icm

Continua which admit only the identity mapping
onto non-degenerate subcontinua

by

H. Cook (Athens, Ga))

1. Introduction. J. de Groot has raised, [5], the question, “Does
there exist a connected set which cannot be mapped continuously and
non-degenerately on any proper subset?”. R. D. Anderson has raised, [2],
the questions, “Does there exist a non-degenerate continuum which admits
only the identity or a constant mapping into itself? If so, does there
exist one, all of whose non-degenerate subcontinua have this property?*.
And R. L. Moore has asked the author (in conversation) whether there
existy an hereditarily indecomposable continunm no two of whose non-
degenerate subcontinua are homeomorphic. These questions are all
answered in the affirmative in Theorems 8§, 9, and 10 of this paper.

The author has been encouraged to work on these results by Profes-
sors R. D. Anderson, R. L. Moore, and K. Borsuk. The constructions,
Theorems 6 and 7 of this paper, are reminiscent of those of Anderson
and Choquet, [1], of continua no two of whose non-degenerate subcontinua
are homeomorphic. An earlier manuseript of a paper containing the
example M, of section 3 was read by Mr. Bobby E. Wilder, a mathe-
matics student at Auburn University, and by Doctor J. Mioduszewski,
both of whom made useful suggestions toward eliminating errors; the
notion of a preatomic mapping was suggested to the author by Doctor
Mioduszewski as an instrument to circumvent ome of those errors.

The author’s paper, [4], contains theorems which were originally
established for use in this chapter and are, indeed, essential technieal
theorems for this paper. Some of the terminology (e.g. solenoid, poly-adic
solenoid, circle-like continuum, poly-adic circle-like continuum) and
notations used in that paper are used, without being redefined, herein.

2. Preatomic, atomic and confluent mappings and inverse
mapping systems. In this section are established some useful theorems
on mappings. Theorems 6 and 7 establish the major constructions of
this paper.
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DEerFINITIONS. HExcept where otherwise noted, the term mapping
will mean continuous single-valued transformation. If f is a mapping
of a continuum X onto a continuum Y and, for each subcontinuum K
of X such that f(X) is non-degenerate K = f(f(K)), then f is said to
be preatomic; if 7 is monotone and preatomic and maps X onto ¥, then fis
said to be afomic. If f is a mapping of a topological space X onto a topo-
logical space Y such that, for every subcontinuum @ of ¥ each component
of /74(Q) is mapped by f onto @, then f is said to be confluent, [3].

THEOREM 1. Suppose that {X,,m'} and {¥., o)} are two inverse
mapping systems such that, for each n, X, ond Y, are compact (not neces-
sarily metric) continua, my, maps Xm into Yo and oy maps Yo into Y,
(n < m), and let Xoo and Yo denote their respective inverse limit spaces.
1f, for each n, n is a preatomic mapping of Xy into Xy and u(zit) = o (Ca),
then the mapping { of X into Y induced by the sequence C1y Loy oo G
also preatomie.

Proof. Suppose that K is a subcontinuum of X, such that {(K)
is non-degenerate and {7*(((K)) # K. Now, K is a subset of T em)),

thus there is a point # of {™'(¢(K)) not in K. There exists a positive in-

teger m such that z,(4) is not in mu(K) and a positive integer n such .

that oa({(K)) is non-degenerate—let ¢ denote the greater of m and n.
Then (7 1(é‘i(m(K)))=m(K) and, hence, does not contain m(x).
Li[mi(@)) is not in oi¢ (K)) and ¢(x) is not in £(K), a contradiction.
TerROREM 2. Suppose that {X,, my} is an inverse mapping system
such that, for each n, X, is a compact continuum and w7 s am alomic
mapping of Xyiy onto Xy, and let Xy, denote the inverse limit of that system.
Then, for each n, the projection Mmapping m, of Xe onto X, is atomie,

Then

Referee’s. proof. “It suffices to replace the system Y« Yo« ...
[in Theorem 1] by the system of identities X< X,< ... (with the limit X,,)
and, instead of {m: Xn—>Tp to set 2™ X, —~Xy,, where m = n.” And,
thus, from Theorem 1, we see that s, is preatomie. Since s, is also mono-
tone and onto, it is atomic.

THEOREM 3. Suppose that f is an atomic mapping of the compact con-
tinuum X onto the compact, hereditarily indecomposable continuum Y,
and, for each point y of ¥, f(y) is either degenerate or heveditarily inde-
composable. Then X is hereditarily indecompossable.

Proof. Suppose that K, and K, are two intersecting non-degenerate
subcontinua of X such that neither contains the other. Then f(K,--K,)
= f(K)+f(K,) and is a non-degenerate indecomposable continuum (if
it were degenerate, f‘l(f(K1.~|—K2)) would be an hereditarily indecomyos-
able continuum containing the decomposable continmum K,+XK,). Now,
one of f(K,) and f(K,) is a subcontinunm of the other, suppoée that f(K,)

e ©

icm

Continua, which admit only the identity mapping 243

is a subcontinuum of f(K,). Then K, = f‘l(f(Kz)) =7 (f(K1+K2))
= K;+K,, a contradiction.

THEOREM 4. If f is a mapping of the compact metric continuum X onto
the hereditarily indecomposable continuum, Y, then f is confluent.

Proof. Suppose that @ is a subeontinuum of Y and Cis a ecomponent
of {7HQ). Let 01, Oy, 0, ... be a sequence of subcontinua of X such that (1)
for each 7, Cphyy is a subcontinuum of Cn; (2) for each n, C is a proper
subcontinuum of Cy; and (3) ¢ is the common part of continua of that
sequence. Then, for each n, f(C,) contains a point not in @ and inter-
sects @; hence, f(Cu) contains . The common part of f(Ci), f(Cy), ...
is /(0) and contains @, but @ contains 7(C). Then §(0) = (.

The following theorem can be established with an argument similar
to that for Lemma 1 of [1].

DEFINITION. An A* map is an atomic mapping f of a compact con-
tinuum X onto a compact continuum Y such that there do not exist
infinitely many points ¥ of Y for which Fy) is non-degenerate, [2].

o

THEOREM 5. There ewists an inverse mapping system {X,, 7y} such
that X, is a simple closed curve in the plane and, for éach n, (1) X, is
a bounded plane continuum; (2) 72 is an A*-map such that, if © is a point
of Xn, invalyt (@) is non-degenerate, and T 4s an arc lying in Xy and con-
taining @, then invay,™(w) is a simple closed curve and invay (T spirals
down on invay™(w); (3) if J is a simple closed curve lying in X, then
invalti(J ) s mot a simple closed curve; and (8) if T is an are lying in X,,
there is an integer m > n such that inva(T) is not an are.

The inverse limit of an inverse mapping system such as in Theorem 5
might be a planar continuum each non-degenerate subcontinuum of

which separates the plane, such as the example of G. T. Whyburn in [8].

Notations. If a is an ordered pair (i , §) of positive integers, denote ¢
by my(a), denote §j by ny(a), denote the ordered pair (¢41,7) by o* and
denote the ordered pair (¢,-1) by a'—note that a*’ = g* — (241, 741).
Let A denote the set of all ordered pairs of positive integers directed by
the relation < such that « < g if and only if a and B are two elements
of A such that either my(a) << ny(8) or ny(a) = m(f) and mny(a) < ny(B).

TamorEM 6. There ewists an inverse mapping system {X,, mn} such
that (1) X; is a solenoid and, for each n, X, is o compact, metric continuum;
(2) for each n and m (n < m), 7y is an atomic mapping and, if @ is a point
of Xn, invo ™ (a) either is degenerate or is a solenoid; (3) if n is a positive
integer and T is an arc lying in X,, then there is an integer m > such that
invag(T) contains a solenoid; (4) for each n, each solenoid lying in X, is
poly-adic; and (5) if Xy is o solenoid lying in Xy and X, is a solenoid lying
in X and there is an wpper semi-continuous mapping | of 2 onto X, such
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that, for each point x of Xy, f(x) is a proper subcontinuum of X,, then n = m
and X = 2,.

Proof. Let p be a reversible function from the set of all ordered
triples of positive integers onto a set of positive prime integers (if « is
the ordered pair (¢, j) in 4 and % is a positive integer, we shall write g (a, k)
for (i, ], k). There exists an inverse mapping system {C.,, o4} over 4 and,
for each « in 4, a positive integer %k, and a finite sequence Jy(a), Jy(a),
oy Jry(e) of simple closed curves such that (1) for each « in 4, ¢, is
a Dounded plane continuum; (2) if a, ay, ..., az is a finite sequence of
elements of A such that, for each 4 < n, ay; is either of or «f, then of
is the composite mapping oi o o4l o ... o ohr_i; (3) if @ is in 4, k, is the
number of simple closed curves which are subcontinua of ¢, and J(a),
Ja(a), ..., Jro(a) are those simple closed curves; (4) if aisin A and n(a)
= 1, then C, is a simple closed curve and o is a o(a, 1) to 1 local homeo-
morphism of €, onto C,; (5) for each integer 4, the inverse mapping
system {Cr.y, ot} satisties all the conditions on the system of Theo-
rem 3; and (6) if ais in 4 and @ is a point of (., then (a) invol () is
the image under a homeomorphism, h,, of the Cartesian product
[inv % (@)] > [Inv 6% (2)], (b) if inv o%(x) is a single point, a, and b is a point
of inv ot (%), then cﬁi'(hm(a, b)) = a, (c) if invol(z) is the simple closed
curve Jo(a*) (¢ < o)y and b is a point of inve (z), then o [hu([J a¥)] %
#{b}) is a o(X™, 1) to 1 local homeomorphism of the simple closed curve
haol[Js(a*)] x {b}) onto Ji(a*), and (d) if a is a point of inve? (x) and b is
a point of inve?(z), then oﬁf'(h(w(a, b)) = b. If, for some such system
{Cu, ob}, {Xn, 7} is the inverse mapping system over the set of positive
integers such that (1) for each », Xy is the inverse limit of the subsystem
{C,, o3} of {C,, "} for which ny(y) = ny(6) == m, and (2) for each n and m
(n < m), m, is the mapping from X, onto X, induced by the sequence

oy o), ..., then conditions (1), (3), (4) of Theorem 6 hold for that system

since each ;' is preatomic, monotone, and onto, condition (2) also holds,

and that condition (5) holds is a direct consequence of Theorem 8 of [4].

TuroREM 7. There emists an inverse mapping system. {Y,, &} such
that (1) Y, is an hereditarily indecomposable circle-like continuum; (2) for
each n, Yn is an hereditarily indecomposable compact metric continuwm;
(3) for each n and m (n < m), &' is an atomic mapping of Yy, onto Yy and,
if y is @ point of Yy, inv& ' (y) either is degenerate or is an hereditarily
indecomposable circle-like continuwm; (4) if n is « positive integer and P is
a pseudo-arc lying in Yn, then there is an integer m > n such that iny (P)

containg an hereditarily indecomposable circle-like continuum; (5) for each ny .

each circle-like continuwm lying in Y, is paly-adic; and (6) if X,
18 a circle-like continuum in Y, and Ly s a circlelike conlinuum
i Yo and, if there is an upper semi-continuous mapping f of XL onto Zy
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such that, for each point y of X, fly) is a proper subcontinuum of Xy, then
n=m and X, = X,.

Outline of proof. We again wish to construct an inverse mapping
system [,047 oﬁ} over 4 as in the proof of Theorem 6, altering the map-
pings o, for each a, so that, for each n, the circle-like continua
which appear in ¥y, the inverse limit of the subsystem {C,, o)} of {C,, o}
for which n,(y) = ny(8) = n, are hereditarily indecomposable instead of
being solenoids. For each a and simple closed curve J in a*, this can be
done by requiring sufficiegt crookedness on the mapping o2 }J. However,
in trying to place Oy, o and ¢ into the diagram

0a<_ Gu"‘

,T\

Cy
we cannot follow the precise procedure of the proof of Theorem 6.
Instead, we fit a continnum D and mappings 7. and f.e into a diagram

Ga - Oavr ’
4 4

] Tax lfaz

Cy«— D

in precisely the same manner that Cu, o% and % were fit in the proof
of Theorem 6, with, for each simple closed curve J of D, fald being
a local homeomorphism. We then place Cow and 7. into the diagram
as follows

Oy <— Qe

4 4

l I fﬂS
Cot—D«—Cpv

where O, is homeomorphic to D but, for each simple closed curve J of
Ouey fusl/ has degree one but is a crooked map. We thus obtain a system
{¥y, &2} such that (1) for each n, ¥, is the inverse limit of the sub-
system {C,, o0} of {C,, of} for which n,(y) = m,(6) = n, and (2) for each
n and m (n < m), & is the mapping of X, onto X, induced by the se-

quence ofiny, ofemy, ... Then conditions (1), (4) and (3) of Theorem 7

hold, and, since each £, is preatomic, monotone, and onto, condition (3)
holds. Condition (3) together with Theorem 3 implies that condition (2)

holds. That condition (6) holds is a consequence of Theorem 8 of [4].

3. The continua M, and M,. Let M, denote the inverse limit
of an inverse mapping system {¥n, &} as in Theorem 7 and let M, denote
the inverse limit of an inverse mapping system {X,, 7} as in Theorem 6.

TurorREM 8. If H is a subcontinuum of My and f is a mapping of H
onto the mon-degenerate subcontinuum K of My, then H = K and f is the
identity mapping of H onto itself.
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Proof. Suppose that H is a mnon-degenerate subcontinuum of M,
and f is a mapping of H onto the non-degenerate subcontinuum K
of M.

Suppose that H does not intersect K. Let n denote the least positive
integer ¢ such that &;(XK) contains a circle-like continnum and let X de-
note a circle-like continuum lying in &,(K). Let ¢ denofe a component
of [£, o f]7(Z). Then, by Theorem 4, &f(C)= 2. Let (' denote a sub-
continuum of ¢ such that £(f(C")) = Z but, if ¢" is any proper sub-
continuum of ¢, &(f(C")) is a proper subcontinuum of X. Let m be the
least positive integer j such that &(C’) is non-degenerate. For each point »
of £,(C"), let =(z) = §n(f(invfm(w))); then v is an upper semi-continuous
mapping of £,(C’) onto X such that, for each point @ of £,(C"), v(x) is
a proper subcontinuum of X. Now, X is a poly-adic cirele-like continuum;
hence, by Theorem 7 of [4], £,(C") is not chainable. Thus &,(C’) is circle-
like. By Theorem 7 of this paper, m = n and é,(0’) = Z. Since H and K
are mutually exclusive and £s is monotone, &(H) and &,(K) are mutually
exclugive, a contradiction since both contain X.

Suppose that @ is & point of H and f(2) is not. Then there is a do-
main D with respect to K containing f(z) whose closure does not inter-
sect H, Then, if H' is the component containing # of the closure of f~(D),
f(H’) contains f(x) and a point of the boundary with respeet to K of D,
and H' and f(H') are mutually exclusive non-degenerate subcontinua
of M, and f|H' maps H' onto f(H'), a contradiction. Thus K is a sub-
continuum of H.

Suppose that # is a point of K such that f(z) 5 . There exists a do-
main D with respect to K containing f(z) such that the closure of D and
77(D) do not intersect. Let H' be the eomponent of the closure of (D)
containing x; then f(H') contains both 7(z) and a point of the boundary
with respect to K of D, again a contradiction. Thus f is a retraction.

Let % denote the least positive integer § such that &(H) is non-
degenerate. Since & is an atomic mapping of H onto &(H ), there is no
- proper subcontinuum H’ of H such that &(H') = &x(H). Thus H is inde-
composable ([6], p. 146). Suppose that K is a proper subcontinwum of H
and let # and y be two distinet points of K. Let L be a composant of H not
containing K and let w;, @y, @, ... and vy, 9, Yyy --- b0 sequences of points
of I converging to # and y respectively. For each n, let K, be a proper
subeontinuum. of H containing both «, and v,. Then, for some =, f(Ky) is
non-degenerate, but 7(K,) does not intersect K., a contradiction. Thus H
is K and f is the identity mapping of H onto itself.

THEOREM 9. There exists an hereditarily indecomposable continuum
no iwo of whose non-degenerate subcontinua are homeomorphic.

Clearly, M, is such a continuum.
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Although Theorems 8 and 9 completely resolve the main problems
under attack in this paper, the continuum M 2, Which the author devised
some considerable time before he devised M, has some special properties
which seem worthy of study.

TEEOREM 10. If H is a subcontinuum of My and § is a mapping of H
onto a non-degenerate subcontinuum K of M,, then K is a subcontinuum
of H and f is a retraction.

Proof. Suppose that H is a non-degenerate subcontinuum of M,
and f is a mapping of H onto the non-degenerate subcontinuum K
of M,.

Suppose that H does not intersect K. Let n denote the least positive
integer ¢ such that @;(K) contains a solenoid and let X denote a solenoid
lying in mu(K). Let H' denote a subcontinuum of H such that a(f (H")}
contains X' but, if H" is any proper subeontinuum of H', 7(f(H")) does
not contain Z. Let m denote the least positive integer § such that s;(H')
is non-degenerate. For each point # of wm(H'), let v(z) — :z,,,(]‘ (invnm(w))).
If L is a proper subcontinuum of 7m(H'), invam(L) is a proper sub-
continuum of H' and, thus, (L) does not contain X. But then z(ZL) is
either a proper subcontinuum of X or does not intersect X. Now, if an(H")
is the sum of two proper subcontinua L, and L,, one of the two sets (L)
and 7(L,) is a proper subcontinuum of X and the other intersects that one,
in which case both (L) and 7(L,) are proper subcontinua of X. Then
(L) +7(ly) = Z, but, since X is an indecomposable continuum, this
is a contradiction. Thus, mn,(H') is an indecomposable continuum, and,
since it is either an are or a solenoid, it is a solenoid; denote ms(H') by 2.
There is a point, , of X’ such that v(z) is a subcontinuum of X and,
if y iy a point of the composant, C, of 2" containing x and I is a proper
subcontinuum of 3’ lying in C and containing both z and ¥y, then (L)
is a proper subcontinuum of . Then 7(0) is a subset of £, and, since the
closure of (€ iy 27, (2"} is a subset of .Z. Thus 7(2") = 2. Then, by Theo-
rem 6, n = m and X' = X. Since H and K are mutually exclusive and =,
is monotone, m,(H) and = (K) are mutually exclusive, a contradiction
since both contain X.

Now, exactly as in the proof of Theorem 8, it follows that K is a sub-
continuum of H and f is a retraction.

THrOREM 11. The identity is the only mapping of M, onto a non-de-
generate subcontinuum of M,.

Proof. Since = is atomic and 7 (M,) = X is indecomposable, then,
as in the proof of Theorem 8, M, is indecomposable. Now, if f is a mapping
of M, onto a non-degenerate subcontinuum of M,, fis a retraction, and,
since M, is indecomposable, as in the proof of Theorem 8, we can show
that f(M,) = M, and, thus, f is the identity mapping of M, onto itself.
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THEOREM 12. If H is a non-degenerate subcontinuum of M,, H con-
tains a continuwum K which can be retracted onto a non-degenerate proper
subcontinuum L.

Proof. Let H be a non-degenerate subcontinuum of M, and »
a positive integer such that m,(H) is non-degenerate. There exists in
7in(H) an arc azb such that invsm.(z) is degenerate, thus invm,(z) is
a separating point of inva,(ewb) = K. Then K can be retracted to
inva,(ax) = L, where ax denotes the appropriate subarc of aab.

Nore. Since each non-degenerate subcontinuum of either M, or M,
containg a continnum. which can be mapped onto a poly-adic solenoid
and no plane continuum can be mapped onto a polyadic solenoid, [7,
no non-degenerate subcontinuum of either M, or M, can be embedded
in the plane. Since all of the continua involved in the constructions of
My and M, as inverse limit spaces are one-dimensional, then M, and M,
are one-dimensional and, hence, can be embedded in F.

4. Some other continua. In a conversation in which the author
mentioned the continwum M,, G. 8. Young asked him whether there
exist continua with more than one, but only a finite number, of mappings
onto non-degenerate subcontinua and whether there exists a continuum N
such that the space of all mappings of N onto non-degeneratte subcontinua
of ¥ is topologically equivalent to the Cantor set. These questions are
answered in this section.

THEOREM 3. If n is a positive integer, there ewists a compact metric
continuum Hy, with an atomic mapping onto a simple closed curve, such
that there ewist m, and only n, mappings of Hy onto H,, each of them is
a homeomorphism, and there exists no mapping of Hy, onto a non-degenerate
proper subcontinuum.

Proof. Let # be a positive integer and ab be an arc in 7 (M,) such
that invm(a) and invm(b) are degenerate. For each i< m, let h; be
2 homeomorphism of Invwm(ab) onto a continuum X; such that (1)
XK intersects K (i < § < n) if and only if j—4 is either 1 or n—1, in which
case K, - Ky is degenerate (or, if n = 2, K, - XK, has two pointg), and (2)
ha(d) = Ry(a) and, if © < n, hy(b) = hiya(@). Then the continnum H, = K,
+K,+ ... +K, is a continuum ag deseribed in Theorem 6.

TarorEM 14. There ewists a compact metric continuwum N such that (1)
each mapping of N onto a non-degenerate subcontinuum of N is a homeo-
morphism of N onto N, and (2) the space of all homeomorphism of N onto N
is topologically equivalent to the Camtor set.

Proof. For each n, let @, be the continuum X, on in the proof of Theo-
Tem 6 (using the same arc ab, for each n) and let i be a 2 to 1 local
homeomorphism of Q,,; onto Qs Let N be the inverse limit of the inverse
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mapping system {Qn, on}. It can easily be shown that every mapping
of N onto a non-degenerate subcontinuum of N is a hometomorphism
of N onto N. Now, N is the sum of ¢ copies of inva(ab) and, it K is one
of those copies and K’ is one of thoge copies, it can be shown that there
is only one homeomorphism of ¥ onto N which throws K onto K ', and
that the space of all homeomorphisms of N onto ¥ is homeomorphie
to the space of all subcontinua of N that are copies of inva(ab) with

the Hausdorff topology. This latter Space is a totally disconnected, perfect,
and compact metric space.
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