
r 1 4

[

for any f in 4. Furthermore,
| faes =] = [ satus ] < 3| [ ratui =)
X i i
= D @)l —p(40)| < K ; el Ae) = o (A4)] -

Nov& Ay are continuity sets for u and hence lim pu.(-d:) = u(4s) for each 4
and lim g, (X) = u(X) (see [13], p. 56). Hence using corollary 1 we can
find some a, > g, such that

() |[faut—ut)| <Ee it a>a and fest.
X
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Combining now (x), (x%) and (}) we get that

%
de(m—,‘) < (2u(X)+2K+1) for o> q, and any fin .

This shows that lim?uap6 | [fd(ue— 1) =0 as required.

Remark (3). If instead of a net 4, we would have had a sequence up,
then we could have found a separable closed subset SC X such that
w(X) = pu(8) and pn(X) = un(S) for each n. We could then have applied
Ranga Rao’s result to the restrictions of un, u to the set §. Since we deal
with nets, we cannot find in general, a closed separable § C X such that
pa(8) = po(X) if @ > ay for some ay. In fact let X = By; then py+sps—p,
if s—0 from the right, where Ps(po) is the measure on R, concentrated
at s (0 respectively). If s, > 0 then the union of the supports of p,+ sp,
for s>, is not contained in a countable set. We have hence to
modify Ranga Rao’s proof as above.

THEOREM 2. Let X be completely regular, u, be a net in M} (X) and
p e MJ(X) be such that Ym [ fdu, = [fdu for each f in C(X).

(a) If X is a D-space then for any bounded equicontinuous £ C C (X)
limsu A(uy—pu)| =0.
moup| [ d(u—p)

(b) If X is not a D-space then there is a bounded eqUiCONtINUOUS
#C C(X) such that the convergence | faue— [ fap is not uniform on .

Proof. (a) Let #C ((X) be uniformly bounded and equicontinuous
and define on X the pseudometric d(my)= sup{|f(z)—f(y)|; f € £} (7).
The equicontinuity of # implies that d is a continuous pseudometrie.
We define on X the equivalence relation z~y iff d(z,y)= 0. If X* is
the class of all such equivalence classes, #* being that which contains
@ ¢ X, then we define the metric @* on X* by d*(z*, y*) = d(z, y). (X*, d%)
is a metric D-space and F: X —X* defined by F(x) = a* is continuous
onto as can easily be checked. Furthermore, since any f e # is constant

on the equivalence classes «*, we can define f* on X* by f*a*) = f(z)

for some & in #* and fin . The class A* = {f*; f e #} is uniformly bounded
and equicontinuous on (X*,d*) since d*(a*,y*) < e implies d(z,y) <
and hence .

[f*(@) —f* ()] = |f(@)—f(y)| < d(w,y) <

(") Thanks are due to R. M. Dudley for the idea to use this pseudometric and
the. theorem of Marczewski-Sikorski in this proof. The original proof of this theorem
was more complicated and used theorem 15.17 in Gillman-Jerison [4], p. 227, instead.
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for any fin . Alsof*(F(:c ) f(x) for any # in X and fin #. If » ¢ M, (X)
define v* € M(X*) by »*(B*)=»(F"}(B*) for any Baire set B*C X*.
Then

[ e arior) = [ (7 (@) dv (o)

for any g in C(X) ([15], p. 163) and in particular
 a* = [ f@)ir(@)
Therefore
[ grapt = [ (P @) dpulo) > | ¢*(F @) dpu(e) = | *a
for any g* ¢ C(X*). Using now lemma 2 for (X*, d*) we get that

Yar(a*) = [ fH{F (@) dv(w for any f in 4.

=0

timsup | Fa(e—p) = im sup [ 20—

which finishes part (a).

(b) Assume that X,CX is a d-discrete set whose cardinal does
not have measure zero, where d is some continuous pseudometric on X.
Then d(z, y) = 6 for #, y in X,, @ 5 y, for some § > 0. We can find now,
as in the proof of theorem 1(b), a bounded equicontinuous class 4 C C(X)
such that ||fll <1 for fin 4 and

oy = {f|Xw feay = {geC(Xy); lgll < 1}

where f|x, is the restriction of f e C(X) to X, C X. There is by assumption
a ve MI(X,) such that » = 0 and v{w}=0 for any » in X, ((X,d) is
diserete and hence all subsets of X, are Baire sets). There exists then,

as known, a net », of measures of type Zaip,, where a;> 0 and [ fdp.

= f(z) for # ¢ X and f e C(X,), such that fgdvu—rgdv for any ¢ in C(X,)
([13], p. 61, theorem 10). Define now u,, x in M¥(X) by

a(B) = 9B~ X,) and u(B)=1(Bn~X,).
Then )
[ fap= [ flx@v. and [ fau= [ flx,dv
for any f in C(X). Therefore [fdu,— [fdu for any f in O(X). If
1 Fd(pa—p)| = 0
am;ggU £ (=)
then

a ge C(Xo): IlaH <1

Batre measures on D-topological spaces i5

which implies that we can find «, such that [ Jga (¥ag—7)]| < 1/n for any g
in C(X,) with |lg| < 1. Hence hmfgdvan = fgdv for any ¢ in C(X,). If

we denote by 4 the countable union of the (finite) supports of the meas-
ures 7,,, then 4 is countable and

ld = (X =limanX =1 a 4Y= 1 — .
J vy = »(X0) = limo, (X)) = limre,(4) = lim [ Lidn, = [ Lads = »(4)

(where T4(y) =1 if yeA and 0 if y¢ 4), since I, ¢ C(X,). Since » == 0
and 4 is countable, »{z} > 0 for some # in A. This contradiction shows

. that

hin./sup lffd(lua—«ﬂ)} =0 i3 not true,
which finishes the proof.

Remarks (4). Theorem 2(a) remains true if instead of assuming
that X is a D-space we assume only that there is a set 8, C X which
is a D-space in the relative topology such that u(S)= u(X) for any
Baire set § containing 8, (we have in mind for §,, ¢-compact subsets
of X, which as known need not be Baire sets). We show this as follows:
In the notation of the proof of Theorem 2(a), {F(8S,), d*) is a metric
D-space (since if ¢* is a continnous pseudometric on F(8,) then e*(F(x),
F(y)) is a continuous pseudometric on 8,). Hence F(S,), the closure

of F(8,) in X*is a D-space. Moreover F(8,) is a Baire set since (X*, d*)

is metric. Using the fact that ,u*(F('S,L)) = p*(X*) and lemma 2 we get

that limfsu}z [f fra(pd— y*)| = 0 which implies as in the proof of theo-
o IE L]

rem 2(a) our assertion.

(5) Let X Dbe discrete. Then using the previous remark one gets
that the norm topology and the weak topology o(h(X), C(X)) coincide
on the positive cone of I, (any w in I, has o-compact support). This result
is in fact proved much easier in corollary 1. Nevertheless the norm and
weak topologies on I,(X) do not coincide unless X is finite ([13], p. 436 (9)).

(6) Let X be completely regular and

DMF(X) = {ue M}I(X); there iy a D-subspace 8,C X such that

#(8) = u(X) for any Baire set § with 8,C8}.

DM (X)= M](X)if X is a D-space. Let DM, (X) =DM (X)—DM;(X).
(which is a linear subspace of M,(X)). Let 15 be as defined in remark 6
of section IX. Then m,, coincides with o(M,, ) when both are restricted
to DMF(X). This is implied by remark IIT (4) (as pointed out in re-
mark II(6), w, % vy on DMJ(X) it X is a nondiscrete metric D-space).
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Nevertheless . and o¢(M,, €) do not coincide on the linear space DM, (X)
even for a countable (non-finite) discrete X. In this case we h.znve DM(X)
= I,(X), . is the norm topology and o(M,, €)= o(ly, I¥) is the weak
topology on ;. : . |

The end of remark IT(6) shows that we cannot replace in theorem 2(a),
the condition “# is bounded equicontinuous” by £ is ¢(C, M,) compact
even if X is the closed unit interval [0, 1].

(7) Theorem 2(a) does not remain true if u,, u € My (X) is replaced
DY tay € Mo(X). In fact let X be a countable infinite discrete space and
consider the pair (I,(X), m(X)). If Theorem 2(a) would be ftrue for
ftay 1 € ,(X) (even in the unit ball of (X)) then uu—>p, (o(ly, m)) if and
only if ||ue— 4 —0. This implies that the o(ly, m) topology of the unit
ball of I, is metrie, which by [3], p. 426, Theorem 2 would imply that m(X)
is norm separable which is not true (unless X is a finite set).

IV. Applications.

(a) Proof of Varadarajan’s theorem.

LemumA 1. Let d be a pseudometric on X such that d(xz, y) < 1 for any
z,yeX. Let A, B be subsets of X such that d(4,B) >0 (d(4,B)
= inf{d(z,y); v e 4,y ¢ B} and d(z, 4)= d({x}, A})). Let

) d(z, 4)
I@) = e D+aw B
Then
2

[f(@)—fly)] < fmd(w’ Y).
Proof. Tt aed, beB, then d(z,a)+d(z,d) > d(a,b) = d(4, B).
Thus d(z, A)+d(z, B) > d(4, B). Hence
| (@) —f(y)]
<[44, B)TH{a(w, 4)[d(y, A)+d(y, B)]~d(y, A)[d(z, A)+ d(z, B)]}
= [d(4, B)]*|d(w, 4)d(y, B)—d(y, A)d(z, B)|
= [a(4, B)]*|d(z, 4)[A(y, B)—d (2, B)]—d(x, B)[d(x, 4)—d(y, 4)]]
<[d(4, B)]™*-2d(w, y)
since
ldy, 4)—d(z, 4)| < d(z,y) .
TeROREM 3. Let (X,d) be a metric space. Then DM, (X) equipped
with o(M,, C) is metrisable.

Proof. Let ¢(x,y) = min{d(w, y),1}). Then the metric e induces
on X the original topology (see [19], p. 121). (Moreover, f e C(X) is uni-
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formly continuous with respect to 4, if and only it is uniformly continuous
with respect to e.) Let ;

#n = {f e O(X); |f(&)—f(y)| < 2n%(w, y)}
and for py, u, e MJ(X) let

Anlpiyy 1) = sup {| [ (s — ) |3 £ € )

Obviously d, are pseudometrics on M, (X). Assume now that u e M (X)
and u, is a net in M7 (X) such that lim da(ua, u) = 0 for each n. Let Z & X

be closed (hence a Baire set) and U, = {# ¢ X; d(z, Z) < 1/n}. Then

#(Un)—~p(Z) and there is a m, such that #(Z) > u(Un,)—e and such
that U,, %= X. Let

. € (m, X— Un)
0= e 2 Fetw, )
By the previous lemma, fu, € #a, and since the convergence [fdu,— | fdu

is even uniform on #,, we will have in particular that [ fo dy,— [ Tl
Hence

#(B)+e> p(Un) > [ frudp = lim [ foo@a > limsup uo(2) .

This shows that for any zero set Z & X
limsup p(Z) < p(2)

and since the constant one function on X belongs to +#,, we get that
#o(X)—p(X). By Varadarajan [13], p. 56, we get that [fdu,— [fdu for
any f in C(X).

Conversely if ue DM (X) and p, is anet in M, (X) and if [fdu,—
~[fap for each f in C(X) then by remark ITL(4)

li:n}slldIt)de(ﬂa—#)' =0

for any bounded equicontinuous # and in particular for the sequence
of bounded equiuniformly continuous +,C O(X). A metric DMI(X) is
for instance

o

Tl $) = D) =l ) A1)

e
Remarks (1). |J #s = £ contains only uniformly continuous func-
n=1
tions and we have shown in fact more than stated, ie.: if [ fdu,— [ fdu

Fundamenta Mathematicae, T. XL, ’ 2
|
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for each fes, then [fdu,— [fdu for each fe O(X). In particular one
gets Billingsley’s result ([12], p. 252): If (X, d) is metric and f fdu,— f fau
for each uniformly continuous bounded f then f fd,uu»f fdu for each
fe C(X). ‘

(2) If (X, d) is metric and not necessarily separable, then the above
theorem implies that the set of u ¢ M7 (X) which “live” on closed separable
subsets of X forms a metric space in the o(M,, C) topology.

(3) Let X be completely regular. Then DM (X)= M} (X ) if and
only if X is a D-space. In fact if X is not a .D-space then by theorem 2 (b)
there is a u ¢ M7 (X) and a net y, ¢ M7 (X) and a bounded equicontinuous
#C C(X) such that [fdu.— [ fdu for fe C(X) and this convergence is not
uniform on . Remark II1(4) implies that u ¢ DM, (X), i.e. that DM (X)
# MJ(X).

CoroLLARY 1. Let (X, @) be metric.

(a) If (X, d) is a D-space then M (X) (with a(M,, 0)) is metric.

(b) If (X, d) is not @ D-space then My (X) with o(M,, C) is not metric.

Proof. We need to show only (b). Let ue MJ(X). If M} (X) would
be metric (or only first countable), there would be a sequence tin OFf

measures of type ;’ @iPa;y ©1 20, are X such that [fdus— [ fdufor each f
in 0(X). Let X, be the closure of the union of the supports of Uy
w=1,2,.. Then X, is separable closed and us(X)= us(X,) for all n.
By [13], p. 56,

§(X) = impn(X) = linsup pn(Xy) < p(Xo) -
Hence

#(Xo) = u(X) and u e DM;(X), ie. DMI(X)= MI(X)
which implies by the above remark that X is a D-gpace.

We consider now the relationship between the z-smooth measures
MI(X) of Varadarajan and DM} (X). '

. DEFIANITION (Varadarajan [13]). u ¢ M (X) is z-smooth iff whenever fa
is & net in C(X) such that ||fJ| <1 and f(x) 40 for each & in X (i.e. if

@ = B, fu(®) < fy(w), and Umf,(#) = 0 for each # in X), then lim [ f,du = 0.

MI(X) = {u e MF(X); u is v-smooth} .

It .has been §hown by Varadarajan ([13], p. 50 theorem 27 and the
conch_lsmn after it) that if (X, d) is metric then ue M (X) if and only
if u(X,) = u(X) for some separable closed X, C X. Hence M (X) C DM (X)
for metric X and hence

~ COROLLARY 2. If X is metric so is Mi(X) equipped with o(M,0)
(since so0 is DMF(X)).

©
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This result is one of the deepest results obtained by Varadarajan
in [13]. The above proof is much simpler (see [13], pp. 62-65).

The fact that we obtain that even DM (X) is metrisable should
not mislead the reader to think that our result is stronger than that of
Varadarajan. In fact:

Lemma 2. If (X, d) is metric then DM} (X) = M7 (X) (i.e. if pe M (X)
has o support which is a D-subspace of X, then it already has a separable
support).

Proof. Let pe DMS(X). Let X, CX be closed such that u(X,)
= u(X) and (X, d) is a D-space. Let Y C X, be closed discrete and
e(z,y)=1if z 2y and e(x,z) = 0 for z,y in Y. The function e(z, y)
is a continuous metric on the closed set ¥ (inducing on ¥ its original
topology). A result of R. H. Bing (see [20]) implies that e(x, y) can be
extended to a metric on X;, which induces on X, its original topology.

Since X; is a D-space and Y C X, is e-discrete, ¥ has cardinal of
measure zero, i.e. if » e MJ(¥) then »(¥,) = »(¥) for some countable
Y,C Y. This shows that M,(Y)= MA(Y) for any closed discrete subset
YCX,. Now p can be considered as a Baire measure on the Baire sets
of X, (since X; is closed, a Baire set of X, is a Baire set of X), i.e. u ¢ M (X,).
By Varadarajan [13], p. 51, theorem 28, ue M (X;). Applying now [13],
p. 50, theorem 27 and the conclusion after it we get that there is a separable
closed X, C X, for which u(X,) = p(X;) = u(X). Hence u « M7 (X) which
finigshes the proof.

Remark (4). The space of ordinals up to the first uncountable
one provides an example of a locally compact X (of power ;) for which
DM (X) = MJ(X). If X, f., pare as in footnote 3, then f,(z) | 0, ffad,u =1
and p e MF(X). Thus u¢ M7 (X) (this has been shown by Varadarajan [13]).
Now X is a D-space and hence MJ(X)= DMI(X) and ue MS(X).

(b) Application to invariant means on topological groups.
Let @ be a topological group (always Hausdorff, but not necessarily
locally compact) and LUC(G) C C(Q) be the space of left uniformly
continuous functions, i.e. f e LU C(@) iff f is bounded and for any ¢ > 0
there is a neighborhood U of the identity ¢ « @ such that |f(ug)—f(g)| < e
for any % in U and ¢ in G. If fe C(G) and a e G define f*, f, e C(G) by

9y =1f(ga) and fulg) = f(ag)
for any g in G.
If ueM,(G) and fe C(G) define
@) = [ f'au= [ $hgrdum).
For instance, if u= p, for some a in G then
(Lpf)g = flag), ie.  Lpf=fa.
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Denote by I
P6) = {u e MF(@); p()=1} and DP,(&) = {ue DM, (G); u(6) = 1}.

Hence DP,(G)= P,(@) in case G is a D-space.
LeMMA 3. Let G be a topological group. If u e DP(Q) then L,f « LUo(®)
for any f in LUC(G).

Proof. If a ¢ & and fe LU C(), then Ly f=f, is in LUC(Q) since
if &> 0'is given, there are neighborhoods of the identity U and V such
that |f(ug)—f(g)l<e if weU and ge@ and aVC Ua. Hence if v eV

n
then |fu(vg)—fa(g)| <& Consequently, if u= )JI Py Where ;> 0,
2@i=1 and a; ¢ G then L,f e LUC(®) for any ];fLUC(G).
It peDP,(@) then there is a net u, e P{@) of measures of type
2 ®ipa such that [fdu—[fdu for any fe C(&) (see [13], p. 61). Hence
J fau.— [ fau uniformly for f in # where #C ¢ (@) is bounded and equi-
continuous (remark III(4)). Let fe LUC(G) and #= {f’; ge G}. Thus #

is clearly bounded and equicontinuous since for &> 0 there is a neigh-
borhood U of the identity such that

|f*(ul) —f7(h)| = | f(uhg) ~F (hg)| < &

for any % in U and &, g in @. Hence

L, f(9) = [ fPapa~ [ f'au = L,f(g)

uniformly for ¢ in G. Since L, f e LUC(G) and LUC(G) is norm closed,
we get that L.f e LUC(G).

The following definition was suggested to us by a definition of A. Hu-
lanicki [17].

DerNITION. Let G be a topological group. Then

fEL%)g?D(:)_LUC(G)* is left invariant it @(f,) = @(f) for any a <@ and

(2) p e LUC(@)* is D-topologically left invariant it o (L, 1) = :
sy ;e DB (@) y lef @ (Luf) = g(f) for

It is clear that (2) implies (1).

. 'J..‘HEO].R,EM 4. Let G be a topological growp. Then ¢ ¢ LUC (G)* ds left
mwariant if and only if ¢ is D-topologically left invariant.

. n
Proof. Let 4 e DP,(X) and u, be a net of measures of type > ipa

. ywl
Wwith @ >0, Yo =1 and a6 such that [ fdu,— J fau for each fin 0(@).
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wet p e LUC(Q)* be left invariant and f e LU C(G). Then L, f1is a finite
linear combination of left translates of f and hence ¢(L, f) = ¢(f). Now

9 (Luf =D < 9 Tuf ~ L) |+ [0 Epef — )] = I (Luf — L]
<M Euf =Ly 1l = lplisup | [ Faua—p)| <,

if a is big enough, since s = {f*; s ¢ G} iz bounded and equicontinuous
(see remark ITI(4)). Thus ¢(L.f) = ¢(f) for any u e DP,(G) and f e LU C(@).

Hulanicki considers in his definition of topological invariance only
locally compact G’s and measures x which are regular with respect to
compact subsets of & and have hence ¢-compact support (such measures
are always elements of DP,(&)). If ¢ e LUC(G)* is D-topologically left
invariant in our sense, then ¢ is topologically left invariant in the sense
of Hulanicki. Theorem 3 shows in particular that any left invariant
@ e LUC(G)Y* is always topologically left invariant in the sense of Hula-
nicki. For example, if @ = R and ¢ ¢ LU C(R)* satisties ¢(fa) = ¢(f) for
feLUC(R) and a €@ then ¢[f f(w-+1)du(t)| = ¢f for any Borel probability
measure u on R (i.e. u e Py(R)) and any bounded uniformly continuous f
on R.

Question. Let p e C(R)* satisfy ¢(f) >0 if f > 0 and ¢(1)=1 and
o(fa) = @(f) for f e O(R) and a ¢ R (i.e. ¢ is an invariant mean on C(R)).
Is it true that o[/ f(w+1t)du(t) = o(f) for any fe C(R)? The answer
seems to us to be negative. We do not know to prove it.

Exampre. Let G4, 1 ¢ I, be separable topological groups, and I any
index set. Let @ = || @, with the product topology. Then @ is a D-space
and any left invariant ¢ e LUC(G)* satisties o[ f(hg)du(h)] = ¢(f) for
any Baire probability measure u on G. It seems enlightening to take
Gy = Z; as copies of the discrete additive integers and I a set of any car-
dinality.
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Sequents in many valued logic 1
by

G. Rousseau (Leicester)

The calenlus of sequents for two-valued predicate logic is well known,
either in the original formulation of Gentzen [1] or in any of the many
variants in the literature. In this paper we show that there exists an
analogous calculus for each finitely many valued predicate logic based
on arbitrary connectives Fi, ..., ¥, and quantifiers Q1 vy Qu-

1. Propositional calculus. Let M= {0,1,.., M —1} be the
set of truth-values and for each k (k= 1, ..., u) let fx be a truth-function
of 7= 1, > 1 arguments, ie., a mapping of MX XM= M" into M.
Let U and {F, ..., Fy} be disjoint sets of symbols, the elements of which
are called atomic statements and commectives respectively. The set & of
statements is the smallest set of expressions which contains all atomie
statements and which, for each connective F, contains Iy a;... ar whenever
it contains g, ..., or. The degree of a statement is the number of occur-
rences of connectives in it. We will denote statements by the letters
a,fB,y, .. and finite (possibly null) sequences of statements by I', 4, ...;
in particular, the null sequence will be denoted by 4.

A sequent is an expression of the form

(1) Ty | Ty | Torms | Tt

We denote sequents by the letters IT, X, ... If IT is the sequent (1) and X'
is the sequent

Ao l Al l I A;M—z ‘ Apr—1 ’
then J7X will denote the sequent
Iydg | Iydy | oo | Tag—adar—e | a1 Aar—1 -

If R is a subset of M then the sequent (1) may be written |z (or 1l
if B = {m}) provided
r r it ieR,
Tla i i¢R.
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