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Cardinal factorization of finite relational structures
by

C. C. Chang* (Los Angeles, Calif))

Introduction. Thig baper is a continuation of the work of Chang-
Jonsson-Tarski [4]. Tt ig also, to some extent, complementary to the
work in Jénsson [5]; although, as far as we know, there does not appear
to be any overlap between the results here and those in [5]. Our notation
does not differ very much from that of [4]; in fact, whenever possible,
we try to state our results in simpler terms. This point should be kept
in mind, especially when we repeat the definitions given in [4].

For the purposes of thig paper, a relational structure, or simply
structure, is a pair Y = {4,P) where 4 is a non-empty set and P is
a ternary relation over 4, ie, PC A3 We let |[4| denote the cardinal
of 4, and define ||%|| = |4.|. Henceforth, we shall assume that all structures
are finite, and that they are denoted by A=<4,Py, 8= (B, Q>,
€,D, ..., possibly with subscripts. Thus, unless specifically stated other-
wise, when we mention ‘structure’ we mean ‘finite strueture’, and the
letters A, B, €, ... shall Tange over finite structures. Recall from [4]
that a structure 9 is indecomposable it ||%U[| > 1 and whenever U =~ B xE
then either ||B]| =1 or €| =1. Tt P 0, then this also implies that
either A= € or Y o B. A different and somewhat stronger notion than
indecomposable structures is that of a prime structure. We first say that
a structure A divides another structure B, in symbols AW, if there is
a structure € such that A xC =~ B. A structure U is prime if whenever
A{|B x € then either AIB or A||C. If [|U]|>1 and U is prime, then U is
indecomposable. The structure 1 — <{0}, {<0, 0, 0>}> is prime but not
indecomposable, and there are also examples of indecomposable but
non-prime structures. A structure 9 is cancelable if A x B ~ AxE implies
B =~ . Notice that the notions of being prime or cancelable depend very
much on the fact that structures 9B and G are restricted to be finite.
A structure 9 may be prime or cancelable in one sense without being
prime or cancelable if B and G are allowed to range over infinite
structures.
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One of the main results of [4], when stated in our simplified language,
ig the following:

(I) Let % be-a structure. Suppose there are a binary reflexive connected
relation S € 4(2) whose field is 4, and an element @ ¢ A such that
(i) aSz and #Sa imply o =« for all # ¢ 4, and
(ii) P(a, @, a), then ¥ has the unique factorization property.

The main improvement offered in this paper is the following:
(Theorem 2.8)
(IT) Let 2 be a structure and let Se¢4(N) be a binary reflexive con-
nected relation whose field is A. Let T Dbe the least equivalence
relation over A containing § ~ S. If a is any element of A such that

(i) the substructure
WT, a)=<a|T, P ~ (a/ TP
is a cardinal product of prime and cancelable factors, and
(ii) P(a, a,a), then A has the unique factorization property.
Observe that under the hypotheses of (I), the substructure

W(T, a) = {a}, {{a, a,a)}> =1

is certainly a product of prime and cancelable factors. Actually the con-
dition (i) of (II), namely that %(T, @) be a product of prime and cancel-
able factors can be weakened somewhat if the structure of (T, a) is
particularly simple, see Theorems 2.1 and 2.2. The interesting and im-
portant open problem is whether the condition (i) in (II) can, in general,
be weakened to

(i) the substructure (T, a) has the unique factorization property.

If this is the case, then a possible inductive proof might be given
for the proposition that every structure % with a binary reflexive con-
nected 8 e 4(A) whose field is 4 has the unigue factorization property,

This is the extent of our results for structures. The biggest remaining
problem seems to be finding useful examples of (product of) prime and
cancelable structures. It is almost unnecessary to point out that these
results hold for structures with possibly many finifary relations; omne
only has to reformulate the notions of indecomposable, prime, and cancel-
able for the new classes of finite, structures.

It turns out that for the class of structures A == (4, B> where R is
a binary reflexive relation whose field iy A4 the specialization of our general
results leads to some mew and concrete results for binary reflexive re-
lations. In what follows, instead of the pairs (4, R}, we shall only congider
non-empty binary reflexive relations R, S, 7, ..., etc., again they are
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assumed to be finite. The specialization of (I) to this case was stated
in [4] (and announced in [1]) as follows:

(I') Let R be a connected relation with at least one elem
field such that ’

(i) zRa and aRz imply ¢ = 2 for all » e Fld(R), then R has the
unique factorization property.

The analog of (II) is the following:

ent ¢ in its

(IT') Let R be a connected relation and let T be the least equivalence
relation containing R ~ E. If there is an element a e Fld(R) such that
(i) the subrelation
R(T,a)= R ~ (a/T)
is a product of prime and cancelable (in the sense for relations
factors, )
then B has the unique factorization property.

Note again that if « is an anti-symmetric element of R then R(T, a)
= {<a, a)} which is prime and cancelable. Just as in the case of (I1),
condition (i) of (II') may be weakened if R(T, a) has a simple structure;
see the discussion before Theorem 2.9. The interesting thing is that in
this particular special case of relations, we ave able to prove that:
(Theorem 2.9)

(IIT) Every (finite) square relation (ie. R = Fld(R)?) is a product of
prime and cancelable factors.

One can now combine (III) with (IT'). As a consequence we get:
(Theorem 2.16)

(IV) Bvery transitive connected relation B has the unique factorization
property.

This sums up all of our results in this paper. The methods, especially
for those results in Section 1 holding for structures in general, are largely
extensions of the methods of [4]. On the other hand, since our methods
do not allow us to prove that a structure % has the strict or the inter-
mediate refinement property (see [4] for definition), they are a departure
from and a step beyond the methods used in [4]. Section 1 is concerned
with what we have called a ceniral refinement theorem (Theorem 1.3),
and Section 2 points out the main consequences of this theorem. 4s far
as we know, most of our results have modifications so that they will hold even
if we consider infinite structures. The pleasure of discovering what these
modifications are is reserved for the reader.

§ 1. A central refinement theorem. We begin by recalling
some notions from [4], always remembering that we are dealing with
a simplified situation.
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Suppose that B is an equivalence relation over the set 4 of the lm

structure A = <4, P). As usual o/F denotes the F-equivalence clags
given by a e 4, and A/E the set of all such equivalence classes, ie.,

Al = {a/B:a e A} .
A natural ternary relation P*E on 4 given by P and B is defined as
follows:
P*E = {{a, b, c): there exist #,y, 7 such that
P(z,y,2) and xHa, yEb, zHc)
In terms of P*E, we define
P|E = {<a/B, b, ¢/B): P*E(a,b,c)},
and the quotient structure
WE = A[B, P/B) .
The dual of the quotient structures are the substructures
U(B, a) = <a/B, P ~ (a/B)*>

which we already mentioned in the introduction. We say that the re-
lations B, R’ is a pair of factor velations of B over U if

(i) B, B’ are equivalence relations over A;

(i) R A R' = K;

(i) RIR' = 4%

(iv) P*R ~ P*R' = P*E.

In case ¥ is the identity relation on 4, we simply say that R, R’
s a pair of factor relations over A. Tt is shown in [4] that: WH ~ BxCE
if and only if there is a pair of factor relations R, R’ of B over U such

that AR =~ B and WER' =~ §. If there is an a ¢ A such that Pla,a,a),
then we can equivalently say that

AR, 0) =B =AR and WER, a) = € ~ AR,

We now introduce a slightly different notion, A pair of relations R, R’
is said to be orthogonal over A and H it

(i) R, R’ are equivalence relations over 4;

(ii) B~ R’ is the identity on 4;

(iii) R|R' = B

(iv) P*R ~ P*R’' = P,
In the same way that the substructure A(E, a) is dual to the quotient

structure /R, this notion of being orthogonal is dual to being factor
relations. For instance it is immediately seen that R, R’ is a pair of factor
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relations of the identity over U if and only if B, R’ are orthogonal over
A and 42

Lemwa 1.1. Suppose that R, B’ are orthogonal over A and E, and
let a e A. Then the relations R ~ (a/EY, B’ ~ (a/B) is a pair of factor re-
lations over (B, a). In particular, if P(a, a, a), then

WE, a) = AR, a) x A(R, a) .

Proof. Let B=a/B, Q=P ~ B, B = (B,@> S=Rn~ B, and
8" =R’ ~ B It is a simple matter to check that:

(i) 8, 8" are equivalence relations over B;

(ii) § ~ 8’ is the identity on B;

(iii) 8|8’ = By

(iv) @*8S ~ Q*8' = Q.
So our first conclusion is verified, and we get

W(E, a) =B =~ B/I xB/S".
In the case where P(a,a, a), we get
B =~ B(S, a) xB(S’, a).

Since B and R’ are subsets of B, we have

B(8,a)=AR,a) and B(S,a)=AR,a).
The lemma is proved. :

We now remind the reader to look up the definition of the set A )
in [4], again remember to simplify.

Lemma 1.2. Suppose that B,R' and 8,8’ are two pairs of factor re-
lations over A, and suppose that T « A(N) is & binary reflexive connected
relation whose field is A. Let U be the least equivalence relation containing
T ~T. Then

(a) the pair R ~ U, B’ ~ U is orthogonal over A and U;

(b) the pair R, R’ ~ U is orthogonal over U and R|U;

(¢) the pair (R|U) ~ 8, (R|TU) ~ 8’ is orthogonal over A and R|T;

(d) the pair (R|U) ~ 8, U ~ 8’ is orthogonal over % and (R|U) ~ (81T).

Proof. For each one the assertions (a)-(d), we shall check that the
conditions (i)-(iv) of the definition of orthogonality are satisfied.

Let us dismiss condition (iv) for all the cases first. Notice that for
every pair of relations @,Q’ given in (a)-(d), we either have ¢ C R and
@' CR orelse @ C S and Q' C §'. Since both § and §’ are at least reflexive,
we have immediately that

P*Q ~ P*Q' = P.
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Next, by exactly the same observation we see that every pair @,Q’ given
in (a)-(d) satisfies
Q ~ Q' is the identity on 4 .

So condition (ii) can also be dismissed.

Referring back to the definition of P*E, we see that this notion
can be extended in a natural way to any n-placed relation W and any
equivalence relation H to get the set W*E. By a straightforward in-
duction based on the definition of 4 (%), we can prove that

(1) W*R~W*R' =W  for all Wed(2).

We shall not carry out the details of this argument, but only point out
that the hypothesis that B, R’ be a pair of factor relations over 9 must
be used. In case W is a binary relation in 4 (), then (1) may be rewritten
in terms of the more familiar relative product symbol | as follows:

(2) [BRIW|R]~ [R|WR]=W.

By hypothesis, T ¢ A (), whence T ¢ 4 ), (T~ T)e A(A), and, in fact,
the relation

(T ATV = (T~ DT~ D) ... (T ~ T) n-times
belongs to 4(A) for every n. Thus we see from (2) that
(3) [BUT ~ TR A [RT © YR T = (T ~ Ty tor every n.
By definition, U = Ja(T ~ T)", 50 a simple argument from (3) shows that
(4) [BIUIR] ~ [R'|UIR]= U .

Let us now go back and finish case (a). It is clear that R ~ UR AT
are equivalence relations over 4. It is equally clear that

BB ~ATU)CU;
§0 it only remainsg to prove that
UC(BE~ DR AT).

Suppose that aUb. We know that there is an element ¢ such that aReR'D.
Using the reflexivity of all the relations involved, we have

a(R|U|R)e and a(R'U|R)e.
Whence, by (4), aUe. Similarly ¢Ub, so

a(B A U)e(R' A [T
This proves (a).
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For (b), we need first to show that R|U is an equivalence relation
over A. It is sufficient to show that R and U permute, that is

(5) RU=UIR.
So suppose a(R|U)b. There is a ¢ such that aR’'cRb. Whence
a(R|U|R)e and a(R'|U|R)ec,

and, by (4), aUc, so a(U|R)b. This proves R|U C U|R, and symmetry
does the rest. To finish case (b), we show that
R|(R' ~ U)=R|U.

Again, one inclusion is obvious. Let a(R|U)b. There is a ¢ such that
aRcR'd. Now
¢(R|U|R)b and ¢(R'|UR)b,

so that ¢Ub, and this gives a(R|(R' ~ U))b.
Continuing with (c), it is evident by (5) that (R|U) A 8, (BR|T) ~ §8*
are both equivalence relations over 4. We now have to show the equality

((RIT) ~ 8)I((RIT) ~ 8") = R|U .

As before, we only need to show one inclusion, that from right to left.
We point out that here is where we need that 7 is connected. Suppose
a(R|U)b. There is a ¢ such that aScS’d. Let f and g be the decomposition
functions for the pairs S, 8’ and R, R’, respectively. That is, foralle, y € 4,

f(z,y) is the unique 2z ¢ A such that xSz8'y,
and
g(z,y) is the unique z e A such that zRzR'y .

See [4], or [5], for some of the elementary properties of decomposition
functions. Recall from the proof of Theorem 7.3 in [4] that (reading T
for § and U for =):

(6) T2 92(Y) U gofaly), for all @,yed.

Let d be such that aRdUb. Using the elementary properties of decompo-
sition functions and (6), we have

¢ = gofe(c) = gefela) Ufegela) = fege(d) .
Using (4), the functions f and g preserve U, whence
foge(d) U fege(b) U gofe(b) = gefo(b) = go(b) Eb .

So ¢(U|R)b, and by (5), ¢(R|U)b. In an entirely analogous manner, we
have a(R|U)c, whence a((R|U) ~ 8)|(R|T) ~ 8')b, as to be shown.
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Finally, to finish case (d), we only need to prove the equality
((RIT) A B)(U ~ 8') = (R|U) ~ (S|U).

Now the inclusion from left to right follows from straightforward caleu-
lations. To go the other way, suppose that
{a, b> ¢ (R|U) ~ (8]T) .

Since this already implies a(R|T)b, by the results of (¢), we know that
there is a ¢ such that

a((R|T) ~ 8)e((R|U) ~ 8')b .
Because a(S|U)b, we see that

c8'|UI8'b  and  c8|U|SH,
‘whence, by (5), ¢Ub, thus

a((R| U)n S)G(U ~8')b
and
{a, b e ((R]U) ~ S)I(Um 8.
This concludes the proof of the lemma.

Suppose that T e A(W) is a binary reflexive connected relation over
A, U is the least equivalence relation containing 7' ~ T, and P(a, a, a).
We shall call the substructure (U, a) a center of 91 Conversely, any

substructure A’ of A is a center of A if there are appropriate T', U, a such
that A = A(T, a).

TEEOREM 1.3. (CENTRAL REFINEMENT THEOREM.) Suppose that

A == B, xB, = € xC, and suppose that A’ is any center of W. Then the
following hold:

(i) There are Bi, By, 61, € such that
A o BixBp == € x € .
(ii) There are By, By, Bay, By, such that
By X Bi = By X By,
582><§B§ o EBglx%gz .
(ili) There are Gy, €y, Gy, Qay such that
G xE =@,y X Qg
Gy X € o Gy X €,

icm°®
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(iv) Finally, the following additional relations hold:
1X By =~ B Xy,
Cix By == Bi %y,
€2 X By = B xCy ,
G2 X By 22 BIXC,,.

Proof. We may suppose that %’ = A(U, a) for some appropriate
T,U,a. Let E, R’ and 8, 8" be pairs of factor relations over 9 such that

By = AR, a), B,~AR,a),
G =UAB;a), €AY, q).

Reading off the ofthogona,l relations in Lemma 1.2, remembering that

we may switch the roles of B, R’ and 8, §’ freely, we get, by Lemma 1.1,
the following: )

{a’) WU, a) 2 UARATU,a)xUAR A U,a)
=UAB~T,a)xAS AU, a).
(b") WUR|U, a) = AR, a) xAR ~A U, a).
A(R'|U, a) =< AR, a) xUAR ~ U, a).
AT, @) =< (S, a) xAS' ~ U, a).
W(SNU,a) =~ A8, a) xAS AU, a).
(¢") A(R|U, a) = A((RIU) ~ 8, a) xU((R]T) ~ 8, a) .
A(R'|U, a) = A((B'|U) ~ 8, a) XA((B'|T) ~ &, a) .
W8T, a) = A((8|T) ~ R, a) xUA((8|T) ~ R/, aj .
A8 r}, a) = UA((8'|U) A R, a) xA((8'|U) ~ R', a) .
(a’) A((R|T) ~ (8]7), a)

R

UA(RIT) ~ 8, a) xA(T ~ 8, a)
= UA((S|T) A R, a) xU(T AR, a).
A(BT) A 8, a) xA(T ~ &, a)
A((8|TU) ~ R, a) xU(U ~ R, a).
A(R|T) ~ 8, a) xA(T ~ 8, a)
A((8'|U) A B, a) xA(T ~ R', a).
A(R\U)~ S, a) xU(T ~ 8, a)
A((S|T) ~ R, a) xA(T ~ R, a).

A((R'|T) ~ (8]T), a)

R

i

A((R|T ~ (8]7), q)

R

IR

A((R'|T) ~ (8'1T), a)

R

IR
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It now only remains to define:

Bl=AUR ~AU,a), Bi=WURAU,a,
C=AUL ~T,a), G=WUS~T,a).
Bu=A(RIV)~8,4a), Bup=U(RIT)~S,a),
By = A(R'|U) ~ 8, a), =A((R|U)~ &, a) .
Gy = A((8|T) ~ R, a), cclrar(sm )R, a),
Cou=A(S|U) ~nRya), Cp=A(8U)~R,a).

Now, conclusion (i) follows from (a’), conclusions (ii) and (iii) follow
from (b’) and (¢’), and conclusion (iv) follows from (d’). The theorem
is proved.

§2. Applications. In this section we are concerned with the
generalizations of (I) and (I') mentioned in the introduction.
Recall that a structure U has the refinement property if whenever

A o~ B B, == € xC,,
then there are Dy, Dyp, Doy, Dy such that

B; 2 Dy X Dy,
(Sl =Dy K Dy

By =2 Dy X Dy
€, =2 Dip XDy

In this case we say that the structure Dy, Dy, Du, Dy 8 @ refinement
of By, B, €, €,. So, A has the refinement property if and_only if when-
ever A ~ B; xB, =~ €, xC,, then there exists a refinement of B,, B,,
¢, C,. A finite structure has a unique factorization into indecomposable
factors if and only if it has the refinement property.

THEOREM 2.1. Suppose that some center of U is indecomposable and
cancelable, then W has the refinement property.

Proof. Let U’ be a center of A which is indecomposable and cancel-
able, and suppose that

A= By kB, o2 € xE, .

By Theorem 1.3, all of the structures listed therein exigt. Since U’ ig

indecomposable, lt follows that (since the relation P is never empty on
a center):

either

A ~B] and 1B,

or
1% and A =B;.
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Similarly for @i and €;. By symmetry, it is sufficient to consider the
following two cases.
Case 1. W =B ~C] and 1 >~ Bj =~ §. In this case, by using
the cancellation property of %’ and 1.3 (iv), we have
By == Cy
€1 x By == €
By == B xCy
B = Cps .

Putting these relations back into 1.3 (ii) and 1.3 (iii), and again eancel-

“ling A’, we get the refinement

SBx‘E%nXQ:m’ By o2 By X T
QG = By By, T €y Gy

Case 2. Y ~ Bi ~C} and 1 =2 Bi =~ C;.
we first get

By analogous arguments,

By = BixCy,
Boy = Gy,
B 2 €y,
O xBpp == G,y .
Then we have the refinement
By == €y X By, By 2 By ¥ By
C €y By, G2 BxBy.
The theorem is proved.
Notice that in order for the proof to go through we only needed the
existence of a structure A’, not necessarily a center of %A, for which the

hypotheses of 2.1 and the conclusions of 1.3 hold. This observation is
the first step of the mext theorem.

THEOREM 2.2. Let W be a center of . Suppose that
(1) W has a unique (up to isomorphism) representation

W =D X.o. XD

as a product of indecomposable factors Dy,
(ii) each D; s cancelable,
(iil) Dy £ Dy if © #j, and
(iv) whenever Dy x B =Dy x €, i 7 j, then Dy|C and Dy4||B.
Then A has the refinement property.
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Proof. Suppose that U =~ B, x B, =~ €, xE,. We may as well assume
that m > 1, for otherwise Theorem 2.1 will apply. ’We see that, since 9
is a center of A, ‘

(1) W satisties (i)-(iv) above and U’ satisfies all the conclusions of Theo-
rem 1.3 with B,, B,, €, ¢, held fixed.

We shall prove that, without any further use of the fact that N is a cen-

ter of ¥,

(2) there is an A" (not necessarily a center of A) which satisfies (1)-(iv)
above with m replaced by (m—1) and all the conclusions of Theo-
rem 1.3 with B,, B,, ¢,, €, held fixed.

So assume (1) and let 58]’,7 232’, (SI, (Sé, 5811, %12, %21, %22, &117 (El2y (Egl, Gzz
be as in Theorem 1.3. Consider the factor Dy, of A’. Since A’ has the unique
factorization property, D, must oceur in one of B! or B, and one of € or @;.
As we can see, there are now four cases. However, the arguments are
so similar that it is sufficient to go through only one of the cases. So sup-
pose that Dy, occurs in B and €. Now looking at the relations in 1.3 (iv),
we see that since D, does not occur in ¢}, D, must oceur in B,, (this
follows by an induction using (iv)). Similarly, D, must also occur in .
So we can write

B =D X %11:, Cl =D x Glil;

Byp = Dy X Bie, G 22D xCfy .

Now, let A’ =D, x... xDw—,. Using the fact that Dm i8 cancelable, we
see that the structures By, B3, €, €1, B,,, Bz, By Buay Oy, Cloy Gy, T
will satisfy the conclusions of Theorem 1.3 with respect to A, B,, B,,
€, €,. So (2) is proved from (1). Iterating this procedure, we eventually
get down to the case where m = 1. Now a refinement for B, By, €, C,
follows from the remark after Theorem 2.1 and the proof of Theorem 2.1.
The theorem is proved.

Let us see what happens to Theorem 2.2 if the indecomposable
factors of A’ are allowed to repeat. In the simpliest situation, suppose
that A" =D %D, where D is cancelable and indecomposable, and this
representation is unique. As in the proof of 2.2,1et W By B, o € 126,
and the conclusions of Theorem 1.3 hold. Suppose that it torns out thatb
Bl == Bs = € == €, o~ D. Then by cancelation we have

Biy o2 Gy i, j=1,2,
whence we obtain a vefinement of the four structures
ByxD, B,xD, D, EGxD.

Now, unless somehow we manage to find D as a factor of the By 's and
cancel on both sides, we apparently cannot get a refinement of By, Bay
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41, €. This remark motivates the notion and definition of prime strue-
tures given in the introduction. It turns out that the proof of Theorem 2.8,
below, requires some preliminaries.

In the following lemmas, let X be a set of prime and cancelable
structures. We assume that 1 ¢ X. So every structure in X is indecom-
posable, except the structures isomorphic to 1.

Lemma 2.3. Bvery product of indecomposable structures from X has
the unique factorization property, and, whence also the refinement property.
Proof. We first prove the following proposition by induction on n:

Suppose that D e X,D 21, and there are indecomposable &,.., €
such that

(3

DI X Xy

then D == €; for some 4. This induction is easy to carry out. Next, we
prove by induction on m that: if there are indecomposable Dy, ..., D € X
and there are indecomposable G, ..., €, such that

(1) D XDm =2 € X Gy,

then m = n and there is & permutation p of 1, ..., m such that D; o Cpy.
Informally, suppose that m > 1 and (1) holds. Then

D |Gy X .. X Ty

80, Dy =2 €; for some 4. Now, rearrange the ;s and cancel off D, from
both sides of (1). The rest follows from the induction hypothesis. The
lemma is proved.
‘We say that a structure B is X -free if no structure from X divides 8.
LemmA 2.4. Bvery structure B has a unigue (up o isomorphism) re-
presentation as a product

B o2 By X B,

when B, is X-free and B, is a product of structures from X.

Proof. First of all, since 1 ¢ X, we see that every structure B has
such a representation where B, is X -free and B, is a product of factors
in X. Suppose that there are two such representations

1) B BB, = G xC, .

‘We can first dismiss the trivial case where both B, o~ 1 o2 §,. By Lemma
2.3, we may find structures €, B;, € all produets of factors from X
such that

By = By« €, C=EGxC
and

B; and §; contain no common indecomposable factors from X .
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Cancelling the € from (1), we get By xBs =2 € x . If B, 52 ¢, then
B, 2~ €5, and we may assume that there is an indecomposable D e X
such that

D||B% but not D||C; .

This proves that D||E;, which is a contradiction to the X -freeness of .
So, indeed, B, = €,, and by cancellation, B, = ¢,.

LEMMA 2.5. Suppose that B == B, xB, and € = € €, are the re-
presentations diseussed in 2.4, then '

B € = (B, «E) (B, xC,)

W8 @ representation of B xC.

Proof. If some indecomposable D e X divides B, ~E,, then either
D||B, or D||C,, a contradiction. So B, x¢, is X -free and the rest follows.

LumMA 2.6. Suppose that U xB =~ € xD, and let Wy, By, €D, be
the X-free parts of A, B, €, D, respectively. Then there is a refinement
of A, B, €, D if and only if there is a refinement of Ay, By, €, Dy.

Proof. We suppose that

W Wy xWy, BB xB,, Cx=CxE, Dx=D D,

where U, B,, €,, D, are products of factors from X. Since AxBY
=~ € xD, we have by 2.5 and uniqueness that

9«[1)(%1 = Glxﬁl,
and

Wy x By == €, D, .

By Lemma 2.3, there is automatically a refinement, say €, G, €, €
of Wy, By, €,,D,. Now suppose that €, €, €L, & is a refinement
of %, By, €, D,, then clearly the four structures

CLxE, CLxEi, CnxCi, EhxEy
is a refinement of A, B, €,D. Conversely, suppose G, Ep, €y, €y is
a refinement of %A, B, €,D. We let E;; be the X -free parts of &;, res-
pectively. A simple calculation using the uniqueness of the representation
will show that
€1, Glo, €4, €, is & refinement of 2, B, €,D, .

The lemma is proved.

Lemya 2.7. Let By, B,, €, €, be arbitrary structures suck that By X By
=G, xGQ,. Let By, Bs, €, € be products of factors from X. Suppose that

there is a refinement of B, < By, By x B, € %, € «C;. Then there is
a refinement of B,, B,, €, C,.
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Proof. The hypothesis and Lemma 2.8 imply that there is a refinement
of the X-free parts of B,, B,, €, C,, respectively. Using 2.6 once more
in the opposite direction, there is a refinement of B,, B,, ¢, C,.

THEOREM 2.8. Let U be a center of . Suppose that W is a product
of prime and cancelable factors. Then N has the refinement property.

Proof. As usual suppose that U o~ B, x B, o €, xC,. We see that

the conclusions of Theorem 1.8 hold. In particular we have, using 1.3 (ii)
and 1.3 (iv), k

By xBi X CL <2 = (6F % Byy) X (€4 3 Byy)
o2 (BIxCy) X(By x Cyy)
o2 (B X Cy) x B x By .
Rewriting €] <€ as B; xB;, and cancelling B] x B from both sides,
we have :

1) By X Bh = €y xCyy .
Similarly,
(2) By X By o G XC,y .

So, (1), (2), and 1.3 (iii) imply that there is a refinement of
B, xBs, BpxBi, CxC, C,xC}.

Now, let X be the set of those prime and cancelable factors oceurring
in a factorization of A'. Clearly B;, Bi, €, €5 are products of factors
from X. Whence by Lemma 2.7, there is a refinement of B,, B,, ¢;, €,.
The theorem is proved.

To conclude this section, we shall restrict our attention to the class
of all finite non-empty binary reflexive connected relations 7. Let U be
the least equivalence relation containing T ~ 7', and, as before, we say
that the subrelations

T(U,a)=T~ (¢/UR, aecFld(T),

are the centers of T'. The preceeding three theorems can now be rephrased
for connected relations 7 as follows: (Henceforth, B, F,@,...,R, S,
T, U,.., shall denote finite binary reflexive relations).

(1) If a center of T is either isomorphic to {0, 0}, or i8 indecomposable
and cancelable (with respect to the class of relations being discussed
at hand), then T has the refinement property.

(2) If a center of T is isomorphic to & product of distinct non-isomorphic

indecomposable and cancelable factors, Uy X Uy X... X U, where
UixR o~ Uyx8 and i % imply U4[S and Uyl|R,
then T has the refinement property.
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(3) If a center of T is a productof prime and cancelable factors, then T has
the refinement property. . - :
The following sequence of lemmas- is designed to prove the next

theorem:

TaEOREM 2.9. Let p be a prime and let p® be the square relation
{G, 5k 1<, <p}. Then p* is cancelable and prime (among all finite
binary reflexive relations).

A% this point we remind the reader to look up some elementary
definitions and results from [3], [2]. We would like him to recall in par-
ticular the definitions and elementary properties of

R-8, the ordinal product of two relations E, S,
and
Zsi, the ordinal sum over R of relations 8i,
io.R
listed, for example, on pp. 171-172 [3] and pp. 260-261 [2].
LeMmA 2.10. pé is cancelable.

Proof. Suppose that p* xR == p* x 8. By the definitions of ordinal
product of relations, we see that

pPxR=p"R and p'x8=p8.
Whence we have p*-R o< p*- 8. By cancelling p¢ on the-left, Theorem 1 [3],
we get B o~ §. The lemma is proved.

We say that F is a congmence over R if ¥ is an equivalence relation
over the field of R and

ERIE=R.
We have already introduced the quotient relation
R|E = {{a|E, b/E>: aRb} .

LemyMa 2.11. If E is a congruence over R, then

R= D (4/Exa/b).
o/E,RIE
Proof. This lemma depends on a straightforward verification of
the definition of the ordinal sum of relations over another relation. We
only need to point out that the identity B|R|E = R is equivalent to
the following: given a/F and b/H,

it (a/Exb/E)~R#0, then (o/Exb/BE)CR.
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LeMMA 2.12. If E and F are congruences over R, then the least equiv-
alence relation containing B and F is again a congruence over R.

Proof. Let @ = | J.(B|F)". We have
(E\F)|E|(F|E) = E|(F|R|F)|E= E|RE=R.
So by a simple induction we get

(BIFY|R|(FIE)" =R for every = .
This obviously implies G|R|G = R. :
LeMMA 2.13. There is a (unique) maximal congruence relation over R.

Proof. Since the identity relation over the field of R is a congruence
over B, this result follows from 2.12.

Lemua 2.14. Suppose that B is the mazimal congruence over B and F
is the mawimal congruence over 8. Then the cardinal product G = B x
is the mazimal congruence over R % S. ’

Proof. It is immediate that @ is an equivalence relation over the
field of R x 8, and, furthermore,
G(BRx8))@=RxS.

So @ is a congruence over R x§. Suppose that H is a congruence relation
over B x§ which properly includes G. We shall show that this leads to
the contradiction that either B or F is not maximal. Say that a, b, e, d
are such that

{a, bYH (e, dy, but either not aEe or not bFAd .

Bjr symmetry, let us consider only- the case not aFe. Note that since
H C R x8, we have aRe¢ and cRa. We define a new equivalence relation B’
over the field of R by

E' = FE v (a/E x¢/E) v (¢/E xa/E) .

E' properly includes E. We show that E’ is a congruence over R. So
suppose zRy, xE'x’, and yE'y’. We wish to show «’Ry’. There are four
cases:

(1) B2’ and yEy’'. This leads to z'Ry’.
(2) =x(B'—E)z’ and yEy’. This case further divides into two subcases:
(2a) xFa and x'Fe. So we have

@, b>Ga, by Hc,dyGF<z',dy and (Y, b)E<y, b .

Since G C H, and since (=, b>(R x8){y, b), we get (o', d> (R x8)<y’, by,
So 2'Ry’.
18*
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(2b) xzEc¢ and &'Ha. We have
(m, dyG<e, d>H<a, byGa’, by  and <y, dd>Gy, dy.

Since (&, @ (R x8)<y, dy, we have (&', b)(E x8){y’, d), and a'Ry'.

(3) xB«',y(E'—E)y'. Bntirely analogous to case (2).

(4) =(E'—E)»' and y(B'—E)y’. By symmetry, we consider two
subcases: 7

(4a) wBa, &' Ec,yBa,y'Be. This gives immediately @'y’ which
implies o'Ry’. V

(4b) xBa, »'Be, yBe, y'Ea. Since cRa, we have a'Ly'.

So all eases have been considered and B’ is a congruence over R.
This is a contradiction to the maximality of . So ¢ must have been
maximal.

We now return to the proof of Theorem 2.9.

Proof. Suppose that B xp® = 8§ xT. Let B, I, G be the‘maximal
congruences over R, S, T, respectively. Clearly, p° is tl.le maximal con-
gruence over itself. By 2.14, B xpand I X@ are the. ma;x1ma1. congruen.ces
of Rxp® and §xT respectively. Obviously the isomorphism carrying
R xp® onto 8 xT induces an isomorphism of # ><_'p3‘ onto F x@&. So we
have B xp® = F x@. Now, each equivalence class of E xp® has a number
of elements which is divisible by p. By the isomorphism, we see that
(1) each equivalence class of F' x @ must have a number of elements

which is divisible by .

Every equivalence class of F x @ is of the form

a/F xb/G, acFlA(F), beFld(G).
So, by (1), either

(2) p divides |o/F'] for all a ¢ Fld(F),
or else,
(3) p divides [b/G  for all b ¢ F1d(@) .

From (2), we have that p* divides every square relation a/F' xa/lf. Since,

8= D) (afF xa/F).

o/ P, T|F

We may factor (ordinally) p® from each a/F af/F. By the left distri-
bution law.of - over Z, we may now write

S = p*8 = p* %8,
80 p?||S. In the case that (3) holds, we get p*||T. The theorem is proved.
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We can now draw the two last consequences of this paper.

TEEOREM 2.15. If T is connected and o center of T is a square relation,
then T has the refinement property.

Proof. Every (finite) square relation is a product of prime and
cancelable relations of the form pe.

TEEOREM 2.16. If T'is connected and transitive, then T has the refinement
property.

Proof. In this case, the least equivalence relation containing 7 ~ T

is simply 7' ~ T\ Tt is now obvious that any center of T must be a square
relation.

Added in proof May 23, 1967. After the submission of this manuscript, Professor
Alfred Tarski brought my attention to some recent work of R. McKenzie on prime
algebras (Notices of Amer. Math. Soc. 13 (1966), p. 727). While there is no overlap
between our works, still I think it is of some interest to point out some consequences
of my results here when we restrict ourselves to the class of (finite) algebras % = <4, >
where f is a binary operation, say, defined on A. Provided that suitable changes are
made in the definitions in §1, e.g. f(a, a) = a for P(a, a, a), the main result Theorem 1.3
holds for algebras as well. One only has to check that if a center U’ of ¥ is an
algebra, then all of the structures in the conclusion of Theorem 1.3 are also algehras.
The results, in §2 up to Theorem 2.8 also hold for algebras. Here, it is interesting to
notice that the notions of being prime and cancelable will now be defined with respect
to the class of (finite) algebras, whence they are slightly weaker notions, although the
notion of being a center is, as we pointed out above, a slightly stronger notion. Thus
the new Theorem 2.8 for algebras is not comparable to the old 2.8 for relational
structures.
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